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Abstract: A condensed review is presented for two basic topics in the theory of pattern formation
in nonlinear dissipative media: (i) domain walls (DWs, alias grain boundaries), which appear as
transient layers between different states occupying semi-infinite regions, and (ii) two- and three-
dimensional (2D and 3D) quasiperiodic (QP) patterns, which are built as a superposition of plane–
wave modes with incommensurate spatial periodicities. These topics are selected for the present
review, dedicated to the 70th birthday of Professor Michael I. Tribelsky, due to the impact made
on them by papers of Prof. Tribelsky and his coauthors. Although some findings revealed in those
works may now seem “old”, they keep their significance as fundamentally important results in the
theory of nonlinear DW and QP patterns. Adding to the findings revealed in the original papers by
M.I. Tribelsky et al., the present review also reports several new analytical results, obtained as exact
solutions to systems of coupled real Ginzburg–Landau (GL) equations. These are a new solution for
symmetric DWs in the bimodal system including linear mixing between its components; a solution
for a strongly asymmetric DWs in the case when the diffusion (second-derivative) term is present
only in one GL equation; a solution for a system of three real GL equations, for the symmetric DW
with a trapped bright soliton in the third component; and an exact solution for DWs between counter-
propagating waves governed by the GL equations with group-velocity terms. The significance of the
“old” and new results, collected in this review, is enhanced by the fact that the systems of coupled
equations for two- and multicomponent order parameters, addressed in this review, apply equally
well to modeling thermal convection, multimode light propagation in nonlinear optics, and binary
Bose–Einstein condensates.

Keywords: Ginzburg-Landau equations; thermal convection; quasiperiodic patterns

1. Introduction
1.1. The Objective of This Paper

This text was written as a contribution for a festschrift devoted to the celebration of
fifty years of the work of Prof. Mikhail Tribelsky in theoretical physics (the name known as
Mikhail/Michael/Michel/Miguel/Michele/Michal/Mikael/Mikkel/Mitxel/. . . is considered
as the oldest masculine name used in modern languages; the meaning of its original form
in Hebrew is “Who (is) like El (God)?”, which implies a response “no one can be likened to
God”). Apart from his fundamental contributions to optics, especially to the theory of the
nonresonant light–matter interaction [1,2] and light scattering by small particles [2–7], an
essential topic in the works of Prof. Tribelsky is the theory of pattern formation in nonlinear
dissipative media. In particular, two important subjects considered in his publications are
domain walls (DWs, alias grain boundaries), i.e., stationary stripes separating two domains
which are filled by different stable patterns, and quasiperiodic (QP) patterns, alias dissipative
two-dimensional (2D) quasicrystals. It is relevant to mention that the fundamental papers of
Prof. Tribelsky on the former and latter topics, viz., Refs. [8,9], are, respectively, his second and
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sixth best-cited publications, according to the data provided by Web of Science. The objective
of this paper is to produce a condensed review of basic results reported in those older but still
significant works, and outline directions of subsequent work initiated by the results reported
in them. The review also includes some new exact analytical results for DWs, which offer a
natural extension of the analysis initiated in Ref. [8] (in a detailed form, the new results will
be reported elsewhere [10]). The presentation given in this review has a personal flavor, due
to the fact that the present author was Mikhail’s collaborator in projects which produced the
above-mentioned original publications.

In addition (Ref. [8]) it is relevant to mention a still earlier paper [11], where we
addressed a well-known model equation, which is usually called the real Ginzburg–Landau
(GL) equation (the name originates from the phenomenological theory of superconductivity
elaborated by Ginzburg and Landau 70 years ago [12]). The usual scaled form of the real
GL equation is as follows:

∂u
∂t

= u +
∂2u
∂x2 − |u|

2u, (1)

where x and t are the spatial coordinate and time measured in scaled units.
In fact, the order parameter u(x, t) governed by Equation (1) is a complex function;

the equation is called “real” because its coefficients are real (therefore, by means of scaling,
all coefficients in Equation (1) are set to be ±1). The first, second, and third terms on the
right-hand side of Equation (1) represent, respectively, the linear gain, diffusion/viscosity
(dispersive linear loss), and nonlinear loss. The real GL equation is a universal model for
many nonlinear dissipative media, such as the Rayleigh–Bénard convective instability in a
shallow layer of a liquid heated from below [13] and instability of a plane laser evaporation
front [1].

Note that Equation (1) may be represented in the gradient form as follows:

∂u
∂t

= − δL
δu∗

, (2)

where δ/δu∗ stands for the functional (Freché) derivative, and

L =
∫ +∞

−∞

(
−|u|2 +

∣∣∣∣∂u
∂x

∣∣∣∣2 + 1
2
|u|4

)
dx (3)

is a real Lyapunov functional. A consequence of the gradient representation is that L may
only decrease or stay constant in the course of the evolution, dL/dt ≤ 0. This constraint
simplifies the dynamics of the real GL equation.

Equation (1) gives rise to a family of simple stationary plane–wave (PW) solutions:

u(x) =
√

1− k2 exp(ikx), (4)

where real wavenumber k takes values in the existence band,

− 1 < k < +1. (5)

A nontrivial issue is stability of the PW solutions against small perturbations. It can
be naturally addressed by rewriting Equation (1) in the Madelung form (sometimes called
the hydrodynamic representation), substituting

u(x, t) = A(x, t) exp(iφ(x, t)), (6)
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where A and φ are the real amplitude and phase. The substitution splits Equation (1) into a
pair of real equations:

∂A
∂t

= A +
∂2 A
∂x2 − A

(
∂φ

∂x

)2
− A3, (7)

A
∂φ

∂t
= A

∂2φ

∂x
+ 2

∂A
∂x

∂φ

∂x
. (8)

In terms of the latter system, the PW solution (4) is written as follows:

A =
√

1− k2, φ(x) = kx. (9)

In paper [11] (incidentally, it is the ninth best-cited publication of M.I. Tribelsky), the
stability of solution (9) was explored by means of linearization of Equations (7) and (8)
against small perturbations of the amplitude and phase. We thus found that the stability
region in the existence band (5) is

− 1/
√

3 ≤ k ≤ +1/
√

3. (10)

In this region, the squared amplitude of the PW solution, A2(k), exceeds 2/3 of its
maximum value, A2

max ≡ 1, which corresponds to k = 0:

A2 ≡ 1− k2 ≥ 2/3. (11)

At that time, we were not aware of the fact that this result, in the form of Equation (10),
was established much earlier [14] by W. Eckhaus (Wiktor Eckhaus (1930–2000) was born
in Poland, where he had survived Holocaust; after WWII, he moved to the Netherlands,
where he had eventually become a professor at the Utrecht University). It is now commonly
known as the Eckhaus stability criterion (ESC). Later, we learned that some other people
entering this research area had also independently rediscovered the ESC (this fact suggested
our coauthor in Refs. [8,9], Prof. Alexander Nepomnyashchy, to formulate a Nepomnyashchy
criterion: a necessary condition for successful work on the pattern–formation theory is the
ability of the researcher to re-derive the ESC from the scratch).

1.2. Complex Ginzburg–Landau Equations: The Formulation, Plane Waves, and
Dissipative Solitons

Before proceeding to the discussion of particular topics included in this review, it
is relevant to briefly recapitulate the main principles concerning complex GL equations
as a class of fundamental models underlying the theory of pattern formation under the
combined action of linear gain and loss (including the diffusion/viscosity), linear wave
dispersion, nonlinear loss, and nonlinear dispersion. In the case of cubic nonlinearity, the
generic form of this equation is as [15,16]

∂u
∂t

= gu + (a + ib)
∂2u
∂x2 − (d + ic)|u|2u, (12)

cf. its counterpart (1) with real coefficients. Here, constants g > 0, a ≥ 0, and d > 0
represent, respectively, the linear gain, diffusion coefficient, and nonlinear loss. Further, co-
efficients b and c, which may have any sign, control the linear and nonlinear dispersion, re-
spectively. Coefficient g in Equation (CCGL) may include an imaginary part too, but such a
frequency term can be trivially removed by a transformation, u(x, t) ≡ u(x, t) exp[iIm(g)t].

By means of obvious rescaling of t, x, and u, one can fix three coefficients in Equation (12):

g = a = d = 1, (13)
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unless the equation does not include the diffusion term, in which case a = 0 is set. Equa-
tion (12) is written in the 1D form, while its multidimensional version is obtained replacing
∂2u/∂x2 by the Laplacian, ∇2u.

Unlike Equation (1), the complex GL Equation (12) does not admit a gradient repre-
sentation (see Equation (2)). In the case of relatively small real parts of the coefficients,
i.e., a� |b|, d� |c|, Equation (12) may be treated as a perturbed version of the nonlinear
Schrödinger (NLS) equation. Methods of the perturbation theory for NLS equations were
developed in detail long ago [17].

The ubiquity of the complex GL equations is stressed by the title of the major review by
Aranson and Kramer [15], The world of the complex Ginzburg-Landau equation—indeed, the
great number of particular forms of such equations, their various realizations and applications,
and the great number of solutions, obtained by means of numerical and approximate analytical
methods, form a “world” in itself. As concerns applications, complex GL equations emerge
not only in such areas as optics of laser cavities [18–21], where they can be directly derived as
basic physical models, with u(x, t) being a slowly varying amplitude of the optical field, but
also in many other areas of physics (hydrodynamics, electron-hole plasmas in semiconductors,
gas-discharge plasmas, chemical waves, etc.). In many cases, the underlying systems of
basic equations are complicated, but complex GL equations may be derived from them as
asymptotic equations for long-scale small-amplitude (but, nevertheless, essentially nonlinear)
excitations [22–24]. In some cases, equations of the complex-GL type may also be quite useful
as phenomenological models [15,16].

While DW states are supported by a finite-amplitude PW background, it is relevant
to mention that complex GL equations may give rise to localized states (dissipative soli-
tons [25–31]). In particular, Equation (12) admits an exact solution,

u = A [cosh(κx)]−(1+iµ) exp(−iωt), (14)

with a single set of parameter values, A, κ, µ, and ω, given by cumbersome expressions [32,33].
If the complex GL equation reduces to a perturbed NLS equation, the dissipative soliton (14)
can be obtained from the NLS soliton by means of the perturbation theory, under condition
bc < 0 (otherwise, the underlying NLS equation does not have bright-soliton solutions).
However, solution (14) is always unstable, as the linear gain in Equation (12), represented by
g > 0, makes the zero background around the soliton unstable.

Dissipative solitons of this type may be effectively stabilized, in a nonstationary form,
in a model including time-periodic alternation of linear gain and loss, which implies
replacing the constant coefficient g in Equation (12) by function g(t) periodically changing
between positive and negative values; in particular, it may be taken as a periodic array of
amplification pulses on top of a constant lossy background:

g(t) = G
+∞

∑
n=−∞

δ(t− τn)− g0, (15)

with G > 0 and g0 > 0, τ being the amplification period [34]. Another option for the
stabilization is the use of the dispersion management, i.e., replacing constant dispersion
coefficient b in Equation (12) by function b(t), which periodically jumps between positive
and negative values, cf. Equation (15) [35].

The fact that the dissipative soliton (14) may be considered an extension of bright
NLS solitons suggests that Equation (12) may also support a solution resembling the dark
soliton of the NLS equation with the self-defocusing nonlinearity. Indeed, such solutions
were found by Nozaki and Bekki in the form of [36]. Although the holes, as well as DWs,
are supported by a stable PW background, they are completely different states, as DWs
separate different PWs (see below), while the hole is built into a single PW.

A more sophisticated version of the complex GL equation admits the existence of
stable stationary dissipative solitons if the zero solution is stable, i.e., the linear term must
be lossy, corresponding to g < 0 in Equation (12). In this case, it is necessary to include the
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cubic gain and quintic loss (the latter term prevents the blowup). Thus, one arrives at the
complex GL equation with the cubic-quintic nonlinearity, which was first introduced by
Petviashvili and Sergeev [37] (actually, as a 2D equation) in the following form:

∂u
∂t

= gu + (a + ib)
∂2u
∂x2 − (d + ic)|u|2u− ( f + ih)|u|4u, (16)

with g < 0, a ≥ 0, d < 0, and f > 0, cf. Equation (12).
It follows from Equation (16) that the interplay of the gain and loss terms in Equation (16)

allows the generation of nonzero states under the condition that the cubic-gain strength
exceeds a minimum value necessary to compensate the effect of the losses:

|d| > (|d|)min = 2
√
|g| f . (17)

Further, using the rescaling freedom, one can normalize Equation (16) by setting

− g = a = −d ≡ 1, (18)

cf. Equation (13) in the case of Equation (12). Then, condition (17) amounts to f < 1/4.
Stable dissipative solitons as solutions of Equation (16), in the case when they may

be considered to be a perturbation of NLS solitons, were first predicted in Ref. [25] and
later rediscovered in Ref. [38]. Then, stable dissipative soliton solutions of Equation (16)
were found in the opposite limit, when the dispersive terms in this equation may be treated
as small perturbations. In this case, the dissipative solitons are broad (nearly flat) states,
bounded by sharp edges in the form of a kink and antikink [39–41].

The complex GL Equation (16), subject to normalization (18), generates a family of
PW solutions, where the wavenumber takes values in the same interval (5) as above:

ψ =
√

1− k2 exp(ikx− iωt), ω = c + (b− c)k2, (19)

cf. stationary solutions (4) of the real GL equation. The stability of these flat states against
long-wave perturbations can be investigated analytically, leading to a generalization of the
ESC (cf. Equation (10)) [42]:

k2 ≤ (1 + bc)/
(

3 + 2c2 + bc
)

(20)

The full stability of solutions (19) was investigated in a numerical form [15,16]. Note
that condition (20) cannot hold unless the dispersion coefficients in Equation (16), normal-
ized as per Equation (18), satisfy the Benjamin–Feir–Newell (BFN) condition,

1 + bc > 0. (21)

If this condition does not hold, unstable PWs develop phase turbulence, with |ψ|
staying roughly constant, while the phase of the complex order parameter, φ(x, t) ≡
arg{u(x, t)}, demonstrates spatiotemporal chaos. Just below the BFN instability threshold,
i.e., at 0 < −(1 + bc)� 1 (see Equation (21)), the chaotic evolution of the phase gradient
p ≡ φx obeys the Kuramoto–Sivashinsky equation [43,44], whose scaled form is

pt + pxx + pxxxx + ppx = 0. (22)

Deeper into the region of 1 + bc < 0, the instability creates defects of the wave field,
at which |u(x, t)| = 0, and eventually leads to the onset of defect turbulence [15,16].
Further evolution may lead to emergence of regularly arranged train-shaped patterns in
the turbulent states [45].
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1.3. The Structure of This Paper

The rest of the paper is divided into Sections 2 and 3, which are followed by concluding
Section 4. Section 2 addresses the concept of DWs and its further developments, starting
from Ref. [8]. The DWs considered in that work were constructed as solutions of a system
of two nonlinearly coupled real GL equations, which model the interaction of two families
of simplest roll patterns (quasi-1D spatially periodic structures) in the Rayleigh–Bénard
convection. This setup is controlled by the overcriticality, which is defined as follows:

ε = (Ra− Racrit)/Racrit , (23)

where Ra is the Rayleigh number, and Racrit is its critical value at the threshold of the
convective instability of the fluid layer heated from below. DWs in convection patterns
were predicted as linear defects (grain boundaries) [13,46,47], and were directly observed
in experiments, both as DWs proper and more complex structures, formed by junctions of
DWs. Typical examples of the experimentally observed patterns, borrowed from Ref. [48],
are presented in Figure 1.

(a)

r-
, f 

, d 

(b)

Figure 1. (a) An experimentally observed pattern of rolls in the Rayleigh–Bénard convection, which
demonstrates a junction of domain walls (grain boundaries). The pattern corresponds to overcritical-
ity ε = 1; see Equation (23). (b) Similar patterns observed at ε = 1.8 (left) and 2 (right). Reprinted
with permissions from Ref. [48].

It is relevant to stress that the concept of grain boundaries is known, in a great variety
of different realizations, as a very general one in condensed-matter physics [49–55]. In
most cases, the nature of such objects is different from that in thermal convection and other
nonlinear dissipative media. Nevertheless, the phenomenology of the grain boundaries in
completely different physical systems has many common features.

The DW states were constructed in Ref. [8] as solutions of two coupled real GL
equations for amplitudes of PWs connected by the DW. In a particular case, such a solution
for a symmetric DW is available in an exact analytical form, see Equations (50) and (51)
below. It is also demonstrated that the symmetric DW may play the role of a potential well,
which traps an additional small-amplitude component, in the form of a bright soliton, thus
making the structure of the DW more complex, as shown below by Equations (72)–(75)
and Figure 5. Further, a newly derived extension of the exact solution is included, for
the case when the symmetrically coupled real GL equations include linear-mixing terms
(see Equation (54) below), and a new exact solution for a strongly asymmetric DW, in the
case when only one real GL equation includes the diffusion term (second derivative). This
solution is given below by Equations (64)–(68) and Figure 4.

At the level of stationary solutions, the same coupled equations which model the grain
boundaries in thermal convection predict DWs in optics, as boundaries between spatial or
temporal domains occupied by PWs representing different polarizations or different carrier
frequencies of light [56]. These equations also produce DW states in binary Bose–Einstein
condensates (BECs) composed of immiscible components [57].
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Still earlier, approximate solutions similar to DWs were constructed in the framework
of a single complex GL equation [58]. Such solutions represent stationary sources of stable
PWs with wavenumbers ±k (see Equation (19)) emitted in opposite directions (while the
above-mentioned holes are sinks absorbing colliding PWs with opposite wavenumbers). A
special case corresponds to complex GL Equation (12) without the diffusion term, i.e., with
a = 0. In that case, DWs may be approximately reduced to shock waves governed by an
effective Burgers equation for a local wavenumber [59]. These results are also included,
in a brief form, in Section 2. As an extension of the topic, this section also addresses
DWs between semi-infinite domains filled by counterpropagating traveling waves (this
is possible, in particular, in thermal convection in a layer of a binary fluid heated from
below [60–63]). Furthermore, Section 2 includes a newly found exact solution for the DW
between traveling waves produced by a system of coupled real GL equations that include
group-velocity terms (see Equations (85)–(90) below).

Section 3 summarizes some theoretical results for QP patterns in 2D and 3D nonlinear
dissipative media, the study of which was initiated in Ref. [9]. In particular, included
are findings for stable QP states produced by combinations of four spatial modes in a
laser cavity with different 3D wave vectors [64]. Another possibility to produce a spatially
confined four-mode (eight-fold) QP structure, briefly considered in Section 3, is offered by
the overlap of two square-shaped (two-mode) patterns under the angle of 45o in a transient
layer between the patterns [65]. This possibility is a combination of the two main topics
considered in this review, viz., DWs and QP patterns.

The review is completed by Section 4, which summarizes basic results and briefly
outlines new possibilities in this area.

2. DW (Domain-Wall) Patterns
2.1. The Source Pattern Generated by the Single Complex GL Equation
2.1.1. The Generic Case

To produce approximate solutions to Equation (12), it is convenient to rewrite it in the
Madelung form (6), which yields the following system of equations for real amplitude A
and phase φ:

∂A
∂t

= A− A3 +
∂2 A
∂x2 − A

(
∂φ

∂x

)2
− 2b

∂A
∂x

∂φ

∂x
− bA

∂2φ

∂x2 , (24)

A
∂φ

∂t
= 2

∂A
∂x

∂φ

∂x
+ A

∂2φ

∂x2 − cA3 + b
∂2 A
∂x2 − bA

(
∂φ

∂x

)2
(25)

(recall that the coefficients of Equation (12) are subject to normalization conditions (13)).
As shown in Ref. [58], a stationary solution of the DW type, which represents a source
of PWs emitted in the directions of x → ±∞, can be looked for assuming that the dis-
persion coefficients b and a are small, and the local amplitude, A(x), and wavenumber,
p(x) ≡ ∂φ/∂x, are slowly varying functions of x (the “nonlinear geometric-optics ap-
proximation”, alias the “eikonal approximation”). In the lowest order, all derivatives and
dispersion terms may be neglected in Equation (24), reducing it merely to A2 ≈ 1− p2,
cf. Equation (4). Next, this approximation is substituted in Equation (25), with the phase
taken as follows:

φ(x, t) = −
(

c + (b− c)k2
)

t +
∫

p(x)dx, (26)

where it is assumed that the asymptotic values of the wavenumber are

p(x → ±∞) = ±k (27)
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(hence, the frequency in expression (26) is the same as in Equation (19)). Keeping the lowest-
order small terms with respect to the small dispersive coefficients and small derivative dp/dx
of the slowly varying local wavenumber leads to the following approximate equation:

1− 3p2

1− p2
dp
dx

= (c− b)
(

k2 − p2
)

. (28)

The DW solution to Equation (28) can be obtained in an implicit form, which yields x
as a function of p, satisfying the boundary conditions (27):

2k ln
1− p
1 + p

+
(

1− 3k2
)

ln
k− p
k + p

= 2k(b− c)
(

1− k2
)

x. (29)

The solution can be easily cast in an explicit form under condition k2 � 1:

p(x) ≈ k tanh[(c− b)kx]. (30)

This form clearly demonstrates that the DW may be indeed construed as an emitter of
waves from the center, where p(x = 0) = 0, to x → ±∞, in agreement with Equation (28).
The explicit solutions, as well as the implicit ones (29), constitute a family parameterized
by free constant k.

In the real GL equation, with b = c = 0, as well as in the case when the linear and
nonlinear dispersions exactly cancel each other, b = c, Equation (28) cannot produce a
stationary DW solution. As shown in Ref. [58], in that case, initial configurations in the
form resembling expression (30), i.e., a step-shaped profile of the local wavenumber, give
rise to nonstationary solutions, which may be approximated by means of characteristics
and caustics of a quasi-linear evolution equation for p(x, t).

2.1.2. Domain Walls as Shock Waves in the Diffusion-Free Complex GL Equation

The consideration of DWs should be performed differently in the special case of the
complex GL Equation (12) with a = 0, which does not include the diffusion term. Taking
into regard normalization (13), the respective equation takes the following form:

∂u
∂t

= u + ib
∂2u
∂x2 − (1 + ic)|u|2u (31)

(in fact, one can additionally rescale coordinate x here, to set b = ±1). This form of
the equation admits free motion of various modes [26,59]. In this case, the Madelung
substitution (6) leads, instead of the amplitude-phase Equations (24) and (25), to the
following system:

∂A
∂t

= A− A3 − 2b
∂A
∂x

∂φ

∂x
− bA

∂2φ

∂x2 , (32)

A
∂φ

∂t
= −cA3 + b

∂2 A
∂x2 − bA

(
∂φ

∂x

)2
. (33)

Further, the lowest approximation of the nonlinear geometric optics, applied to Equa-
tion (32), yields

A2 ≈ 1− b
∂p
∂x

. (34)

The substitution of this in Equation (33) leads, after simple manipulations (including
the division by A and differentiation with respect to x, in order to replace ∂φ/∂t by ∂p/∂t),
to the Burgers equation [59]:

∂p
∂t

= bc
∂2 p
∂x2 − 2bp

∂p
∂x

. (35)
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The usual shock-wave solutions of Equation (35) give rise to a family of DWs with
two independent parameters, viz., wall thickness ξ > 0 and speed s, which may be positive
or negative:

p(x, t) =
s

2b
− c

ξ
tanh

(
x− st

ξ

)
. (36)

The appearance of the second free parameter, s, in this solution corresponds to the
above-mentioned fact that Equation (31) admits free motion of patterns produced by this
variant of the complex GL equation.

2.2. DWs in Systems of Real Coupled GL Equations: Old and New Solutions
2.2.1. The Setting

The starting point of the analysis developed in Ref. [8] was a general expression for
the distribution of the complex order parameter in the 2D system (e.g., the amplitude of
the convective flow):

U(x, y; t) =
N

∑
l=1

ul(x, y; t) exp(inl ·R), (37)

where R =(x, y). Equation (37) implies that the order-parameter field is a superposition of
N plane-wave modes (often called rolls, in the context of the convection theory) with wave
vectors nl , and ul(x, y) are slowly varying amplitudes of these modes. Stationary states
produced by the real GL equations may be looked for in the real form too as follows:

ul(x, y) ≡ rl(x, y), arg(ul) = 0. (38)

as the evolution of phases arg(ul) is trivial in this case.
It is relevant to mention that patterns similar to the rolls (known under the same name)

are produced by the Lugiato–Lefever (LL) equation and its varieties. The basic LL equation
may be considered the NLS equation for amplitude u(x, t) of the optical field in a laser
cavity, which includes the linear-loss coefficient, γ > 0, a real cavity-mismatch parameter,
θ ≷ 0, and a constant pump field, u0 [66]:

∂u
∂t

= −γu + u0 + i
(
|u|2 − θ

)
u + i

∂2u
∂x2 . (39)

Roll patterns were studied in detail in various forms of LL models [67–69]. DWs also
occur in these systems [70,71].

As is illustrated by Figure 2a, the simplest possibility of the realization of patterns
represented by Equation (37) is the superposition of N = 2 modes, each one filling, essen-
tially, a half-plane bounded by the DW. In this case, real amplitudes r1.2 are slowly varying
functions of only one coordinate, x, directed perpendicular to the DW. The respective
boundary conditions (b.c.) are as follows:

r1(x → −∞) = r2(x → +∞) = const 6= 0,

r1(x → +∞) = r2(x → −∞) = 0. (40)

The scaled form of stationary (time-independent) coupled real GL equations for slowly
varying amplitudes r1(x) and r2(x), corresponding to the bimodal DW configuration
defined as per Figure 2a and Equation (40), is [8] (see also Refs. [13,46]):

D1
d2r1

dx2 + r1

(
1− r2

1 − Gr2
2

)
= 0, (41)

D2
d2r2

dx2 + r2

(
1− r2

2 − Gr2
1

)
= 0. (42)
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Here, the effective diffusion coefficients are

D1.2 = cos2 θ1,2 (43)

(see Figure 2a), and G > 0 is an effective coefficient of the cross-interaction between
different plane waves, while the self-interaction coefficient is scaled to be 1.

The symmetric configuration corresponds to Figure 2a with the following:

θ1 = −θ2, (44)

which implies D1 = D2 ≡ D, according to Equation (43). Naturally, the symmetric case
plays an important role in the analysis, as shown below.

(a) (b)

Figure 2. The scheme of the formation of the DW (domain wall) between two-dimensional patterns in the Rayleigh–Bénard
convection and similar settings. (a) The DW between plane waves (rolls) with wave vectors oriented under angles θ1 and θ2

with respect to the x axis, see Equation (37). The respective amplitudes r1,2(x) satisfy Equations (41) and (42) and are subject
to b.c. (40). The position of the DW is shown by the vertical dashed line. An example of the DW profile is displayed below
in Figure 3a. (b) The same as in (a) for the DW between hexagons (the triple-mode pattern) and single-mode rolls. Figure is
reprinted with permissions from Ref. [8].

It is relevant to mention that coupled Equations (41) and (42) may be considered
as formal equations of motion for a mechanical system with two degrees of freedom,
while x plays the role of formal time. This system keeps a constant value of its (formal)
Hamiltonian,

h =
1
2 ∑

j=1,2

[
Dj

(drj

dx

)2

+ r2
j −

1
2

r4
j

]
− G

2
r2

1r2
2. (45)

DW solutions can be readily found as numerical solutions of coupled Equations (41) and
(42), subject to b.c. (40). A characteristic example of the solution is displayed in Figure 3a. In
fact, the existence of the DWs in the framework of Equations (41) and (42) may be understood
as the immiscibility of the modes whose amplitudes are produced by these equations. The
general condition for the immiscibility, written in the present notation, is well known:

G > 1, (46)

i.e., the strength of the mutual repulsion of the two components must exceed the strength
of their self-repulsion [72].

Hexagonal states in the Rayleigh–Bénard convection are produced by a superposition
of three plane waves, with angles 120o between their wave vectors. Such patterns are
stable if, in addition to the cubic inter-mode interaction in Equations (41) and (42), the
respective system of three GL equations for local amplitudes r1,2,3(x) includes resonant
quadratic terms:

D1
d2r1

dx2 + r1

[
1− r2

1 − G
(

r2
2 + r2

3

)]
+ νr2r3 = 0 (47)
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plus two complementing equations obtained from Equation (47) by cyclic permutations
of subscripts (1, 2, 3), where ν is a coefficient of the resonant interaction. In the theory of
the thermal convection, the quadratic terms represent the effects beyond the framework
of the basic Boussinesq approximation [73,74]. The numerical solution of Equation (47)
produces DWs connecting single-mode rolls and the hexagonal pattern [8], see an illus-
tration in Figure 2b and the corresponding pattern displayed in Figure 3b. It was also
demonstrated that DWs are possible between two bimodal (square-shaped) patterns, each
one composed of two plane waves with perpendicular orientations. In that case, the DW
appears as a boundary between two half planes filled by square patterns with different
orientations [8,65]; see further details below in Equations (125)–(128) and Figure 9. Further,
in Ref. [75], a spatially inhomogeneous model in which the cross-interaction coefficient is a
function of the coordinate G = G(x) was introduced, making it possible to construct stable
DWs between the single- and bimodal patterns.

(a) (b)

Figure 3. (a) A typical profile of the DW between different plane-wave (roll) families. (b) The
structure of the DW between the plane-wave and hexagonal patterns (in this panel, k1,2,3 are identical
to nl in Equation (37)). Figure is reprinted with permissions from Ref. [8].

2.2.2. Original Analytical Results

An analytically tractable case is the symmetric one, with D1 = D2 ≡ D, and

0 < G− 1� 1 (48)

(recall that G > 1 is a necessary condition for the existence of DWs). The analysis makes
it possible to reduce the coupled GL equations to an effective sine-Gordon equation for a
slowly varying inter-component phase χ(x), and thus produce an approximate analytical
DW solution with a large width of the transient layer, L ∼ (G− 1)−1/2 [8]:{

r1(x)
r2(x)

}
≈
{

cos χ(x)
sin χ(x)

}
, χ = arctan

(
exp

(√
G− 1

D
x

))
. (49)

In the particular case of
G = 3, (50)

the symmetric version of Equations (41) and (42) admits an exact DW solution [8]:
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{
r1(x)
r2(x)

}
=

1
2

 1− tanh
(

x/
√

2D
)

1 + tanh
(

x/
√

2D
) , (51)

which is obviously compatible with b.c. (40).

2.2.3. New Analytical Results
Symmetric DWs

Precisely the same real time-independent equations as Equations (41) and (42) appear
in nonlinear optics as a stationary version of coupled NLS equations in bimodal waveg-
uides, with r1 and r2 being the local amplitudes of electromagnetic waves carrying different
wavelengths or different polarizations of light [76]. In the latter case, typical values of G are
2/3 or 2 for the linear or circular polarizations of the light, respectively. Other values are
possible too, in photonic-crystal waveguides [77]. Similarly, the stationary real equations
naturally appear as the time-independent version of coupled Gross–Pitaevskii equations
for mean-field wave functions of binary BECs in ultracold atomic gases [78].

Thus, the same solutions considered here may represent optical DWs [56], as well as
DWs separating two immiscible species in the BEC [57]. Further, the coupled equations
in optics and BEC models may also include linear mixing between the interacting modes.
In particular, this effect is produced by a twist applied to the bulk optical waveguide. A
similar effect in binary BEC, viz., mutual inter-conversion of two atomic states, which
form the binary BEC, may be induced by the resonant radio-frequency field [79]. The
respectively modified symmetric system of Equations (41) and (42) is

D
d2r1

dx2 + r1

(
1− r2

1 − Gr2
2

)
+ λr2 = 0, (52)

D
d2r2

dx2 + r2

(
1− r2

2 − Gr2
1

)
+ λr1 = 0, (53)

where real λ is the linear-coupling coefficient. In fact, Equations (52) and (53) apply to the
Rayleigh–Bénard convection too, in the case when periodic corrugation of the bottom of
the convection cell, with amplitude ∼ λ and wave vector n1 + n2 (see Equation (37)), gives
rise to the effect of the linear cross-gain. It is used in many laser setups that are similar to
thermal convection [80,81].

The system of Equations (52) and (53) with G = 3 admits an exact DW solution, which
is an extension of its counterpart (51):

{
r1(x)
r2(x)

}
=

1
2


√

1 + λ−
√

1− λ tanh
(√

1−λ
2D x

)
√

1 + λ +
√

1− λ tanh
(√

1−λ
2D x

)
. (54)

Due to the action of the linear mixing, b.c. (40) is replaced by the following one:

r1(x → −∞) = r2(x → +∞) =
1
2

(√
1 + λ +

√
1− λ

)
,

r1(x → +∞) = r2(x → −∞) =
1
2

(√
1 + λ−

√
1− λ

)
. (55)

The exact solution given by Equations (52)–(55) was not reported in previous publica-
tions.

The Effect of the Confining Potential

The above-mentioned realization of the coupled real GL equations in terms of the
binary BEC should include, in the general case, a trapping harmonic-oscillator (HO)
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potential, which is normally used in the experiment [78]. The accordingly modified system
of Equations (52) and (53) is

D
d2r1

dx2 + r1

(
1− r2

1 − Gr2
2

)
+ λr2 =

ℵ2

2
x2r1, (56)

D
d2r2

dx2 + r2

(
1− r2

2 − Gr2
1

)
+ λr1 =

ℵ2

2
x2r2, (57)

where ℵ2 is the strength of the OH potential. DW solutions of the system of Equations (56)
and (57) were addressed in Ref. [82]. A rigorous mathematical framework for the analysis
of such solutions in the absence of the linear coupling (λ = 0) was elaborated in Ref. [83].

If the HO trap is weak enough, viz., ℵ2 � 4/(1− λ), the DW trapped in the OH
potential takes nearly constant values that are close to those in Equation (55) in the region
of

2D/(1− λ)� x2 � 8D/ℵ2. (58)

At x2 → ∞, solutions generated by Equations (56) and (57) decay similar to eigenfunc-
tions of the HO potential in quantum mechanics, viz.,

r1,2 ≈ $1,2|x|β exp
(
− ℵ

2
√

2D
x2
)

, (59)

β =
1 + λ√

2Dℵ
− 1

2
, (60)

where $1,2 are constants. In the case of λ = 0, the asymptotic tails (59) follow the structure of
solution (51), i.e., $1(x → +∞) = $2(x → −∞) = 0 and $1(x → −∞) = $2(x → +∞) 6= 0.
On the other hand, the presence of the linear mixing, λ 6= 0, makes the tail symmetric
with respect to the two components, $1(|x| → ∞) = $2(|x| → ∞) 6= 0. Note that β = 0 in
Equation (60) with λ = 0 is tantamount to the case when values of ℵ and D in Equations (56)
and (57) correspond to the ground state of the HO potential.

Exact Asymmetric DWs

Another possibility to add a new analytical solution for DWs appears in the limit case
of the extreme asymmetry in the system of Equations (41) and (42), which corresponds to
D2 = 0 and D1 ≡ D > 0, i.e., the DW between two roll families one of which has the wave
vector perpendicular to the x axis (see Equation (43)):

D
d2r1

dx2 + r1

(
1− r2

1 − Gr2
2

)
= 0, (61)

r2

(
1− r2

2 − Gr2
1

)
= 0. (62)

In fact, the form of Equation (62), in which the second derivative drops out, corre-
sponds to the well-known Thomas–Fermi approximation (TF) in the BEC theory. In the
framework of the TF approximation, the kinetic-energy term in the Gross–Pitaevskii equa-
tion is neglected, in comparison with larger ones, representing a trapping potential and
the (self-repulsive) nonlinearity [78]. In the present case, corresponding to θ2 = 90o, i.e.,
D2 = 0 in Equation (43), is not an approximation but the exact special case. As concerns
the application of Equations (41) and (42) to BEC, with the kinetic energy coefficients
D1,2 = h̄2/(2m1,2) in physical units, where m1,2 are atomic masses of the two components
of the heteronuclear binary condensate, Equations (61) and (62) correspond to a semi-TF
approximation, representing a mixture of light (small m1) and heavy (large m2) atoms, e.g.,
a 7Li–87Rb diatomic gas [84].

Obviously, Equation (62) yields two solutions, viz., either

r2 = 0, (63)
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or the one featuring the quasi-TF relation,

r2
2(x) = 1− Gr2

1(x). (64)

In the former case, Equation (61) with r2 = 0 yields a solution in the form of the usual
dark soliton, while in the latter case, the substitution of expression (64) in Equation (61)
produces a bright soliton solution. These solutions may be “dovetailed” at a stitch point,

x = x0 ≡ −
√

2D ln

(√
G + 1√
G− 1

)
, (65)

which is defined by condition r2
1(x) = 1/G (see Equation (64). The global form of the

solution, which complies with b.c. (40), is

r1(x) =


− tanh

(
x/
√

2D
)

, at −∞ < x < x0,√
2

G+1 sech
[√

G−1
D (x− ξ)

]
, at x0 < x < +∞,

(66)

r2(x) =

{
0, at −∞ < x < x0,√

1− Gr2
1(x), at x0 < x < +∞

(67)

(in the context of BEC, a similar solution was reported in Ref. [85]).
Finally, the virtual center of bright-soliton segment of r1(x) is located at

x = ξ ≡ x0 −
√

D
G− 1

ln

(√
2G

G + 1
+

√
G− 1
G + 1

)
(68)

(the exact solution (66) makes use of the “tail" of the bright soliton in the region of x ≥ x0,
which does not include the central point, x = ξ). The distance x0 − ξ, determined by
Equation (68), defines the effective width of the strongly asymmetric DW. Note that, as
seen in Equations (65) and (66), this exact solution exists under the condition of G > 1,
which is the above-mentioned immiscibility condition.

It is easy to check that expression (66) satisfies the continuity conditions for r1(x)
and dr1/dx at x = x0, and expression (67) provides the continuity of r2(x) at the same
point. The continuity of dr2/dt at x = x0 is not required, as Equation (62) does not include
derivatives. A typical example of the exact solution is displayed for D = 1 and G = 2 in
Figure 4.

Figure 4. An example of the asymmetric DW, as given by Equations (65)–(68), for D = 1 and G = 2
(here, u1 and u2 stand for r1 and r2 in the analytical solution). Note that the coordinate of the stitch
point is, in this case, x0 ≈ −1.25 as per Equation (65), and the “virtual center” of the bright-soliton
segment of u1(x) is located at ξ ≈ −1.80 as per Equation (68).
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A remarkable fact is that, unlike the above-mentioned exact solutions (51) and (54),
which exist solely at G = 3 (see Equation (50)), the one given by Equations (65)–(68) exists
as a generic one for all values of G > 1.

2.2.4. DW–Bright-Soliton Complexes
An Exact Solution for the Composite State

The DW formed by two immiscible PWs may serve as an effective potential for
trapping an additional PW mode. To address this possibility, it is relevant to consider
the symmetric configuration, with D1 = D2 ≡ D (see Equation (43)), and wave vector kv
of the additional PW mode, v(x), directed along the bisectrix of the angle between the
DW-forming wave vectors k1 and k2, i.e., along axis x (hence, Equation (43) yields Dv = 1).
The corresponding system of three coupled stationary real GL equations is

D
d2u1

dx2 + u1

(
1− u2

1 − Gu2
2 − gv2

)
= 0, (69)

D
d2u2

dx2 + u2

(
1− u2

2 − Gu2
1 − gv2

)
= 0, (70)

d2v
dx2 +

(
1− v3 − g

(
u2

1 + u2
2

))
v = 0, (71)

where g > 0 is the constant of the nonlinear interaction between components u1,2 and v.
The system of Equations (69)–(71) admits the following exact solution in the form of

the DW of components u1,2(x) coupled to a bright-soliton profile of v(x):{
u1(x)
u2(x)

}
=

1
2

{
1− tanh

(√
g− 1x

)
1 + tanh

(√
g− 1x

) }, (72)

v(x) =

√
2− 3

2
g sech

(√
g− 1x

)
. (73)

This solution is valid under the condition that coefficients G and D in Equations (69)
and (70) take the following particular values:

G = 3− 8g + 6g2, (74)

D =
1
2
(3g− 1). (75)

As it follows from Equation (73), this solution contains free parameter g, which may
vary in a narrow interval as follows:

1 < g < 4/3 (76)

(see also Equation (82) below). According to Equations (74) and (75), the interval (76)
corresponds to coefficients G and D varying in intervals

1 < G < 3; 1 < D < 3/2. (77)

Thus, adding the v component lifts the degeneracy of the exact DW solution (51),
which exists solely at G = 3.

Recall that in the model of convection patterns, D cannot take values D > 1, which
disagrees with Equation (77). However, values D > 1 are relevant for systems of Gross–
Pitaevskii equations for the heteronuclear three-component BEC. In the latter case, D is
the ratio of atomic masses of the different species which form the triple immiscible BEC.
Similarly, D is the ratio of values of the normal group-velocity dispersion of copropagating
waves in the temporal-domain realization of the real GL equations in nonlinear fiber
optics [56]. In the latter case, values D > 1 are relevant too.
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An example of the DW–bright-soliton complex is displayed in Figure 5 for g = 7/6. In
this case Equations (74) and (75) yield G = 11/6 and D = 5/4 (according to Equations (74)
and (43)).

Figure 5. An example of the exact solution for the DW–bright-soliton complex, given by Equa-
tions (72) and (73), for g = 7/6, G = 11/6, and D = 5/4.

The Bifurcation of the Creation of the Composite State in the General Case

If relation (74) is not imposed on the interaction coefficients g and G, the solution for
the composite state cannot be found in an exact form. Nevertheless, it is possible to identify
bifurcation points at which component v with an infinitesimal amplitude appears. To this
end, Equation (71) should be used in the form linearized with respect to v as follows:

d2v
dx2 +

{
1− g

[
u2

1(x) + u2
2(x)

]}
v = 0. (78)

This linear equation can be exactly solved for u1(x) = u2(x) given by expression (51)
in the case of G = 3, while parameters D and g may take arbitrary values. Indeed, using the
commonly known solution for the Pöschl–Teller potential in quantum mechanics, it is easy
to find that Equation (78), with the effective potential corresponding to expression (51),
gives rise to eigenmodes in the following form:

v(x) = const ·
[
sech

(
x/
√

2D
)]α

, (79)

at a special value of the interaction coefficient, which identifies the bifurcation producing
the composite state:

gbif = D−1
(

1 + 2D∓
√

1 + 2D
)

, (80)

the respective value of power α in expression (79) being the following:

α =

√
2
(

1 + D∓
√

1 + 2D
)

. (81)

The values given by Equations (80) and (81) with the top sign from ∓ correspond to
the bifurcation, creating a fundamental composite state (the ground state, in terms of the
quantum mechanical analog) at g > gbif, while the bottom sign represents a higher-order
bifurcation (alias, the second excited state, in the language of quantum mechanics; the first
excited state, which is not considered here, is a spatially odd mode). While it is obvious
that the fundamental bifurcation provides a stable composite state, it is plausible that the
ones produced by higher-order bifurcations are unstable.
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Lastly, varying coefficient D of the modes forming the underlying DW between D = 0
and D = ∞ (recall that the convection model corresponds to D < 1, while the realizations
in BEC and optics admit D > 1). Equation (80) demonstrates monotonous variation of the
bifurcation point in interval

gbif(D = 0) ≡ 1 < gbif < 2 ≡ gbif(D → ∞). (82)

It extends interval (76) in which exact composite states with a finite amplitude were
found above, see Equations (72)–(75).

2.3. Domain Walls between Traveling Waves
2.3.1. The Setting

An essential extension of the above results for DWs, produced by coupled Equa-
tions (41) and (42), was reported in Ref. [86], which addressed a system of coupled GL
equations for counter-propagating traveling waves, such as those occurring in binary-fluid
convection [60–63,87]. The system is composed of two equations of type (12) (subject to
normalization (13)), coupled by complex cubic terms with coefficients G and H:

∂u1

∂t
+ s

∂u1

∂x
= u1 + (1 + ib)

∂2u1

∂x2 − (1 + ic)|u1|2u1 − (G + iH)|u2|2u1, (83)

∂u2

∂t
− s

∂u1

∂x
= u2 + (1 + ib)

∂2u2

∂x2 − (1 + ic)|u2|2u2 − (G + iH)|u1|2u2, (84)

where −s and +s are group velocities of the counter-propagating waves, u1 and u2 (real
coefficient H represents the cross-phase modulation (XPM), in terms of optics [76]). A
natural approach to constructing DW solutions of the system of Equations (83) and (84)
is to use the lowest approximation, which neglects imaginary parts of coefficients in the
equations, but keeps the group-velocity terms. In this approximation, the order parameters
are real, u1,2(x) ≡ r1,2(x) obeying the time-independent version of Equations (83) and (84):

+s
dr1

dx
=

d2r1

dx2 + r1

(
1− r2

1 − Gr2
2

)
, (85)

−s
dr2

dx
=

d2r2

dx2 + r2

(
1− r2

2 − Gr2
1

)
. (86)

Note that, unlike similar Equations (41) and (42), Equations (85) and (86) cannot be
derived from a formal Hamiltonian, cf. Equation (45).

2.3.2. A (New) Exact Analytical Solution

To illustrate the structure of the DW state in this approximation, it is relevant to
produce a particular exact solution of the system of Equations (85) and (86), cf. the above-
mentioned solution (51):

{
r1(x)
r2(x)

}
=

1
2

 1− tanh
((√

8 + s2 + s
)
(x/4

)
1 + tanh

((√
8 + s2 + s

)
(x/4

) . (87)

This solution (which was not reported in earlier studies) exists if the following relation
holds between the cross-interaction coefficient G and group velocity v:

G− 3 = s
(√

8 + s2 + s
)

, (88)

or, inversely,

s =
G− 3√
2(G + 1)

. (89)
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cf. Equation (50). It follows from the form of solution (87) and Equations (88) and (89) that

sgn(s) = sgn(G− 3), (90)

i.e., the exact solution represents a sink of traveling waves (s > 0) for G > 3, and a source
(s < 0) for G < 3. Note that the solution of the latter type exists even in the case of
G < 1, when the two components are miscible, cf. Equation (46). In this case, the mixing is
prevented by the opposite group velocities, which pull the components apart.

2.3.3. The Sink or Source Coupled to a Bright Soliton in an Additional Component

It is possible to consider a system including the counterpropagating traveling waves
coupled to an additional standing one. This is a natural counterpart of the three-component
system based on Equations (69)–(71). The traveling waves, which can trap the additional
standing one, v(x), are described by the following generalization of Equations (85) and (86):

+s
du1

dx
=

d2u1

dx2 + u1

(
1− u2

1 − Gu2
2 − gv2

)
, (91)

−s
du2

dx
=

d2u2

dx2 + u2

(
1− u2

2 − Gu2
1 − gv2

)
, (92)

while the equation for the standing component is

d2v
dx2 +

(
1− v2 − g

(
u2

1 + u2
2

))
v = 0, (93)

cf. Equation (71). An exact solution of Equations (91)–(93) can be found for free parameters
g and s:

u1,2(x) =
1
2

(
1∓ tanh

(√
g− 1x

))
, (94)

v(x) =

√
2− 3

2
gsech

(√
g− 1x

)
, (95)

G− 3 = 2g(3g− 4) + 4s
√

g− 1, (96)

D =
s

2
√

g− 1
+

1
2
(3g− 1), (97)

cf. Equations (72)–(75). As it is seen from Equation (96), the interaction with the soliton-
shaped standing wave shifts the boundary between the sink and source of the traveling
waves off the above-mentioned point, G = 3.

3. Two- and Three-Dimensional Quasiperiodic Patterns

Quasicrystals, as stable 3D ordered states of metallic alloys, whose atomic lattice
is spatially quasiperiodic (QP), were discovered by D. Shechtman et al. [88]. For this
discovery, Shechtman was awarded with the Nobel Prize in chemistry (2011). Then, a 2D
quasicrystalline structure was also experimentally demonstrated in alloys [89]. The work
on this topic remains very active in diverse branches of condensed-matter physics [90–94],
as well as in other physical systems, which offer a natural realization of QP patterns, such
as dissipative structures [95], photonics [96–99] and phononics [100].

The objective of this section is to summarize the results for stable 2D and 3D patterns
with the quasicrystalline structure that were predicted as stable non-equilibrium dynamical
structures (rather than equilibrium states of matter) in nonlinear dissipative media.
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3.1. 2D Octagonal (Eight-Mode) and Decagonal (Ten-Mode) Quasicrystals

Following Ref. [9], generic 2D patterns of a real order parameter, such as one repre-
senting the convection flow, are defined by means of complex amplitudes rl of PWs which
build them, cf. Equation (37):

U(x, y, t) =
2N

∑
l=1

ul(t) exp(inl ·R), (98)

where the set of 2N vectors nl is a star with angles π/N between adjacent ones. Note that
the vectors satisfy the following relation:

nl+N = −nl , for l = 1, 2, . . . , N. (99)

Amplitudes ul(t) are, generally speaking, complex variables,

ul(t) = Al(t) exp(iϕl(t)) (100)

(cf. Equation (6)), subject to constraint ul+N = u∗l , which, along with Equation (99), proves
that the order-parameter distribution (98) is real.

For the lowest-order quasi-crystalline patterns, such as those corresponding to N = 4
(octagonal) and N = 5 (decagonal) ones, the phase evolution is trivial, making it possible
to disregard ϕl in Equation (100). The resulting system of evolution equations for the real
amplitudes, including the usual linear gain, γ0 > 0, and cubic loss (cf. Equation (1)), is

dAl
dt

=

(
γ0 −

N

∑
m=1

Tl−m A2
m

)
Al ≡ −

∂L
∂Al

, (101)

where Tl−m > 0 are coefficients of the cubic lossy nonlinearity, subject to normalization
T0 = 1, and the Lyapunov function is

L = −γ0

2

N

∑
l=1

A2
l +

1
4

N

∑
l,m=1

Tl−m A2
l A2

m, (102)

cf. Equations (2) and (3). Detailed analysis of the results, produced with the help of
Equation (101), is presented in Ref. [9]); see also some preliminary results in Refs. [101,102].

Spatially quasiperiodic patterns of the octagonal (N = 4) and decagonal (N = 5)
types are displayed, respectively, in Figures 6a and 7a. It is seen that they are built as
compositions of rhombuses of different shapes, and the presence of the overall octagonal
or pentagonal structure is evident.

Solutions of Equation (101) for N = 4 depend on two independent nonlinearity
coefficients, T1 = T3 and T2. In this case, there are four distinct stationary solutions which
have their stability areas: rolls, with

A1 =
√

γ0, A2,3,4 = 0; (103)

a square lattice, with

A1,3 =
√

γ0/(1 + T2), A2,4 = 0; (104)

an anisotropic rectangular lattice, with the aspect ratio tan(π/8) =
√

2− 1 ≈ 0.414, ampli-
tudes

A1,2 =
√

γ0/(1 + T1), A3,4 = 0; (105)

and the octagonal quasicrystal, with

A1,2,3,4 =
√

γ0/(1 + 2T1 + T2). (106)
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(a) (b)

Figure 6. (a) The shape of the octagonal quasiperiodic pattern, reprinted with permissions from Ref. [103]. (b) The stability
chart for patterns composed of four amplitudes, A1,2,3,4, in the plane of nonlinearity coefficients, T1 and T2, of Equation (101),
reprinted with permissions from Ref. [9]. Stability areas of the rolls (103), squares (104), rectangles (105), and octagonal
quasicrystal (106) are denoted by encircled numbers 1, 2, 3, and 4, respectively.

(a) (b)

Figure 7. (a) The shape of the decagonal quasiperiodic pattern, reprinted with permissions from Ref. [103]. (b) The stability
chart for patterns composed of five amplitudes, A1,2,3,4,5, in the plane of nonlinearity coefficients, T1 and T2, of the respective
system of equations (101), reprinted with permissions from Ref. [9]. Stability areas of the rolls (107), rectangles (108)
and (109), decagonal quasicrystal (110), and semi-periodic states (111) and (112) are denoted by encircled numbers 1, 2, 3, 4,
5, and 6, respectively. Constants ω1 and ω2, marked in panel (b), are defined by Equation (113).
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In addition to that, Equation (101) also has a stationary semi-periodic solution, which
is quasiperiodic in direction n2 and periodic along n4, with A1 = A2 6= 0, A3 6= 0, and
A4 = 0. However, the latter solution is completely unstable.

The full stability chart for stationary solutions (103)–(106) can be readily found in an
analytical form. It is displayed in Figure 6b.

For N = 5, the solutions of Equation (101) also depend on two independent nonlin-
earity coefficients, T1 = T4 and T2 = T3. These equations produce six different species of
stable stationary patterns. These are rolls, with

A1 =
√

γ0, A2,3,4,5 = 0; (107)

two different species of rectangular lattices,

A1,2 =
√

γ0/(1 + T1), A3,4,5 = 0, (108)

A1,3 =
√

γ0/(1 + T2), A2,4,5 = 0; (109)

the decagonal quasicrystal,

A1,2,3,4,5 =
√

γ0/(1 + 2T1 + 2T2); (110)

and two species of semi-periodic patterns, that are quasiperiodic in one direction and
periodic in the other:

A1,3 =

√
γ0(1− T1)

1 + T2 − 2T2
1

, A2 =

√
γ0(1 + T2 − 2T1)

1 + T2 − 2T2
1

, A4,5 = 0, (111)

A1,5 =

√
γ0(1− T2)

1 + T1 − 2T2
2

, A3 =

√
γ0(1 + T1 − 2T2)

1 + T1 − 2T2
2

, A2,4 = 0. (112)

In addition to that, there is another semi-periodic solution, with A1 = A2 6= 0,
A3 = A4 6= 0, and A5 = 0, but it is completely unstable.

The full stability chart for this set of solutions was also found in an analytical form, as
shown in Figure 7b. In this figure, the constants are

ω1 =

√
5− 1
2

≈ 0.618, ω2 = ω1 + 1. (113)

Note that, unlike the situation for the octagonal setting (N = 4) displayed in Figure 6b,
the stability areas for the decagonal (N = 5) quasicrystal (110) and periodic patterns (108),
(109) are not adjacent to each other in Figure 7b, being separated by regions of stable semi-
periodic states (111) and (112) (recall that all semi-periodic states are unstable in the case of
N = 4).

It is relevant to mention that if higher-order nonlinear terms are added to the system
of Equations (101), the sharp boundaries between stability areas of different patterns in
Figures 6b and 7b may be modified. In particular, there may appear narrow strips of
bistability (which is impossible in the framework of Equation (101)), as well as strips
populated by more complex patterns, instead of the sharp lines [9].

3.2. Dodecagonal Quasicrystals (N = 6)

In the case of the twelve-mode patterns, corresponding to N = 6 in Equation (101),
quadratic nonlinearity, with coefficient ν > 0, should be included too, as the corresponding
set of six wave vectors contains two resonant triads that may be naturally coupled by the
quadratic terms (cf. Equation (47)):

n1 + n5 + n9 = n2 + n6 + n10 = 0 (114)
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(recall that only six wave vectors are actually different, according to Equation (99)). In this
case, the dynamics of phases of the complex amplitudes (6) cannot be disregarded, giving
rise to phason modes [104–106]. Accordingly, Equation (101) is replaced by a coupled
system of evolution equations for the real amplitudes and phases [9]:

dAl
dt

=

(
γ0 −

N

∑
m=1

Tl−m A2
m

)
Al + νAn+4 An+8 cos Φn, (115)

Al
dϕl
dt

= −νAl+4 Al+8 sin Φl , (116)

Φl ≡ ϕl + ϕl+4 + ϕl+8, (117)

with ϕl ≡ ϕl−12 for l > 12.
These equations give rise to the following stationary solutions for the dodecagonal

quasicrystals, with equal values of real amplitudes Al , and coinciding values of Φl for both
resonantly coupled triads (114):

cos Φl = ±1, (118)

Al = ±(2Q0)
−1
(

ν±
√

ν2 + 4γ0Q0

)
, (119)

Q0 ≡ 1 + 2T1 + 2T2 + T3. (120)

The analysis of the stability of these solutions in the framework of Equations (115)–(117)
demonstrates that they may be stable only under conditions Q0 > 0 (see Equation (120)) and
the following one:

Q3 ≡ 1 + T3 − T1 − T2 > 0. (121)

If these conditions hold, the amplitude of stable quasicrystals exceeds a minimum value,

Al ≥ Amin ≡ (1/2)max{ν/Q0, ν/Q3}. (122)

Further, there is no stability constraint for the largest value of the amplitude, provided
that the following combinations of the nonlinearity coefficients are positive:

Q1,2 ≡ 1− T2 ± (T1 − T3) ≥ 0. (123)

Otherwise, the stability imposes the following limit on the amplitude:

A ≤ Amax ≡ min{−ν/Q1,−ν/Q2} (124)

(if only one combination Q1 or Q2 is negative, then only this one determines the upper
limit for the stability, as per Equation (124)).

The existence and stability results for the amplitude of the dodecagonal quasicrystals
is summarized in Figure 8b. Note that in the presence of the resonant interaction mediated
by the quadratic term in Equation (115), the solution appears as a subcritical [107] one,
with a finite value of the amplitude at γ0 < 0, i.e., when this coefficient represents linear
loss rather than gain.
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(a) (b)

Figure 8. (a) The shape of the dodecagonal quasiperiodic pattern, reprinted with permissions from Ref. [103]. (b) The
pattern’s amplitude, given by Equation (119) vs. the strength of the linear gain (γ0 > 0) or loss (γ0 < 0), reprinted with
permissions from Ref. [9]. Stable and unstable solutions are represented, respectively, by bold and thin lines. Branches 1, 2
and 3 pertain, respectively, to the solutions with cos Φl = +1 and −1 in Equation (118). Parameters Q0, Amin, and Amax are
defined as per Equations (120), (122) and (124), respectively.

3.3. A Quasicrystalline Layer between Orthogonally Oriented Square-Lattice Patterns

While, as shown in Figure 6b, square-lattice and octagonal quasiperiodic patterns
cannot coexist as stable ones in the system with N = 4, it was demonstrated in Ref. [65]
that a sufficiently broad stripe filled by an effectively stable nearly-octagonal quasiperiodic
pattern may be realized as a transient layer between stable square-lattice patterns mutually
oriented under the angle of 45o, as schematically shown in Figure 9a. For this configuration
(which naturally combines the two main topics of the present review, viz., the DWs and
QP patterns), one may naturally adopt equal amplitudes corresponding to wave vectors k3
and k4:

A3(x) = A4(x) ≡ A(x), (125)

while amplitudes B1 and B2 related to k1 and k2 are different, the effective diffusion
coefficient for the latter one being zero, as per Equation (43). The corresponding system of
stationary real GL equations, naturally extending Equations (52), (53), (61), (62) and (101),
takes the following form:

1
2

d2 A
dx2 + A− A3 −

(
T1B2

1 + T1B2
2 + T2 A2

)
A = 0, (126)

d2B1

dx2 + B1 − B3
1 −

(
2T1 A2 + T2B2

2

)
B1 = 0, (127)

B2 − B3
2 −

(
2T1 A2 + T2B2

1

)
B2 = 0, (128)

where, like in Equation (101), T1 and T2 are coefficients of the cross-interaction between the
PW modes with angles, respectively, 45o and 90o between their wave vectors. According to
Figure 6b, the stability conditions for the spatially uniform square-lattice and octagonal
quasicrystalline patterns are, respectively, the following:

T2 ≤ 1, T1 ≥ T2 + 1/2, (129)

T2 ≤ 1, T1 ≤ T2 + 1/2. (130)
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Accordingly, to secure the stability of the background square lattices and a possibility
to have a broad transient layer between mutually rotated ones, which is filled by the
effectively stable nearly-octagonal pattern, it is relevant to choose parameters belonging
to the stability area (129), with values close to the stability boundary, T1 = T2 + 1/2. An
appropriate choice is the following:

T1,2 ≡ 1− µ1,2, 0 < µ1,2 � 1, (131)

with m ≡ 2µ1/µ2 < 1. (132)

Similar to what is considered above in Equations (63) and (64), Equation (128) obvi-
ously splits in two options, B2 = 0 or the following one:

B2
2 + 2T1 A2 + T2B2

1 = 1. (133)

In either case, Equations (126) and (127) simplify accordingly. The solutions corre-
sponding to B2 = 0 or to Equation (133) must be “dovetailed” at a stitch point, x = x0, cf.
Equation (65). An example of the so obtained solutions for amplitudes A(x) and B1,2(x) is
displayed in Figure 9b.

(a) (b)

Figure 9. (a) The scheme for building a broad stripe of the octagonal quasicrystalline state as a transient layer between
semi-infinite domains filled by square-lattice patterns, mutually rotated by 45o. (b) An example of the corresponding
solution for amplitudes A(x) and B1,2(x). Parts of the solution corresponding to Equation (133) or to B2 = 0 are connected
at the stitch point x = x0. Reprinted with permissions from Ref. [65].

3.4. Three-Dimensional Quasicrystals

A setting which makes it possible to predict a stable quasiperiodic pattern based on
a set of four PW modes in the 3D space was put forward in Ref. [64]. It originates from
the model of a lasing cavity, based on the standard system of coupled Maxwell–Bloch
equations. The evolutional variable in this system is time, while the spatial structure is
strongly anisotropic, as the field (Maxwell’s) equation in the system contains only the first
derivative, ∂/∂z, with respect to the longitudinal coordinate, z, and the usual paraxial-
diffraction operator, i

(
∂2

x + ∂2
y

)
, acting on the transverse coordinates, (x, y). As a result, at

the lasing threshold components of 3D wave vectors carrying the PW modes,

K = (k, kz), k ≡
(
kx, ky

)
, (134)
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satisfy the following dispersion relation, which couples them to the wave’s frequency Ω as
follows:

Ω = k2 + kz. (135)

Eventually, above the lasing threshold the cubic nonlinearity of the Maxwell–Bloch
system may produce a resonant quartet of 3D wave vectors, coupled by the following
condition:

K1 + K2 = K3 + K4. (136)

For comparison, in the 2D space the same relation (136), taken close to the threshold,
i.e., for nearly equal length of the wave vectors, would imply that the four vectors form a
rhombus, and the cubic interaction between the corresponding amplitudes, u1,2,3,4, would be
represented by usual nonresonant nonlinear terms, essentially the same as in Equation (101),
with Al replaced by ul and A2

m Al replaced by the XPM terms, |um|2ul. However, in the 3D
setting, the resonance condition (136), combined with the dispersion relation (135), leads to
a nontrivial possibility to add four-wave-mixing (FWM) cubic terms to the XPM ones, see
below.

Substituting expression (134) for the 3D wave vector in Equations (136) and (135) leads
to the following elementary exercise in planar geometry: find two pairs of 2D vectors,
(k1, k2) and (k3, k4), satisfying the following conditions:

k1 + k2 = k3 + k4, k2
1 + k2

2 = k2
3 + k2

4. (137)

An obvious solution of this exercise is plotted in Figure 10a.
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Figure 10. (a) A set of four two-dimensional vectors k1,2,3,4 which solves equations (137). Here, A and B are two arbitrary
points belonging to the circumference of arbitrary radius R, and a < R is an arbitrary value of coordinate x. (b) An
example of the three-dimensional quasiperiodic pattern, projected onto the (x, y) plane. Shown are contour plots of the

corresponding distribution of the order parameter, Re
[
∑4

l=1 ul cos(kl · R)
]
, where ul are the complex amplitudes given by

Equations (141)–(143). In this case, the phases are ϕ1 = π, ϕ2 = −π/2, ϕ3 = π/7, while ϕ4 is determined by Equation (142).
The angle between vectors k1 − k2 and k3 − k4 is π/5. Figure is reprinted with permissions from Ref. [64].
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Once a resonantly coupled quartet of four wave vectors is chosen, the respective
system of evolution equations for the corresponding complex amplitudes is [64]

du1

dt
= γ0u1 −

(
|u1|2 + 2 ∑

l 6=1
|ul |2

)
u1 − 2u∗2u3u4,

du2

dt
= γ0u2 −

(
|u2|2 + 2 ∑

l 6=2
|ul |2

)
u2 − 2u∗1u3u4,

(138)

du3

dt
= γ0u3 −

(
|u3|2 + 2 ∑

l 6=3
|ul |2

)
u3 − 2u1u2u∗4 ,

du4

dt
= γ0u4 −

(
|u4|2 + 2 ∑

l 6=4
|ul |2

)
u4 − 2u1u2u∗3 .

In these equations, γ0 > 0 is the linear gain, as above, and the last terms represent
the four-wave-mixing (FWM) effect. Particular values of coefficients in front of nonlinear
terms are standard ones which correspond to the XPM and FWM interactions in non-
linear optics [17], unlike general values of coefficients Tl−m in Equation (101). Similar
to Equation (101), the system of Equations (138) admits the presentation in the form of
dul/dt = − ∂L/∂u∗l , with the Lyapunov function

L = −γ0 ∑
l
|ul |2 +

1
2 ∑

l
|ul |4 + 2 ∑

l>m
|ul |2|um|2 + 4Re(u1u2u∗3u∗4). (139)

Further analysis performed in Ref. [64] has produced two stable stationary solutions
of Equation (138). First, this is a simple single-mode state (rolls), with

|u1|2 = γ0, u2,3,4 = 0. (140)

Next, dodecagonal quasicrystals with equal absolute values of all the four amplitudes
are looked for as follows:

ul = A exp(iϕl), (141)

where the phases are locked so that

ϕ1 + ϕ2 − ϕ3 − ϕ4 = π, (142)

and the squared absolute value of the amplitudes is

|ul |2 = γ0/5, (143)

cf. the rolls solution (140). Note that values of the Lyapunov function (139) for the rolls and
3D quasicrystal are as follows:

Lrolls = −γ2
0/2, Lquasicryst = −2γ2

0/5, (144)

Hence, the rolls represent the ground state of the system, while the quasicrystal is a
metastable state, as its value of L is slightly higher.

An example of the shape of the 3D quasiperiodic solution is displayed, in the projection
onto plane (x, y), in Figure 10b. Additional examples can be found in Ref. [64].

Besides these solutions, Equations (138) give rise to another quasiperiodic state, with
ϕ1 + ϕ2 − ϕ3 − ϕ4 = 0 and |ul |2 = γ0/9 (cf. Equations (142) and (143)), but it is unstable.
Two-mode solutions, e.g., ones with |u1,2|2 = γ0/3, u3,4 = 0, also exist but are unstable [64].
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4. Conclusions

The aim of this paper is to present a concise overview of two important topics in
the theory of pattern formation in nonlinear dissipative media, viz., DWs (domain walls)
and QP (quasiperiodic) patterns. The topics are selected as those important contribu-
tions to which were made in the works of Prof. Mikhail Tribelsky. Most of the results
collected in this review, may be considered as “old” ones, as they were published ca.
30–35 [8,9,11,25,38,41,48,56,58–60,74,102] or 20 [57,63–65,75] years ago. Nevertheless, these
results remain relevant in the context of ongoing theoretical and experimental studies in
the ever expanding pattern-formation research area. This conclusion is upheld by the fact
that the present paper includes a few novel exact analytical results, obtained as a relevant
addition to the old theoretical findings concerning the DWs in systems of coupled real
GL (Ginzburg–Landau) equations [10]. The new results, represented by Equations (54),
(63)–(68), (72)–(75), and (87)–(90), produce exact solutions for symmetric DWs in the system
of real GL equations, including linear mixing between the components; the solution for
strongly asymmetric DWs in the case when the diffusion term is present only in one GL
equation; the three-component composite state, including the DW in two components and
a bright soliton in the third one; and the particular exact solution for DWs between waves
governed by the real GL equations, including group-velocity terms with opposite signs.

The significance of the results presented in this brief review is enhanced by the fact
that essentially the same coupled equations describe patterns of the DW and QP types not
only in thermal convection, but also in nonlinear optics, BEC, and other physical systems. In
particular, the pattern formation in BEC of cesium atoms under the action of a temporally
periodic modulation of the nonlinearity (imposed by means of the Feshbach resonance [108]),
similar to the Faraday instability, was recently experimentally demonstrated and theoretically
modeled in the framework of amplitude equations similar to Equation (101) in Ref. [109].
Another novel realization of the pattern formation was proposed for a driven dissipative
Bose–Hubbard lattice, which can be implemented in superconducting circuit arrays [110].

It is expected that theoretical and experimental studies along the directions outlined
in this review have potential for further development, which will make it possible to add
new findings to the above-mentioned well-established results.
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