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Abstract: The temporal evolution of pandemics described by the susceptible-infectious-recovered
(SIR)-compartment model is sensitively determined by the time dependence of the infection (a(t))
and recovery (µ(t)) rates regulating the transitions from the susceptible to the infected and from the
infected to the recovered compartment, respectively. Here, approximated SIR solutions for different
time dependencies of the infection and recovery rates are derived which are based on the adiabatic
approximation assuming time-dependent ratios, k(t) = µ(t)/a(t), varying slowly in comparison
with the typical time characteristics of the pandemic wave. For such slow variations, the available
analytical approximations from the KSSIR-model, developed by us and valid for a stationary value of
the ratio k, are used to insert a posteriori the adopted time-dependent ratio of the two rates. Instead
of investigating endless different combinations of the time dependencies of the two rates a(t) and
µ(t), a suitably parameterized reduced time, τ, dependence of the ratio k(τ) is adopted. Together
with the definition of the reduced time, this parameterized ratio k(τ) allows us to cover a great
variety of different time dependencies of the infection and recovery rates. The agreement between
the solutions from the adiabatic approximation in its four different studied variants and the exact
numerical solutions of the SIR-equations is tolerable providing confidence in the accuracy of the
proposed adiabatic approximation.

Keywords: epidemiology; statistical analysis; time-scale separation; differential equations; adiabatic
approximation

1. Introduction

About a century ago, the susceptible-infectious-recovered/removed (SIR) model was
introduced [1] to the mathematical theory of epidemics. Together with later improvements
[2], it represents the fundamental compartment model where any considered population
of N persons is divided into the three fractions of susceptible (S), infected (I) and recov-
ered/removed (R) persons. The infection rate, a(t), and the recovery/removed rate, µ(t),
regulate the transitions from the susceptible to the infected compartment and from the
infected to the recovered/removed compartment, respectively. The original SIR model has
been generalized to a more complicated version, adding additional compartments such
as the fraction of exposed persons (for reviews, see [3,4]) and vaccinated persons [5], and
widely applied to epidemic outbreaks including COVID-19 and SARS-CoV-2 [6].

Very often, the SIR equations are solved numerically with adopted stationary infection
(a0) and recovery (µ0) rates so that their ratio, k = µ0/a0, is also constant and stationary,
although an analytical solution in terms of an inverse integral of this case has been known
since 2014 [7].

Analytical solutions for arbitrary but given time dependencies of the infection rate a(t)
have been derived recently [8,9] for the infinite time domain and the semi-time time domain
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for the case of a stationary ratio k = µ(t)/a(t), implying that the recovery rate has exactly
the same time dependence as the infection rate. Hereafter, these generalizations are referred
to as the KSSIR-model. This generalization to a time-dependent infection rate is important
as such time dependencies are caused by non-pharmaceutical interventions (NPIs) taken
during pandemic outbreaks. In the KSSIR-model [8,9], exact analytical inverse solutions
t(Q) for all relevant quantities Q ∈ [S, I, R] in terms of Lambert functions were obtained.
These inverse solutions were approximated with high accuracy yielding the explicit time
dependencies Q(t) by inverting the Lambert functions. Of particular importance are the
obtained analytical expressions for the peak time and asymptotic behaviors, early doubling
times, late half-decay time of the rate of new infections, J̇(t) = dJ/dt = a(t)S(t)I(t), and its
corresponding cumulative number J(t), which allowed the quantitative comparison with
the monitored temporal evolution of different waves the COVID-19 [10] and the forecast
for the omicron mutant [11].

It is the purpose of the present paper to investigate analytical solutions of the SIR
equations for different time dependencies of the infection and recovery rates so that their
ratio no longer is constant and becomes also time-dependent. To the best of our knowledge,
this general case has not been studied in the literature apart from [12], in which were
studied special analytical solutions based on non-constant ratios, k(S), being of polynomial
form of order S4 or less in the case of positive or negative powers. However, in this paper,
no relations to monitored pandemic parameters were established.

Here, a different approach is considered by investigating the adiabatic case which
refers to slowly varying (in comparison to the typical time characteristics of the pandemic
wave) time-dependent ratios k(t). The adiabatic approximation [13,14] is an established
known method in theoretical physics, especially semi-classical quantum mechanics see,
e.g., the WKBJ-method [15–18] for slowly varying potentials or the Born–Oppenheimer
approximation [19] for the analysis of molecules. The latter simplifies the solution of the
quantum mechanical equations of motion by taking advantage of the drastically different
time scales of motion of the light and heavy particles in the system. Thus, for the analysis
below for slow variations of the function k(t), the available analytical approximations from
the KSSIR-model (which strictly are valid only for constant ratios k) is used here and the
adopted time-dependent ratio k(t) is inserted a posteriori. The resulting adiabatic solutions
is then compared to the exact numerical solutions of the SIR-equations for given time
variations of k(t).

2. Starting Equations

The general dynamical SIR equations for the fractions of susceptible, infectious, and
recovered/removed compartments are:

Ṡ(t) = −a(t)S(t)I(t),

İ(t) = a(t)S(t)I(t)− µ(t)I(t),

Ṙ(t) = µ(t)I(t), (1)

which obey the sum constraint,

S(t) + I(t) + R(t) = 1. (2)

Here, the semi-time case (as opposed to the all-time case treated in [2,8,20]) with the
initial conditions I(t = t0) = η, S(t = t0) = 1− η, and R(t = t0) = 0 is considered. It is
convenient to introduce the reduced time variable,

τ =
∫ t

t0

dy a(y), (3)
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which can be calculated for any given time dependence of the infection rate a(t). Equation
(2) then read:

dI
dτ

= SI − k(τ)I,
dS
dτ

= −SI,
dR
dτ

= k(τ)I, (4)

in terms of the dimensionless, time-dependent ratio of infection to recovery rate,

k(τ(t)) =
µ(t(τ))
a(t(τ))

. (5)

There are no obvious natural choices for the real time dependencies of the infection
and the recovery rates, and they may differ from mutant to mutant. Initially, at the start
of the mutant outbreak, without any taken NPIs, the rates have the values a(t0) = a0 and
µ(t0) = µ0. Dedicated medication of infected persons certainly will increase the recovery
rate from its initial value, whereas the NPIs [21–29] (such as social distancing, quarantining
and mask obligations) effectively reduce the infection rate from its initial value.

Instead of investigating endless different combinations of the time dependencies
of the rates a(t) and µ(t), a different approach is followed here by adopting a suitably
parameterized reduced time dependence of the ratio k(τ). Along with Equation (3), holding
for any given real time dependence of the infection rate a(t), one is then able to represent
quite a variety of different real time dependencies of the infection and recovery rates as
detailed in Section 5. As suitably parameterized reduced time dependency

k(τ) = k1 +
k1 − k0

1 + tanh(τc/∆)

[
tanh

(
τ − τc

∆

)
− 1
]

(6)

is adopted.
The function (6) starts from the value k0 at the initial time τ = 0 and approaches the

final value k1 after infinite time τ = ∞. As Figure 1 demonstrates, its parameters τc and ∆
regulate the sharpness of the transition from k0 to k1. For small differences between the
chosen initial (k0) and final (k1) values of the function k(τ), the overall variation of this
function is comparatively small. The last argument can be formulated more quantitatively.
The function (6) has its strongest gradient,(

dk
dτ

)
max

=
k1 − k0

[1 + tanh(τc/∆)]∆
(7)

at τ = τc so that its shortest relative variation time scale is given by

τk,min =

∣∣∣∣∣∣ k(τc)(
dk
dτ

)
max

∣∣∣∣∣∣ = [k0 + k1 tanh(τc/∆)]∆
|k1 − k0|

>
k0∆
|k1 − k0|

, (8)

where the last lower limit holds because tanh(τc/∆) > 0 for all finite values of the pa-
rameters ∆ and τc. Quantitatively, a slowly varying function k(τ) means that the lower
limit (8) of relative time scale is long compared to the typical relative time variation of the
pandemic wave, which is characterized by its early doubling time (see Equation (68) in [8]),
τ2 = (ln 2)/(1− k0), implying k0∆/|k1 − k0| � τ2, or

k0(1− k0)∆
|k1 − k0|

� 0.693 (9)

as quantitative parameter requirement for the slowliness of the time variation of the func-
tion k(τ). The time scale (8) increases inversely to the difference between the chosen initial
and final values of the function k(τ). For all examples considered below, the parameter
requirement (9) is satisfied.
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Figure 1. The ratio k(τ) (6) as a function of the reduced time τ (3) for the initial and final values
k0 = 0.8 and k1 = 0.9, respectively, for different choices of the parameters τc and ∆.

The functional form of Equation (6) was mainly chosen for its mathematical conve-
nience and suitability. On the one hand, it is general enough to model all possible reasonable
sorts of time-dependent ratios of infection to recovery rates: increasing or decreasing ones
from an initial to a finite value with steep, modest or slow transitions. On the other hand,
it is mathematically simple enough that it allows us exact analytical computations, as
demonstrated, e.g., in Section 5 below.

3. Analytical Adiabatic Approximations

Here, the exact and analytical results from the KSSIR model are used, as summarized in
Section 2 of [11], and the reduced time dependence (6) is inserted a posteriori. Consequently,
for this adiabatic approximation, one obtains that S(τ) = 1− J(τ), I(τ) = J(τ) + k(τ)ε +
k(τ) ln[1− J(τ)], R(τ) = −k(τ)[ε + ln(1− J(τ))] with ε = − ln(1− η) in terms of the
cumulative number of new infections, J(τ). The latter is given by [10]

J(τ) '


η + J0(k)−η

1+
√

jmax(k)
c0

sinh[c3(τ̂m−τ)]
sinh(c3τ)

for τ ≤ τ̂m,

J∞(k1)− J∞(k1)−J0(k)
jmax(k)

c4[J∞(k1)−J0(k)]

[
exp[c4(τ−τ̂m)]−1

]
+1

for τ ≥ τ̂m,
(10)

where k, c3 and c4 stand for k(τ), c3(k(τ)) and c4(k(τ)). The interpolated dimensionless
peak time is given by

τ̂m =
2

τ−1
m (k0) + τ−1

m (k1)
,

τm(k) =
1

c3(k)
artanh

 2c3(k)
c1(k) +

2c0
J0(k)−η

, (11)

and the abbreviations

c0 = η(1− η),

c1(k) = 1− k− 2η,

c2(k) =
jmax(k)− c0 − c1(k)[J0(k)− η]

[J0(k)− η]2
,

c3(k) =

√(
c1(k)

2

)2

− c0c2(k),

c4(k) = J∞(k1)− (1− k). (12)
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Here,

jmax(k) =
k2

4

{[
1 + W−1

(
− 2(1− η)

k exp (1 + 1/k)

)]2

− 1

}
(13)

denotes the maximum rate of new infections occurring at

J0(k) = 1 +
k
2

W−1

(
− 2(1− η)

k exp(1 + 1/k)

)
, (14)

and

J∞(k1) = lim
τ→∞

J(τ) ' 1 + k1W0

(
− 1− η

k1e1/k1

)
(15)

is the final cumulative fraction of infected persons. Equations (13)–(15) depend on the
principal (W0) and non-principal (W−1) solution of Lambert’s equation [8], the known and
documented Lambert functions. Let us emphasize that for small values of η � 1, the
results (13)–(15) are basically independent of the value of η and only determined by the
ratio k(τ).

The reduced time dependence of the rate of new infections in the adiabatic case is then
given by

j(τ) ' [1− J(τ)][J(τ) + k(τ)ε + k(τ) ln(1− J)]. (16)

Throughout this paper, Equations (11)–(16) will be referred to as

• version I of the adiabatic analytical approximation. Additionally, three slightly differ-
ent versions of this model are investigated, named versions II to IV.

• In version II, the jmax are calculated not using their own Equation (13) but Equation
(16) where J is replaced by J0 from Equation (14).

• For version III,

Ĵ0 =
2

[J−1
0 (k0) + J−1

0 (k1)]
(17)

is used instead of J0(k) in Equation (14) within the spirit of the interpolated τ̂m in
Equation (11). This appears more consistent, as τ̂m belongs to the value of J0.

• Version IV combines versions II and III.

4. Comparison of Analytical and Exact Results in Reduced Time

Figures 2–8 compare the exact numerical solutions with the four versions of the
analytical adiabatic approximations for different parameter choices of the reduced time
dependence of the ratio (6), the fractions S, I, and R, and the rate of new injections (16).
The numerical solution is obtained using a solver for moderately stiff ordinary differential
equations, as proposed earlier [30]. To this end, the trapezoidal rule is applied using a “free”
interpolant [31,32]. Note that in Figure 6, a decreasing ratio (6) with reduced time is chosen,
whereas in Figures 2–5, 7, and 8, increasing ratios are considered.

As expected, in every case, both the exact numerical curve and the adiabatic approx-
imation initially at small reduced times are close to the KSSIR-behavior for the value
k0, whereas at late times, these two curves approximate the KSSIR-behavior for the final
value k1.
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Figure 2. Results for versions I–IV of KSSIR model [8,9] with the dimensionless parameters of the
ratio (6) as indicated in the most left panel, and η = 10−4. The second, third, fourth and fifth (left to
right) panels display the calculated dependence of the fractions of susceptible, S(τ), infected, I(τ),
and recovered/removed, R(τ), persons, and the rate of new infections, j(τ) (16), respectively, as a
function of the reduced (dimensionless) time, τ. The green curve provides the exact numerical result,
the solid black curve shows the adiabatic approximation, the dashed curve shows the KSSIR-variation
adopting the initial ratio, k0, at all times, and the dot-dashed curve displays the KSSIR-variation
adopting the final ratio, k1, at all times. The percentages on top of each panel indicate the maximum
relative deviations between exact and approximate solutions. See text for details.
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Figure 3. Same as Figure 2 but with another set of the parameters (k0 = 0.85, k1 = 0.9, ∆ = 10, and
τc = 20) of the ratio k(τ) (6).
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Figure 4. Same as Figure 2 but with another set of the parameters (k0 = 0.85, k1 = 0.9, ∆ = 5, and
τc = 20) of the ratio k(τ) (6).
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Figure 5. Same as Figure 2 but with another set of the parameters (k0 = 0.85, k1 = 0.9, ∆ = 20, and
τc = 20) of the ratio k(τ) (6).
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Figure 6. Same as Figure 2 but with another set of the parameters (k0 = 0.7, k1 = 0.65, ∆ = 10, and
τc = 20) of the ratio k(τ) (6). Here, a decreasing ratio with reduced time is chosen in contrast to
Figures 2–5, 7 and 8, where increasing ratios are considered.
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Figure 7. Same as Figure 2 but with another set of the parameters (k0 = 0.65, k1 = 0.7, ∆ = 10, and
τc = 20) of the ratio k(τ) (6).

The agreement between the exact numerical reduced time and the adiabatic approx-
imation reduced time dependence in all four versions is tolerable. In the worst case, the
maximum deviation is 68.1%, but in most shown examples—much less. This acceptable
agreement provides confidence in the accuracy of the proposed adiabatic approximation,
but certainly leaves room for future improvement.

As it looks, there are no strong differences in the four versions of the adiabatic ap-
proximation. However, placing the greatest emphasis on the rates of new infections j(τ),
as these can be compared with the monitored pandemic data in different countries and so-
cieties, version IV of the adiabatic approximation gives the most accurate analytical results,
and therefore may be favored over the other three versions. Regarding the rate j(τ) the
maximum deviation increases roughly as ' 400|k1 − k0| percent with greater differences in
the final and initial values of the function k(τ).



Physics 2022, 4 515

(I)
0 20 40 60 80

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80

0.4

0.5

0.6

0.7

0.8

0.9

1
13.8%

0 20 40 60 80

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
67.8%

0 20 40 60 80

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
45.2%

0 20 40 60 80

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
65.3%

(II)
0 20 40 60 80

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80

0.4

0.5

0.6

0.7

0.8

0.9

1
16.9%

0 20 40 60 80

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
71%

0 20 40 60 80

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
55.5%

0 20 40 60 80

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
68.1%

(III)
0 20 40 60 80

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80

0.4

0.5

0.6

0.7

0.8

0.9

1
11.6%

0 20 40 60 80

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
59.3%

0 20 40 60 80

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
37.8%

0 20 40 60 80

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
58.3%

(IV)
0 20 40 60 80

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80

0.4

0.5

0.6

0.7

0.8

0.9

1
13.2%

0 20 40 60 80

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
68.5%

0 20 40 60 80

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
43%

0 20 40 60 80

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
66.5%

Figure 8. Same as Figure 2 but with another set of the parameters (k0 = 0.7, k1 = 0.9, ∆ = 10, and
τc = 20) of the ratio k(τ) (6).

5. Relation between the Reduced and Real Time Dependence of the Infection and
Recovery Rate

In order to calculate the real time dependence from the reduced time dependence of
the SIR-quantities of interest, one has to infer the real time dependencies of the infection
and recovery rates from the adopted parameterized reduced time dependence (6) of their
ratio. Two different cases to be considered: in the first case, a real time dependence of the
infection rate a(t) is adopted, whereas in the second case, the real time dependence of the
recovery rate µ(t) is pre-specified. If in the first case a constant infection rate for all real
times is adopted, the entire real time variation of the ratio k(t) stems from the recovery
rate. Likewise, if in the second case a constant recovery rate at all real times is pre-specified,
the real time variation of the rate k(t) results from the infection rate. Below, each case is
considered in turn.

5.1. Case 1: Pre-Specified Infection Rate

In this case, one starts from constant infection rate a(t) = a0 at all times. Then,
Equation (3) yields for the reduced time τ = a0(t− t0). Consequently, Equations (5) and (6)
provide for the real time dependence of the recovery rate, i.e.,

µ(t) = a0k(a0(t− t0)) = a0

{
k1 +

k1 − k0

1 + tanh(τc/∆)

[
tanh

(
a0(t− t0)− τc

∆

)
− 1
]}

. (18)
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For values k1 > k0, Equation (18) indeed represents an increase of the recovery rate which
can be either slow or rapid depending on the chosen parameters ∆ and τc.

As a second example of a pre-specified infection rate, the earlier considered lockdown
infection rate [33],

aLD(t) =
a0

2

[
1 + q− (1− q) tanh

(
t− t0 − ta

tb

)]
'
{

a0 for t0 ≤ t� ta,
qa0 for t� ta,

(19)

is used employing a quarantine factor, q ∈ [0, 1], which implies

τLD(t) =
a0

2

(1 + q)(t− t0)− (1− q)tb ln

cosh
(

t−t0−ta
tb

)
cosh(ta/tb)


'

{
a0(t− t0) for t0 ≤ t� ta,
qa0t for t� ta.

(20)

The time-dependent infection rate (19) has been studied before [33] to describe the
effect of lockdown interventions on the temporal evolution of pandemic waves. The
function (19) is characterized by four parameters: (i) the initial constant infection rate a0
at early times t � ta, (ii) the final constant infection rate a1 = qa0 at late times t � ta
described by the quarantine factor q = a1/a0 ≤ 1, (iii) the time ta of maximum change, and
(iv) the time tb � ta regularizing the sharpness of the transition. The latter is known to be
about tb ' 7 days reflecting the typical one week incubation delay.

Upon insertion of aLD(t) and τLD(t) Equations (5) and (6) then yield for the real time
dependence of the recovery rate:

µLD(t) = aLD(t)k(τLD(t)). (21)

Figure 9 shows the resulting real time dependence of the recovery rate for the adopted
lockdown infection rate.
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Figure 9. The lockdown recovery rate, µLD(t) (21), in the case of pre-specified lockdown infection
rate, aLD (19), using k0 = 0.7, k1 = 0.8, a0 = 57 days−1, tb = 7 days, τc = a0ta, ∆ = 10qta for the
four cases: drastic (q = 0.1) and rapid (ta = 20 days); drastic (q = 0.1) and late (ta = 40 days); mild
(q = 0.5) and rapid (ta = 20 days); and mild (q = 0.5) and late (ta = 40 days), as indicated.
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5.2. Case 2: Pre-Specified Recovery Rate

The second case of a pre-specified recovery rate is more complex. Starting again from
a constant recovery rate µ(t) = µ0, Equations (3), (5) and (6) then yield for the real time
dependence of the infection rate the implicit integral equation,

a(t) =
µ0

k1 +
k1−k0

1+tanh(τc/∆)

[
tanh

( ∫ t
t0

a(y)dy−τc

∆

)
− 1

] . (22)

Introducing

Y(t) =

∫ t
t0

a(y)dy− τc

∆
=

τ − τc

∆
, (23)

so that dY/dt = a(t)/∆, and the abbreviation

K =
k1 − k0

1 + tanh( τc
∆ )

, (24)

Equation (22) reads:

(k1 − K + K tanh Y)
dY
dt

=
µ0

∆
. (25)

Integrating Equation (25) then readily yields:

(k1 − k)Y(t) + K ln[cosh Y(t)] =
µ0

∆
t + c1. (26)

With the initial value, Y(t0) = −τc/∆, one obtains for the integration constant:

c1 = −µ0

∆
t0 − (k1 − K)

τc

∆
+ K ln

(
cosh

τc

∆

)
. (27)

Consequently, Equation (26) becomes:

(k1 − K)
(

Y +
τc

∆

)
+ K ln

[
cosh Y

cosh (τc/∆)

]
=

µ0(t− t0)

∆
, (28)

or, after inserting Equation (23),

(t− t0)µ0 = (k1 − K)τ + K∆ ln
(

cosh
τ

∆
− tanh

τc

∆
sinh

τ

∆

)
. (29)

Equation (29) is the resulting relation t(τ) between the real and reduced times in
the case of a constant recovery rate µ0. Using Equation (29), one can verify that τ =∫ τ

0 [µ0/k(τ)](dt/dτ)dτ holds.
Below, the limits of Equation (29) at small and large values of the reduced time, τ ≤ ∆

and τ ≥ ∆, respectively, are considered. According to Equation (29), the reduced time
τ = ∆ corresponds to the real time

tD = t0 +
∆
µ0

[
k1 + K ln

(
cosh 1− tanh

τc

∆
sinh 1

)
− K

]
, (30)

with K defined in Equation (24).
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5.2.1. Small Real Times t ≤ tD

For small real times t ≤ tD, corresponding to reduced times τ ≤ ∆, the asymptotics
sinh(τ/∆) ' τ/∆ and cosh(τ/∆) ' 1 + (τ2/2∆2) are employed to approximate to second
order:

ln
(

cosh
τ

∆
− tanh

τc

∆
sinh

τ

∆

)
' ln

(
1− τ

∆
tanh

τc

∆
+

τ2

2∆2

)
' − τ

∆
tanh

τc

∆
+

1− tanh2 (τc/∆)
2

τ2

∆2

= − τ

∆
tanh

τc

∆
+

τ2

2∆2 cosh2(τc/∆)
. (31)

In the first step, the smallness of τ/∆ ≤ 1 and the approximation ln(1+ x) ' x− x2/2
for small values of x are used, whereas in the second step, the identity 1− tanh2(x) =
cosh−2(x) is employed. In this limit, Equation (29) then yields, with the help of abbreviation
(24), the quadratic equation,

τ2 +
2k0∆ cosh2(τc/∆)

K
τ ' 2µ0∆(t− t0) cosh2(τc/∆)

K
. (32)

One can note that K > 0 is positive for values k1 > k0 and negative K < 0 in the
opposite case, k1 < k0. In the more relevant case of positive K > 0, Equation (32) is solved
by

τ(t) ' k0∆ cosh2 (τc/∆)
K

[√
1 +

2Kµ0(t− t0)

k2
0∆ cosh2 (τc/∆)

− 1

]
(t ≤ tD). (33)

For real times,

t− t0 ≤
k2

0∆ cosh2 (τc/∆)
2Kµ0

, (34)

the small time solution (33) approaches the linear relationship

τ ' (t− t0)µ0

k0
. (35)

Differentiating Equation (33) with respect to t then yields for the real-time dependence
of the infection rate at small times:

a(t) ' µ0

k0

√
1 + 2Kµ0(t−t0)

k2
0∆ cosh2 (τc/∆)

(t ≤ tD), (36)

which decreases for positive K from its initial value a0 = µ0/k0.

5.2.2. Large Real Times t ≥ tD

Likewise for large real times t ≥ tD corresponding to τ ≥ ∆,

cosh
τ

∆
=

eτ/∆

2

(
1 + e−2τ/∆

)
,

sinh
τ

∆
=

eτ/∆

2

(
1− e−2τ/∆

)
, (37)
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are inserted in the way that, in this limit,

ln
(

cosh
τ

∆
− tanh

τc

∆
sinh

τ

∆

)
=

τ

∆
− ln 2 + ln

(
1− tanh

τc

∆

)
+ ln

[
1 +

1 + tanh (τc/∆)
1− tanh (τc/∆)

e−2τ/∆
]

' τ

∆
− ln 2 + ln

(
1− tanh

τc

∆

)
+

1 + tanh (τc/∆)
1− tanh (τc/∆)

e−2τ/∆, (38)

and, consequently, at late times, Equation (29) can be approximated as

τ +
(k1 − k0)∆

k1[1− tanh (τc/∆)]
e−2τ/∆ ' µ0(t− t0) + K∆[ln 2− ln(1− tanh (τc/∆))]

k1
. (39)

At late time τ ≥ ∆, the second term on the left-hand side of Equation (39) is much
smaller than the first term. One therefore obtains as approximate solution of Equation (30):

τ(t) ' µ0(t− t0) + K∆[ln 2− ln(1− tanh (τc/∆))]
k1

−∆(k1 − k0)[1− tanh (τc/∆)]2K/k1−1

k122K/k1
exp

(
−2µ0(t− t0)

∆k1

)
(t ≥ tD), (40)

and the real time derivative of this equation then provides for the infection rate at late
times,

a(t) ' µ0

k1

[
1 +

k1 − k0

k1

(
1− tanh (τc/∆)

2

)2K/k1−1

exp
(
−2µ0(t− t0)

∆k1

)]
(t ≥ tD), (41)

which decreases to its final value a∞ = µ0/k1 in the limit t → ∞ for positive values of
K > 0 corresponding to k1 > k0.

Figures 10 and 11 compare the exact real time dependencies t(τ) as a function of the
reduced time τ and the real time dependence of the infection rate a(t), respectively, with
their analytical approximations at small and large real times for the case of a constant
recovery rate. The agreement between the exact results and the approximations seems
acceptable.
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Figure 10. Real time, t(τ), versus τ (solid black line) for the case of k0 = 0.5, k1 = 0.9, τc = 20, ∆ = 10
at fixed constant infection rate µ0. The dot indicates the value at the transition time, tD (30), and the
asymptotic expressions (35) and (40) for small and large times, respectively, are shown by dashed
lines of different colors as indicated.
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Figure 11. Infection rate, a(t), versus real time t (solid black line) for the parameters used in Figure
10. The dot indicates the value at the transition time, tD (30), the red square shows a∞ = µ0/k1 at
t → ∞, while the asymptotic expressions (36) and (41) for small and large times, respectively, are
shown by dashed lines of different colors as indicated.

5.2.3. Variable Recovery Rate µ(t)

Finally, let us note that for a general variable but pre-specified real time dependence
of the recovery rate µ(t), Equation (29) reads:∫ t

t0

dt′µ(t′) = (k1 − K)τ + K∆ ln
(

cosh
τ

∆
− tanh

τc

∆
sinh

τ

∆

)
. (42)

Only if the functional real time dependence µ(t) is given, this equation can be analyzed
further.

5.3. Real Time Dependence of the Rate of New Infections for a Constant Recovery Rate

The case of a pre-specified constant recovery rate and a real-time-dependent infection
rate are regarded as important. In this case, the resulting real-time dependence of the rate
of new infections is calculated:

J̇(t) = a(t)j(τ(t)) (43)

using the results for a(t) and τ(t) from Section 5.2.
Figure 12 shows the adiabatic approximation from version IV in comparison with the

exact numerical results and also the limiting KSSIR-variations adopting the initial ratio, k0,
and final ratio, k1, at all times.
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Figure 12. Daily new rate of infected persons, J̇(t) (43), versus real time t in the case of a constant
recovery rate for the parameters from Figures 2–8. The adiabatic version IV (solid black line) is
compared with the exact numerical solution (green) and the reference cases of constant k(t) = k0

(dashed) and k(t) = k1 (dash-dotted).

6. Summary and Conclusions

The temporal evolution of pandemics described by the susceptible-infectious-recovered
(SIR)-compartment model is sensitively determined by the time dependence of the infection
(a(t)) and recovery (µ(t)) rates. These two rates regulate the transitions from the suscep-
tible to the infected compartment and from the infected to the recovered compartment,
respectively. Starting from the pioneering studies [1,2], many numerical solutions of the
SIR equations have used stationary values of the two rates, an assumption also made in
the analytical solution by Harko et al. [7]. An essential improvement regarding analytical
SIR-solutions has been provided by the KSSIR-model developed by us [8,9], holding for
arbitrary but given time dependencies of the infection rate a(t) for the case of a stationary
ratio k = µ(t)/a(t), implying that the recovery rate has exactly the same time dependence
as the infection rate. This generalization to a time-dependent infection rate is important as
such time dependencies are caused by non-pharmaceutical interventions (NPIs) conducted
during pandemic outbreaks.

In the current study, apparently for the first time, approximated SIR-solutions are
derived for different time dependencies of the infection and recovery rates so that their
ratio no longer is constant and becomes also time-dependent. The analysis presented here is
based on the adiabatic approximation assuming time-dependent ratios k(t), slowly varying
in comparison to the typical time characteristics of the pandemic wave. For such slow
variations, the available analytical approximations from the KSSIR-model are used and the
adopted time-dependent ratio of the two rates are inserted a posteriori.

Instead of investigating endless different combinations of the time dependencies of
the two rates a(t) and µ(t), a suitably parameterized reduced-time-dependence of the ratio
k(τ) is adopted. Along with the definition of the reduced time, this parameterized ratio
k(τ) allows us to represent a great variety of different time dependencies of the infection
and recovery rates. This includes the important case of a stationary recovery rate but a
time-dependent infection rate which is investigated in detail.

In each considered case, the obtained solutions from the adiabatic approximation in
its four different studied variants are compared to the exact numerical solutions of the
SIR-equations. In the worst case, the maximum deviation is 68.1% but in most shown
examples much less. This acceptable agreement provides strong confidence in the accuracy
of the proposed adiabatic approximation. The adiabatic approximation works best for
small differences |k1 − k0| between the final (k1) and initial (k0) values of the function k(τ);
the maximum deviation for the rate of of new infections scales roughly as ' 400|k1 − k0|
percent.
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Analytical solutions are a key to understanding complicated systems. The paper is
focused on studying the adequation between the approximation and the true solution,
which is essential for this methodology to gain acceptance in epidemiology. The analytical
calculations of the SIR model have been shown to enter healthcare decision making [34–38],
help in the development of robust and effective pandemic surveillance systems [39], support
the investigation of spatial spreading of infections [40,41], provide guidance in the modeling
of digital and manual contact tracing [42], allow to forecast the long-term trends of the
pandemic evolution [43–45], and help to quantify noise from the analytical and numerical
point of view [46]. A sensitivity analysis of the presented results in the presence of noise
remains beyond the scope of the current study.

The analytical improvements now available will certainly simplify the future public
health-care decision-making to cope with aggressive pandemic outbursts. The improve-
ments comprise both, the rather accurate explicit analytical solutions of the SIR-equations
and its generalizations such as the SIRV-equations (which includes vaccination denoted
by “V”), and the adiabatic approximation for the slowly time-dependent ratios of the
infection and recovery rate presented here. The improvements should allow a more robust
forecast of the temporal evolution of pandemic outbursts including the effect of taken
non-pharmaceutical interventions which will result in predictions regarding the tolerable
maximum seven-day incidence value for given health capacities in different countries as
well as the estimate of fatality rates and total number of fatalities (for a recent application
to the omicron wave, see [11]). Yet even more can be learned on the influence of different
non-pharmaceutical interventions on the pandemic evolution: in particular, it should be
possible to quantity the parameters of the chosen functional ratio (6) caused by different
interventions. However, for such future quantitative studies, a much improved and more
complete monitoring of the rate of newly infected persons is necessary. The present data
for the omicron mutant are not accurate enough for such studies as the high values for
the estimated dark numbers of infections [11] in Great Britain (5.0), Germany (4.4) and
Switzerland (2.8) indicate.
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