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Abstract: Science and its evolution are based on complex epistemological structures. Two of the pillars
of such a construction definitively are enthusiasm and skepticism, both being ingredients without
which solid knowledge is hardly achieved and certainly not guaranteed. Our friend and colleague
Jean Willy André Cleymans (1944–2021), with his open personality, high and longstanding interest
for innovation, and recognized leadership in high-energy physics, constitutes a beautiful example
of the former. Recently, Joseph I. Kapusta has generously and laboriously offered an interesting
illustration of the latter pillar, in the very same field of physics, concerning the very same theoretical
frame, namely, nonextensive statistical mechanics and the nonadditive q-entropies on which it is
based. I present here a detailed analysis, point by point, of Kapusta’s 19 May 2021 talk and, placing
the discussion in a sensibly wider and updated perspective, I refute his bold conclusion that indices q
have no physical foundation.

Keywords: Jean Cleymans; Joseph Kapusta; thermodynamics; nonadditive entropies; nonextensive
statistical mechanics; high-energy physics

1. Reminiscences Related to Jean Cleymans

I had the privilege of personally meeting Jean Cleymans in two occasions. The first one
was at CERN (European Organization for Nuclear Research) for the Heavy Ion Forum held
in 2013–2014 to discuss q-statistics in high-energy physics. His experience and scientific
weight among his CERN colleagues were noticeable. That was my first visit to CERN,
where I stayed a couple of days. The second occasion was during a visit, over several days,
to the University of Cape Town, when I also had the opportunity to lecture and discuss,
with him and his international research group, on the foundations and applications of
nonadditive entropies and nonextensive statistical mechanics.

In the bibliography in [1], over 9000 articles, by nearly 16,000 authors, are registered
on this research area, which started in 1988 [2]. Among them, more than one thousand
concern high-energy physics (high-energy collisions, possible connections to quantum
chromodynamics (QCD), thermofractals, solar physics, astronomy, astrophysics, black
holes, cosmology, dark energy; theoretical, observational, experimental). I could find
therein fourty two articles by Cleymans and co-authors [3–44], spanning over one decade.
His longstanding enthusiasm about the subject, at least in what concerns high-energy
physics, can be hardly doubted.

2. Analysis of Joseph Kapusta’s Talk “A Primer on Tsallis Statistics for Nuclear and
Particle Physics” (19 May 2021)
2.1. Preliminaries

On 19 May 2021, Joseph Kapusta delivered an online talk within the Theoretical
Physics Colloquium series that Igor Shovkovy has been hosting at Arizona State University.
The talk was entitled “A primer on Tsallis statistics for nuclear and particle physics”, and
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it is accessible on the Internet [45]. Making it publicly accessible was, in some sense, a
fortunate initiative. Indeed, in spite of the fact that my own name appears in the title of
the talk, I never received notice of it, rather regretfully. Nevertheless, fortuitously, I could
eventually hear, in 27 December 2021, Kapusta’s talk when I became aware of its existence
through an anonymous referee report on a project involving q-concepts.

However, why am I giving all these details? Basically, because I agree with the old
dictate “silence gives consent” (“qui tacet consentit”), and by no means can I agree with
nor remain silent regarding the final conclusions offered by the speaker of that specific talk.
Indeed, in what follows, I intend to offer, essentially point by point, an analysis of and a
reply to Kapusta’s talk, not only in what concerns the logical implications of his statements
and conclusions, but—quite appropriate under the present circumstances—also in what
concerns the spirit of the “analyse du discours” [46–48]. This is why I focus here on the
talk itself and not on the written version, which Kapusta published some months later [49].
Let me add for completeness that, as soon as I became aware of the existence of that talk
on YouTube, I proposed an open academic debate between Kapusta and myself, possibly
organized within the same or similar frame of the Arizona State University Colloquia series
(or any other appropriate forum in fact), but I did not receive back a signal of operational
interest. Unfortunately, an opportunity for a free and direct exchange of scientific ideas
focusing on a currently active research area was lost.

Before starting, let me by all means make absolutely clear my genuine gratitude to
Kapusta for having dedicated a sensible amount of his time and knowledge to analyze
and better understand the theory that I proposed over three decades ago (in [2,50] and
elsewhere). It is my understanding that, by so proceeding, Kapusta also attempted to
serve science along its best lines, in this case through skepticism, as it becomes clear in what
follows.

2.2. On the Title of Kapusta’s Talk

The choice of the word “primer” in the title is suggestive. For this word one finds in
the Merriam-Webster Dictionary:

- A small book for teaching children to read;
- A small introductory book on a subject;
- A short informative piece of writing.

In the Cambridge Dictionary, one finds:

- A small book containing basic facts about a subject, used especially when you are
beginning to learn about that subject;

- A basic text for teaching something.

It appears therefore that the word “primer” tends to induce the audience in the sense
that basic undeniable facts will be presented, as opposed to opinions or beliefs. In classical
philosophical Plato terms, “primer” induces us to think about “episteme” (from the Greek
επιστηµη, related to facts) and not about “doxa” (from the Greek δóξα, opinion). But, as
the reader can verify, what one hears in various parts of the talk is a blurring between these
two concepts, facts and opinion, a blurring between “text” and “context”.

Along a similar vein, the expression “Tsallis and his collaborators” that Kapusta used
several times is not exempted from ambiguity. Indeed, there are my collaborators—co-
authors, quite frequently—and there are also thousands of scientists (see [1]) who became
interested in the subject and have published, along the years, thousands of articles, some of
which presenting aspects that I would surely endorse, and others whose statements are
certainly not to be confused with my own.

2.3. Nonadditive Entropy Sq: Where It Comes from

In his talk, Kapusta declared a couple of times that he did not know where Sq came
from. Although spread in the literature for decades, let us summarize in the present
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occasion where it comes from. Like the Boltzmann–Gibbs entropic functional, it is basically
a postulate, as stated in [2]. There is, however, a simple rationale behind it. Let us describe it.

An entropic functional must be invariant under permutation of states; indeed, what
matters are the probabilities {pi} and not the states themselves. The simplest manner
which satisfies this property is to involve ∑i f (pi), and the simplest form for f (pi) is just a
power-law, i.e., f (pi) ∝ pq

i (q ∈ R). Consistently, the entropic functional being constructed
is assumed to be of the form Sq({pi}) = Φ(∑i pq

i ), with ∑i pi = 1. The simplest form
for Φ(x) is to be linear, i.e., Sq({pi}) = A(q) + B(q)∑i pq

i . Probabilistic certainty should
make the entropy to vanish. Therefore, if it is possible for a state j to exist such that
pj = 1, then ∑i pq

i = 1, hence A(q) + B(q) = 0. Consequently, Sq({pi}) = A(q)(1−∑i pq
i ).

Now, the whole intuition for the present postulate, inspired in multifractals as declared
in [2], is to provide a bias for the state probability. More definitely, to compare pq

i with
pi for any pi ∈ (0, 1): pq

i > pi if q < 1, pq
i < pi if q > 1, and finally pq

i = pi if q = 1.
As one can see, q = 1 simply means absence of bias, and this is intuitively assumed to
well correspond to the Boltzmann–Gibbs (GB) entropy variable, SBG = k ∑i pi ln(1/pi).
Therefore, limq→1 A(q) must diverge in order to compensate for the fact that limq→1[1−
∑i pq

i ] = limq→1[1−∑i pi p
q−1
i ] = limq→1[1−∑i pie(q−1) ln pi ] = limq→1{1−∑i pi[1 + (q−

1) ln pi]} = limq→1(q− 1)[−∑i pi ln pi] = 0; moreover, A(q) must have the dimensions
of the constant k, hence be proportional to k. The simplest such possibility satisfying
limq→1 Sq{pi} = SBG{pi} is A(q) = k/(q − 1), and we are done. The entropy Sq is
therefore defined by

Sq({pi}) ≡ k
1−∑W

i=1 pq
i

q− 1
= k

W

∑
i=1

pi lnq
1
pi

= −k
W

∑
i=1

pq
i lnq pi = −k

W

∑
i=1

pi ln2−q pi (S1 = SBG) , (1)

where the (monotonically increasing) q-logarithmic function is defined through

lnq z ≡ z1−q − 1
1− q

(ln1 z = ln z) , (2)

with d lnq z/dz = 1/zq. The quantity σ(p) ≡ ln(1/p) is referred to as “surprise” [51] or
“unexpectedness” [52]. It vanishes when the probability p equals unity and diverges when
the probability p → 0. One can consistently define q-surprise or q-unexpectedness as
σq(p) ≡ lnq(1/p), hence σq(1) = 0 and σq(0) attains its maximum (infinity if q ≤ 1). With
this definition, Sq can be rewritten as follows:

Sq = k
W

∑
i=1

pi lnq(1/pi) ≡ k〈lnq(1/pi)〉 = k〈σq〉 , (3)

where 〈. . . 〉 denotes the mean value. Equation (3) satisfies in fact the most general form
for a “trace-form” entropic functional, SΨ({pi}) = k ∑i pi lnΨ(1/pi), lnΨ(z) being a generic
monotonically increasing function which satisfies lnΨ(1) = 0; for details, see [50,53].

In addition, an entropic functional S({pi}; η) is said “composable” if it satisfies, for two
probabilistically independent systems A and B, the property S(A + B)/k = F(S(A)/k, S(B)/k; η),
where η is a set of fixed indices characterizing the functional (e.g., for Sq, it is η ≡ q);
the notation {0} is used here to indicate absence of any such index. F(x, y; {η}) is as-
sumed to be a smooth function of (x, y), which depends on a (typically small) set of
universal indices {η}, defined in such a way that F(x, y; {0}) = x + y (additivity), which
corresponds to the Boltzmann–Gibbs entropy. Furthermore, F(x, y; {η}) is assumed to
satisfy F(x, 0; {η}) = x (null-composability), F(x, y; {η}) = F(y, x; {η}) (symmetry),
F(x, F(y, z; {η}); {η}) = F(F(x, y; {η}), z; {η}) (associativity); for details and thermody-
namical motivation, see [50,53].
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The Enciso–Tempesta theorem [54] proves that Sq is the unique entropic functional
which simultaneously is a trace form, composable, and includes the Boltzmann–Gibbs form
as a particular instance. These properties play a crucial role in the validity, for all values of
q, of the Einstein requirement for likelihood factorization [55]. This important property is
consistent with the fact that the Boltzmann–Gibbs statistical mechanics is sufficient but not
necessary for the validity of thermodynamics and its Legendre structure.

The word “postulate” used above deserves a comment. For the Boltzmann–Gibbs
entropy, it is possible to replace its postulated form by a set of four axioms. That was first
shown by Shannon in his celebrated uniqueness theorem [56,57], and later on, in a more
elegant form, by Khinchin in his own uniqueness theorem [58,59]. Both theorems have been
q-generalized into Santo’s uniqueness theorem [60] and Abe’s uniqueness theorem [61],
respectively. Let us finally mention that, in addition to the above uniqueness theorems
(Santos in 1997, Abe in 2000, and Enciso and Tempesta in 2017), Sq is unique in other relevant
senses as well, namely, the Topsøe factorizability in game theory [62], the Amari–Ohara–
Matsuzoe conformally invariant geometry [63] and the Biro–Barnafoldi–Van thermostat
universal independence [64].

2.4. Additivity versus Extensivity

All the way along his talk, Kapusta did not distinguish—clearly enough, and even at
all—the concepts of “extensivity” and “additivity”, applicable to both entropy and energy.
This is quite unfortunate since this distinction ought to be made in any introductory talk on
the subject. Indeed, it plays a foundational role in nonextensive statistical mechanics. Let
us address now these two important notions, focusing specifically on entropic additivity
and entropic extensivity.

Following O. Penrose [65], an entropic functional S({pi}) is said “additive” if, for two
probabilistically independent systems A and B (i.e., pA+B

ij = pA
i pB

j ), one verifies S(A + B) =
S(A) + S(B), in other words, if

S({pA
i pB

j }) = S({pA
i }) + S({pB

j }) (4)

is verified.
Otherwise, S({pi}) is said “nonadditive”. It immediately follows that SBG is additive.

In contrast, Sq satisfies

Sq(A + B)
k

=
Sq(A)

k
+

Sq(B)
k

+ (1− q)
Sq(A)

k
Sq(B)

k
, (5)

hence
Sq(A + B) = Sq(A) + Sq(B) +

1− q
k

Sq(A)Sq(B) . (6)

Therefore, unless (1− q)/k→ 0, Sq is nonadditive.
Let us now address the other important entropic concept, namely, extensivity. An

entropy S(N) is said “extensive” if a specific entropic functional is applied to a specific
class of many-body systems with N = Ld particles, where L is its dimensionless linear size
and d its spatial dimension, and satisfies the thermodynamical expectation

0 < lim
N→∞

S(N)

N
< ∞ , (7)

hence, S(N) ∝ N for N � 1. Therefore, entropic additivity only depends on the entropic
functional, whereas entropic extensivity depends on both the chosen entropic functional
and the system itself (i.e., its constituents and the correlations among them).

Let us illustrate this fundamental distinction through four, among infinitely many,
equal-probability typical examples of W(N) (N → ∞), where W is the total number of
possibilities whose probability does not vanish.
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• Exponential class W(N) ∼ AµN (A > 0; µ > 1):
This is the typical case within the Boltzmann–Gibbs theory. One gets: SBG(N) =
k ln W(N) ∼ N ln µ + ln A ∝ N, therefore, SBG is extensive, as thermodynamically
required.

• Power-law class W(N) ∼ BNρ (B > 0; ρ > 0):
One should not use SBG since it implies SBG(N) = k ln W(N) ∼ ρ ln N + ln B ∝ ln N,
thus violating thermodynamics. One verifies instead that Sq=1−1/ρ(N) = k lnq=1−1/ρ W(N)
∝ N, as thermodynamically required.

• Stretched exponential class W(N) ∼ CνNγ
(C > 0; ν > 1; 0 < γ < 1):

In this case, no value of q exists which would yield an extensive entropy Sq. One
can instead use Sδ ≡ k ∑W

i=1 pi[ln 1/pi]
δ [50] with δ = 1/γ. Indeed, Sδ=1/γ(N) =

k[ln W(N)]1/γ ∝ N, as thermodynamically required.
• Logarithmic class W(N) ∼ D ln N (D > 0):

In this case, no values of (q, δ) exist which are able to yield an extensive entropy
Sq,δ ≡ k ∑i pi[lnq(1/pi]

δ [66]. Instead, one can use the Curado entropy [53], SC
λ (N) =

k
[
eλ W(N) − eλ

]
with λ = 1/D. Indeed, one can verify that SC

λ=1/D(N) ∝ N, as thermo-
dynamically required.

These four paradigmatic classes are described in Figure 1.

Figure 1. Typical behaviors of W(N) (number of nonzero-probability states of a system with N
random variables) in the N → ∞ limit and entropic functionals which, under the assumption
of equal probabilities for all states with nonzero probability, yield extensive entropies for specific
values of the corresponding (nonadditive) entropic indices. Concerning the exponential class
W(N) ∼ AµN , SBG is not the unique entropy that yields entropic extensivity; the (additive)
Renyi entropic functional, SR

q ≡ k(ln ∑i pq
i )/(1 − q), also is extensive for all values of q. Anal-

ogously, concerning the stretched-exponential class W(N) ∼ CνNγ
, the (nonadditive) entropic

functional Sδ is not unique. All the entropic families illustrated contain SBG as a particular case, ex-
cepting the Curado entropy, SC

λ , which is appropriate for the logarithmic class W(N) ∼ D ln N.
In the limit N → ∞, the inequalities µN � νNγ � Nρ � ln N � 1 are satisfied, hence
limN→∞ νNγ

/µN = limN→∞ Nρ/µN = limN→∞ ln N/µN = 0. This exhibits that, in all these nonad-
ditive cases, the occupancy of the full phase space corresponds essentially to a zero Lebesgue measure,
similarly to a whole class of (multi)fractals. If the equal-probabilities hypothesis is not satisfied, a
specific analysis becomes necessary and the results might be different. Taken from [50].

At this point, it is pertinent to remind Einstein’s 1949 comment [67]: “A theory is the
more impressive the greater the simplicity of its premises is, the more different kinds of
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things it relates, and the more extended is its area of applicability. Therefore, the deep
impression that classical thermodynamics made upon me. It is the only physical theory
of universal content concerning which I am convinced that, within the framework of
applicability of its basic concepts, it will never be overthrown”.

To better understand the strength of these words, a metaphor can be used. Within
Newtonian mechanics, there is the known Galilean composition of velocities, v13 = v12 +
v23. In special relativity, this law is generalized into v13 = [v12 + v23]/[1+ v12v23/c2], where
c is the speed of light, thus violating additivity. Why did Einstein abandon the simple
linear composition of Galileo? Because he had a higher goal, namely, to unify mechanics
and Maxwell’s electromagnetism, and, for this, he had to impose the invariance with
regard to the Lorentz transformation. One can, thus, see the violation of the linear Galilean
composition as a small price to pay for a major endeavor. Similarly, what is expressed in
Figure 1, is that q-generalizing the linear composition law of SBG, with regard to independent
systems, into the nonlinear composition (5) may be seen as a small price to pay for a major
endeavor, namely, to always satisfy the Legendre structure of thermodynamics. However, it
is mandatory to register here that such viewpoint is nevertheless not free from controversy,
in spite of its simplicity. For example, the known expression of Bekenstein and Hawking for
the entropy for a black hole is proportional to its surface instead of to its volume, therefore
violating the above requirement if the black-hole is assumed to be a three-dimensional
object; see [66].

Before leaving this point, it is fair to mention that Kapusta’s lack of distinction between
entropic extensivity and entropic additivity would not be particularly surprising, were it
not for his own perception of his talk as a “primer“. In any case, such confusion constitutes,
still today, no exception in the literature even if my co-author Murray Gell-Mann and myself
started around 2003 to emphasize the distinction in my book [50] and in our paper [68].

2.5. On the Nature of the Constraints Used for Entropic Optimization

The relevance of the invariance, under a zero-energy shift at fixed inverse effective
temperature βq, of the distribution of probabilities extremizing Sq took, from [2] through
[69] to [70], close to ten years to become clarified. As pedagogically explained by Kapusta,
this process led, through types I and II, to the type III or third path, which was specially
focused in his talk. The equivalence, under appropriate transformations of q and, con-
sistently, of the Lagrange parameters (α, β), associated with these three paths was later
on established in [71,72]. Indeed, the possibility of linking S2−q (instead of Sq) with the
extremizing q-exponential distribution and linear constraints such as ∑i piEi = 〈E〉 (instead
of the nonlinear constraint ∑i pq

i Ei/ ∑i pq
i = 〈E〉q) was later on used in [73–82] on the basis

of identities (1), and has nowadays become quite popular due to its operational simplicity.
This link is based on a nonlinear Fokker–Planck Equation (with nonlinear exponent (2− q))
in the presence of a confining potential [83,84]. This equation has, as its basic stationary
state, a q-Gaussian and not a (2− q)-Gaussian. Further examples exhibiting the same type
of duality are available at [85,86].

Let us mention at this stage that several central related issues were regretfully ignored
in Kapusta’s talk, namely:

• The peculiar way the nonlinear constraint of type III was phrased by the speaker left
floating in the audience (which even repeated this later on, with the tacit agreement of
the speaker) that this assumption was violating the theory of probabilities. There is no
such thing.
Indeed, the above nonlinear constraint in pi is completely equivalent to a linear con-
straint expressed in terms of ∑i P(q)

i Ei where P(q)
i ≡ pq

i / ∑j pq
j (hence

pi = (P(q)
i )1/q/ ∑j(P(q)

j )1/q, with ∑i pi = ∑i P(q)
i = 1) is the so-called “escort dis-

tribution,” defined in the theory of probabilities; see [87] and references therein.
• The requirement for system-independence for the adopted extremization procedure

consists of having for both the norm constraint, expressed in terms of ∑i pi, and the
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energy constraint, expressed in terms of ∑i P(q)
i Ei, one and the same upper admissible

value for q. Let us illustrate this through an example. If the set of eigenvalues {Ei}
are nondegenerate, the extremizing q-exponential distribution with q > 1 asymptot-
ically behaves as 1/E1/(q−1)

i . Therefore, its norm is well defined up to q = 2. The

same happens with the constraint ∑i P(q)
i Ei. Indeed, it asymptotically behaves as

Ei/E q/(q−1)
i = 1/E1/(q−1)

i , hence it has the same upper bound admissibility, i.e., once
again q = 2. In strong variance, if one were to use here the usual ∑i piEi constraint,
the asymptotic behavior would be given by Ei/E1/(q−1)

i , hence its upper admissible
value would be q = 3/2, which differs from the norm admissibility value, q = 2. The
general importance of this point is lengthily discussed in [88].

• In the q-generalized central limit theorem and Lévy–Gnedenko’s limit theorem [89,90],
the escort mean values emerge naturally from the mathematical operations themselves.

• All mean values must be mathematically defined for the fat-tailed q > 1 distributions.
This does happen with the appropriate escort averages but fails with the normal linear
averages. A simple numerical example with q-Gaussians and its astonishing practical
consequences are illustrated in [91].

2.6. On Ad Hoc Constraints for Optimizing the Entropy

Kapusta referred, in a kind of appreciative style, to a 2004 argument by Zanette
and Montemurro [92], which would “disqualify” Sq as a “physical” entropy. It refers
to the trivial mathematical fact that by adjusting in an ad hoc manner the constraints
under which the entropy optimization is to be done, one can obtain virtually any desired
distribution. This mathematical feature applies to all admissible entropic functionals
(including SBG) and has been an overcome issue for a long time. Indeed, already in 1983,
Montroll and Shlesinger [93] exhibited how the nontrivial constraint can be adapted in
order to obtain Lévy distributions from the classical Boltzmann–Gibbs entropy. The author’s
epistemological dissatisfaction is evident in the paper. Indeed, one is forced to first know the
distribution that is aimed, and then, through a sort of reverse engineering, write down the
nontrivial constraint in order to get it. This is actually possible for any entropic functional, as
mentioned above, but provides no useful information at all. Constraints within information
theory are not to be freely manipulated: they must reflect constants of motion and similar
quantities. For a simple real random variable x, they must restrict to robust constraints
such as the values of 〈x〉 and/or of 〈x2〉. It is up to the entropic functional, and not to the
ad hoc constraints, to do the most meaningful and nontrivial job.

We argue here that, since it is known to be so for any entropic form and, in particular,
for the (additive) Boltzmann–Gibbs entropy, SBG (see [94]), the critique brings absolutely
no novelty to the area. In other words, it has nothing special to do with the entropy Sq.
In favor of the constraints based on the usual simple variables (typically, the averaging
of the random variable xi or of x2

i , where xi is to be identified according to the nature of
the system), we argue, and this for all entropic forms, that they can hardly be considered
as arbitrary, as the authors of [92] seemingly consider. Indeed, once the natural variables
of the system have been identified (e.g., constants of motion of the system, such as the
energy for Hamiltonian systems), the variable itself and, in some occasions, its square
are the most basic quantities to be constrained. Such constraints are used in hundreds
(perhaps thousands) of useful applications outside (and also inside) thermodynamical
systems, along the information theory lines of Jaynes and Shannon, and more recently of
A. Plastino and others. Furthermore, this is so for SBG, Sq, and any other entropic form.
Rebuttals of the Zanette and Montemurro outdated criticism can be found in [50,95,96].

As a final comment, let us mention that statistical mechanics is much more that just a
stationary-state (e.g., thermal equilibrium) distribution. Indeed, under exactly the same
constraints, the optimization of SBG and (SBG)

3 yields the same distribution. This is not a
sufficient reason for using (SBG)

3 instead of SBG in a thermostatistical theory which must
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also satisfy various thermodynamical requirements, including its Legendre-transformation
structure.

2.7. Thermodynamics and Legendre Transformations

Before focusing on the Legendre structure itself, let us review some long-known facts
concerning long-range interactions. Let us consider a d-dimensional classical many-body
system with, e.g., attractive two-body isotropic interactions decaying with a dimensionless
distance r ≥ 1 as −A/rα (A > 0, α ≥ 0), and with an infinitely repulsive potential for
0 ≤ r ≤ 1. At zero temperature T, the total kinetic energy vanishes, and the potential
energy per particle is proportional to

∫ ∞
1 dr rdr−α. This quantity converges if α/d > 1 and

diverges otherwise. These two regimes are from now on referred to as “short-range” and
“long-range” interactions, respectively; see Figure 2.

Furthermore, they can be shown to, respectively, correspond, within the Boltzmann–
Gibbs theory, to finite and divergent partition functions. This is indeed the point that
was addressed by Gibbs himself [97]: “In treating of the canonical distribution, we shall
always suppose the multiple integral in equation (92) [the partition function, as it is called
nowadays] to have a finite value, as otherwise the coefficient of probability vanishes,
and the law of distribution becomes illusory. This will exclude certain cases, but not
such apparently, as will affect the value of our results with respect to their bearing on
thermodynamics. It will exclude, for instance, cases in which the system or parts of it can
be distributed in unlimited space [...]. It also excludes many cases in which the energy
can decrease without limit, as when the system contains material points which attract one
another inversely as the squares of their distances. [...]. For the purposes of a general
discussion, it is sufficient to call attention to the assumption implicitly involved in the
formula (92)”.

Figure 2. The so-called “extensive systems” (α/d > 1 for the classical ones with the exponent α and
dimension d) correspond to an extensive total energy and typically involve absolutely convergent series,
whereas the so-called “nonextensive systems” (0 ≤ α/d < 1 for the classical ones) correspond to a
superextensive total energy and typically involve divergent series. The marginal systems (α/d = 1
here) typically involve conditionally convergent series, which therefore depend on the boundary
conditions, i.e., typically on the external shape of the system. Capacitors constitute a notorious
example of the α/d = 1 case. The standard Lennard–Jones gas is located at (d, α) = (3, 6), thus
belonging to the extensive class of systems. Taken from [53].

In a vein slightly differing from the standard Boltzmann–Gibbs recipe, which would
demand integration up to infinity in

∫ ∞
1 dr rdr−α, let us assume that the N-particle system
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is roughly homogeneously distributed within a limited sphere. Then, the potential energy
per particle scales as follows:

Upot(N)

N
∝ −A

∫ N1/d

1
dr rd−1 r−α = −A

d
N∗ , (8)

with

N? ≡ N1−α/d − 1
1− α/d

= lnα/d N ∼



1
α/d− 1

if α/d > 1 ;

ln N if α/d = 1 ;

N1−α/d

1− α/d
if 0 ≤ α/d < 1 .

(9)

Therefore, in the N → ∞ limit, Upot(N)/N approaches a constant (∝ −A/(α− d)) if
α/d > 1, and diverges like N1−α/d/(1− α/d) if 0 ≤ α/d < 1 (it diverges logarithmically if
α/d = 1). In other words, the total potential energy is extensive for short-range interactions
(α/d > 1), and nonextensive for long-range interactions (0 ≤ α/d ≤ 1). Satisfactorily
enough, Equation (9) recovers the characterization with

∫ ∞
1 dr rdr−α in the limit N → ∞,

but it has the great advantage of providing, for finite N, a finite value. This fact is now
shown to enable us to properly scale the macroscopic quantities in the thermodynamic
limit (N → ∞), for all values of α/d ≥ 0 and not only for α/d > 1 (as in textbooks of
thermodynamics, even if the point is too frequently not made explicitly).

The mathematical structure of classical thermodynamics is based on the Legendre
transforms. It is not sufficiently realized that thermodynamics does not depend on micro-
scopic details only for short-range interactions. As is illustrated here below, it does depend
on quantities such as (α, d) for long-range interactions. Quoting Landsberg [98]: “The
presence of long-range forces causes important amendments to thermodynamics, some of
which are not fully investigated as yet”.

Let us consider a d-dimensional homogeneous and isotropic classical fluid constituted
by magnetic particles in thermodynamical equilibrium. Its Gibbs free energy is then:

G(N, T, p, µ, H) = U(N, T, p, µ, H)− TS(N, T, p, µ, H)

+ pV(N, T, p, µ, H)− µN − HM(N, T, p, µ, H), (10)

where (T, p, µ, H) correspond, respectively, to the temperature, pressure, chemical potential
and external magnetic field, U is the internal energy, S is the entropy, V is the volume, N is
the number of particles, and M the magnetization.

If the interactions are short-ranged, i.e., if α/d > 1, one can divide this equation by N
and then take the N → ∞ limit. One straightforwardly obtains:

g(T, p, µ, H) = u(T, p, µ, H)− Ts(T, p, µ, H) + pv(T, p, µ, H)− µ− Hm(T, p, H) , (11)

where g(T, p, µ, H) ≡ limN→∞ G(N, T, p, µ, H)/N, and analogously for the other variables
of the equation.

If the interactions are long-ranged instead, i.e., if 0 ≤ α/d ≤ 1, all the terms of
expression (11) diverge, hence, thermodynamically speaking, they are nonsense. Conse-
quently, the generically correct procedure for all values of α/d ≥ 0, must conform to the
following lines:

lim
N→∞

G(N, T, p, µ, H)

NN?
= lim

N→∞

U(N, T, p, µ, H)

NN?
− lim

N→∞

[ T
N?

S(N, T, p, µ, H)

N

]
+ lim

N→∞

[ p
N?

V(N, T, p, µ, H)

N

]
− lim

N→∞

µ

N?
− lim

N→∞

[ H
N?

M(N, T, p, µ, H)

N

]
, (12)
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hence,

g(T?, p?, µ?, H?) = u(T?, p?, µ?, H?)− T?s(T?, p?, µ?, H?)

+p?v(T?, p?, µ?, H?)− µ? − H?m(T?, p?, µ?, H?) , (13)

where the definitions of T? and of all the other variables are self-explanatory (e.g., T? ≡
limN→∞[T/N?] and s(T?, p?, µ?, H?) ≡ limN→∞[S(N, T, p, µ, H)/N]). In other words, in
order to have finite thermodynamic equations of states, one must, in general, express them
in the (T?, p?, µ?, H?) variables. If α/d > 1, this procedure recovers the usual equations of
states, and the usual extensive (G, U, S, V, N, M) and intensive (T, p, µ, H) thermodynamic
variables. However, if 0 ≤ α/d ≤ 1, the situation is more complex, and three instead of the
traditional two classes of thermodynamic variables emerge. One may call them extensive
(S, V, N, M), pseudoextensive (G, U) (superextensive in the present case) and pseudointensive
(T, p, µ, H) (superintensive in the present case) variables. All the energy-type thermody-
namical variables (G, F, U), F being the Helmholtz free energy, give rise to pseudoextensive
ones, whereas those which appear in the usual Legendre thermodynamical pairs give rise
to pseudointensive ones (T, p, µ, H) and extensive ones (S, V, N, M). Let us emphasize that
(S, V, N, M) are extensive in all cases; see Figure 3. The exactness of all these scalings has
been repeatedly verified in the literature for diverse concrete physical systems, such as
fluids, magnets, polymers and percolation; see [50] and references therein.

 0  1 α/d(long−range interactions) (short−range interactions)

Intensive, e.g., T, p, µ, H ∝ L
0

Extensive, e.g., G, U, S, N, V, M ∝ L
d

(θ ≠ 0) (θ = 0)

Pseudo−intensive, e.g., T, p, µ, H ∝ L θ

Extensive, e.g., S, N, V, M ∝ L
d

Pseudo−extensive, e.g., G, U ∝ L d+θ

Figure 3. Representation of the different scaling regimes for classical d-dimensional systems. For
attractive long-range interactions (i.e., 0 ≤ α/d ≤ 1, α characterizing the interaction range in a
potential with the form 1/rα; for example, Newtonian gravitation corresponds to (d, α) = (3, 1)) one
can distinguish three classes of thermodynamic variables, namely: those, scaling with Lθ , named
“pseudointensive” (L is a characteristic linear length, θ depends on the class of systems); those, scaling
with Ld+θ with θ = d− α, the pseudoextensive ones (the energies); and those, scaling with Ld (which
are always extensive). For short-range interactions (i.e., α > d) one has θ = 0 and the energies recover
their standard Ld extensive scaling, falling within the same class of S, N, V, M, etc. (see text for
notations of the thermodynamic variables), whereas the previous pseudointensive variables become
truly intensive ones (independent of L); this is the region, with only two classes of variables, that is
covered by the traditional textbooks on thermodynamics. For more details, see [50,53,66,99–101].

Let us also emphasize that, consistently:

• The ratio of any two pseudointensive variables (T, p, µ, H, . . . ), e.g., p/T, is intensive
in all cases;

• The ratio of any pseudoextensive variable (G, F, U) with any pseudointensive variable,
e.g., U/T, is extensive in all cases;

• A most important implication is that, in expressions such as e
−βqHN
q where HN is

an N-body Hamiltonian, the argument βqHN is extensive in all cases. This plays a
crucial role in the possible q-generalization of what is currently referred to as the large
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deviation theory. Indeed, the extensivity of βqHN appears to mirror, in all cases, the
extensivity of the total entropy involved in rqN, rq being the ratio function (defined

within the Large Deviation probability P(N) = P(0)e
−rq N
q ), seemingly always related

to some relative nonadditive entropy per particle [102–106].

2.8. Boltzmann Equation

Kapusta also focused on the current Boltzmann equation associated with the a + b↔
c + d reaction. He specifically presented and discussed

d fa

dt
=

∫ d3 pb
(2π)3

d3 pc

(2π)3
d3 pd
(2π)3

{ 1
1 + δcd

W(c + d→ a + b) fc fd × [1 + (−1)2sa fa][1 + (−1)2sb fb]

− 1
1 + δab

W(a + b→ c + d) fa fb × [1 + (−1)2sc fc][1 + (−1)2sd fd]
}

, (14)

where si and pi are the spin and 3-momentum of the ith particle, t is the time, and δij is the
Kronecker delta, where i = a, b, c, and d. In thermal equilibrium, d fa/dt = 0, fa has the
usual Boltzmann–Gibbs expression, and the energy conservation, ωa + ωb = ωc + ωd is
guaranteed, both in the quantum and the classical cases. In the classical limit, one finds the
usual expression, f = e−βω.

Kapusta conveniently pointed out that replacing, in the Boltzmann equation, the
traditional molecular chaos hypothesis (stosszahlansatz) factorization, fc fd by [ f 1−q

c + f 1−q
d −

1]1/(1−q) (and analogously for fa fb) [107,108], leads to the q-exponential distribution as the
stationary state, also satisfying simultaneously the energy conservation, ωa +ωb = ωc +ωd.
However, he shared that, essentially, he did not know where that specific replacement
came from.

Ulrich Heinz, in the audience, shared with friendly complicity that “After so many
papers that I have rejected on Tsallis statistics, I am really happy to hear your talk”. About
that, not having been communicated in any way that this talk was going to happen online
so that I could participate myself, I have no other comment than to say that it is allowed to
think that, maybe, not all those rejections were justified. On the other hand, interestingly
enough, Heinz also shared that he could, however, “live” with a properly generalized
Boltzmann equation.

Let us clarify, at this point, that [ f 1−q
c + f 1−q

d − 1]1/(1−q) is known to correspond, for
q 6= 1, to a specific (and apparently not rare at all in nature) class of strong correlations
between the relevant random variables.

The product xy of two real numbers has been conveniently generalized as the following
q-product [109,110]:

x⊗q y ≡ e
lnq x+lnq y
q =

[
x1−q + y1−q − 1

] 1
1−q

+
(x ≥ 0, y ≥ 0) , (15)

where [. . . ]+ = [. . . ] if [. . . ] > 0 and vanishes otherwise. Let us list some of its main
properties:

• It recovers the standard product as the q = 1 particular instance, i.e.,

x⊗1 y = xy ; (16)

• It is commutative for all values of q, i.e.,

x⊗q y = y⊗q x ; (17)

• It is additive under q-logarithm for all values of q, i.e.,

lnq(x⊗q y) = lnq x + lnq y , (18)
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(referred to as “extensivity”), whereas let us remind that

lnq(x y) = lnq x + lnq y + (1− q)(lnq x)(lnq y) (19)

(referred to as “nonadditivity”).
Consistently,

ex
q ⊗q ey

q = ex+y
q , (20)

whereas
ex

q ey
q = ex+y+(1−q)xy

q ; (21)

• It is associative for all values of q, i.e.,

x⊗q (y⊗q z) = (x⊗q y)⊗q z = x⊗q y⊗q z = (x1−q + y1−q + z1−q − 2)1/(1−q) ; (22)

• It admits unity for all values of q, i.e.,

x⊗q 1 = x ; (23)

• It admits zero under certain conditions, namely

x⊗q 0 =


0 if (q ≥ 1 and x ≥ 0) or if (q < 1 and 0 ≤ x ≤ 1) ,

(
x1−q − 1

) 1
1−q if q < 1 and x > 1 ;

(24)

• It is distributive with regard to the generalized associative sum analyzed in [111],
namely,

x⊕(q) y ≡ eln [elnq x+elnq y ]
q =

{
1 + (1− q) ln

[
e

x1−q−1
1−q + e

y1−q−1
1−q

]}1/(1−q)
. (25)

In other words, the q-product (15) satisfies all the standard requirements of a full
algebraic structure.

Consistently, on the basis of this product, it is possible to generalize, for q ≥ 1, the
Fourier transform of a non-negative function f (x) as follows [89,90]:

Fq[ f ](ξ) ≡
∫

dx ei ξ x
q ⊗q f (x)Fq[ f ](ξ) =

∫ ∞

−∞
dx ei ξ x[ f (x)]q−1

q f (x) . (26)

It is transparent that this transformation is, for q 6= 1, nonlinear. Indeed, if f (x) →
λ f (x), λ being any constant, one verifies that Fq[λ f ](ξ) 6= λFq[ f ](ξ). This generalization
of the standard Fourier transform F1[ f ](ξ) was introduced in order to have a remarkable
property: it transforms q-Gaussians into q-Gaussians. Indeed, one verifies:

Fq

[
Bq
√

β e−β x2

q

]
(ξ) = e−β1 ξ2

q1 , (27)

where
(q1, β1) =

(1 + q
3− q

,
3− q

8 β2−qB2(q−1)
q

)
(1 ≤ q < 2) , (28)

Bq being an appropriate normalizing quantity. Within this frame, and others as well,
the central limit theorem has been generalized [89,90], showing that, while averaging a
large number of random variables within a wide class of nonlocal correlations (yet only
partially explored), q-Gaussians emerge as attractors in the space of distributions. This
provides an epistemological basis for understanding why there are so many q-Gaussians
(and, consistently, so many q-exponentials) in nature; for more details and proofs, see [112].
Moreover, in what concerns the physical significance of the q-product (15) in relation with
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the Boltzmann transport equation, detailed arguments along a different line are presented
as well in [113].

Another relevant line of mathematical research concerns the relations within various
sets of q-indices (e.g., q-triplets) that very frequently emerge in complex systems [68,114].

Let us also mention that, in the context of relaxation times related to the Boltzmann
equation, Heinz inquired about an interesting question, namely, whether there is any
argument yielding q-statistics as an outcome of corresponding dynamics. On general
grounds, this not an easy question. However, it is surely useful to have in mind that, in
the same way the solution of dx/dt = −x/τ (with x(0) = 1) is x = e−t/τ , the solution of

dx/dt = −xq/τq (with x(0) = 1) is x = e
−t/τq
q [115].

At this point, it might be useful to mention that possible q-generalizations of the
connections with the Kadanoff–Baym approach have been advanced in [116,117]. Finally, a
first step focusing on the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy
has been introduced in [118].

2.9. On the Second Principle of Thermodynamics

Masoud Shokri, in the audience, inquired about the validity of the second principle for
q 6= 1. By all means, it appears to be valid in the same way as for the Boltzmann–Gibbs case
(q = 1). The following (nonexhaustive) list of arguments that are available in the literature
can be mentioned:

• It has been proved that a detailed balance implies the time irreversibility of Sq [119].
• The celebrated Clausius inequality, δQ/T ≤ dS, is consistent with the second principle.

It has been shown [120] that it remains valid as it stands for q > 1 as well.
• The validity of the H-theorem has been proved for a wide class of classical d-dimensional

many-body overdamped systems including repulsive short-range two-body interac-
tions [73–82].

• The H-theorem has been proved for Sq by imposing Galilean-invariance on a Boltz-
mann lattice model which discretizes the Navier–Stokes equation. The unique value
of q is determined by the structure of the Bravais lattice that is being focused on; for
more details, see [121,122].

• The time evolution of the entropy for low-dimensional maps, or, actually, the Pesin
identities, do certainly not prove the validity of the second principle. However, the
fact that the behavior is quite similar (see [123–125] and references therein) for, e.g.,
the logistic map at the most chaotic value of its external parameter (with q = 1) and at
the Feigenbaum point (with q = 0.2445 . . . ) does provide a suggestive indication.

2.10. On the Zeroth Principle of Thermodynamics

Boris Tomasik, in the audience, inquired about the concept of thermal contact among
systems in equilibrium, thus tacitly about its transitivity. This highly interesting issue
points essentially towards the content of the zeroth principle.

In various overdamped classical d-dimensional many-body systems including short-
range repulsive interactions, it has been possible to analytically calculate and numerically
verify the validity of q-statistics, focusing on space and velocity distributions, equations
of states, Carnot cycle, H-theorem, effective temperature, and the zeroth principle of ther-
modynamics [73–82]. For example, for repulsive interactions proportional to 1/rα, it can
be proved [82] that the distribution of positions is a q-Gaussian with q = 1− α/d < 1,
which, in the limit α/d→ 1, recovers the type-II superconductor result q = 0 [73–75]. This
class of systems constitute a rare case where nearly all q-thermostatistical quantities can be
analytically calculated.

However, this may be considered as the infancy of a general proof of the validity of
the zeroth principle. Its general discussion remains to be done, and it is related, within q-
statistics, to the concept of “effective temperature” itself. Indeed, in the above overdamped
systems, two different temperatures coexist, namely, the kinetic and effective temperatures.
The former is based on the distributions of velocities, whereas the latter is based on the
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spatial distribution. This is in fact quite analogous to what happens in granular packing,
sandpiles and the like, where one is forced to distinguish the kinetic temperature from
the structural one [126]. This is in variance with Kapusta’s repeated expression referring
to “the true temperature”, without really explaining in physically neat and indisputable
terms what “temperature” (or “inverse β”) he is referring to. It is allowed to think that he
only has in his mind the usual kinetic concept of temperature, thus ignoring that, in many
complex systems, more than one temperature typically emerges; see, e.g., [73–82].

2.11. Indices q: First-Principle Characterization of Universality Classes, or Merely Efficient Fitting
Parameters?

Kapusta’s ultimate question consists of establishing whether or not the indices q have
a first-principle physical basis. He eventually answers by the negative. Let us point out here
that a definitively opposite perspective emerges through the (nonexhaustive) list of counter-
examples, either from first principles or at a clear-cut mesoscopic level, in diverse complex
systems, including high-energy collisions. Let us emphasize that it is well understood that
the analytical determination of the q values is, in most of the cases—but fortunately not
all!—mathematically intractable.

• First-principle quantum field theory calculation of q for a one-dimensional quantum
many-body Hamiltonian system: One such example is the quantum phase transition
at T = 0 criticality for the d = 1 first-neighbor Ising ferromagnet in the presence of
a transverse magnetic field, and similar quantum systems characterized by a central
charge, c ≥ 0. A subsystem of large linear size L of an infinitely long such chain
satisfies SBG(L) ∝ ln L, which is nonextensive and therefore violates the Legendre
structure of thermodynamics. It turns out, however, that a unique value of q exists
such that Sq(L) ∝ L, thus satisfying thermodynamics. Its value is given by [127]

q =

√
9 + c2 − 3

c
, (29)

which is depicted in Figure 4. As one can see, q characterizes here the thermody-
namically admissible entropies associated with the criticality universality classes of
many-body systems, defined by the central charge c.

0
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0.4

0.6

0.8

1.0
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q

1/c

BG

XY
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Z(∞)

m→∞

SU(4)

Figure 4. The index q as a function of the inverse central charge, 1/c. The universality classes of
some specific models are indicated; for example, c = 1/2 corresponds to the universality class of the
short-range finite-spin Ising ferromagnet in the presence of a (critical) transverse field, at temperature
T = 0. The Boltzmann–Gibbs value q = 1 is recovered in the c→ ∞ limit. Taken from [55].
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• Zero-Lebesgue occupancy of the probability space in the N → ∞ limit of a system
with strongly correlated random binary variables [68]: it is verified that Sq is extensive
for a unique value of q, namely,

q = 1− 1/d , (30)

where d is the width, ∀N, of the strip with nonvanishing probabilities.
• Overdamped d-dimensional many-body system with short-range repulsive interac-

tions decaying as 1/rα (α ≥ d): The space attractor is a q-Gaussian with [82]

q = 1− α/d . (31)

The limit α/d = 1 recovers the superconductor type-II space distribution, which has
been proved to correspond to q = 0 [73].

• Nonlinear dynamical systems exhibit various direct connections with the time evolu-
tion of the entropy and with its consequences. There are, in this respect, two important
classes of chaotic behavior, namely: strong chaos, characterized by exponential sensitivity
to the initial conditions (referred to, for classical systems, as having a positive maxi-
mal Lyapunov exponent); and weak chaos, characterized by subexponential (frequently,
power-law) sensitivity to the initial conditions (referred to, for classical systems, as
having a vanishing maximal Lyapunov exponent). Let us focus here on an important
issue, namely, the time evolution of the entropy while exploring the system’s phase
space. Let us illustrate this issue with a paradigmatic dissipative system, namely, the
logistic map, xt+1 = 1− ax2

t (xt ∈ [−1, 1]; a ∈ [0, 2]; t = 0, 1, 2, . . . ). For a = 2,
the system is strongly chaotic since the sensitivity to the initial conditions satisfies
ξ(t) ≡ lim∆x(0)→0 ∆x(t)/∆x(0) = eλt with a Lyapunov exponent λ = ln 2 > 0. Con-
sistently, if one starts at t = 0 from a set of M initial conditions in an arbitrarily chosen
single window with W of them equally partitioning the interval [−1, 1], one obtains
the entropy production per unit time,

KBG ≡ lim
t→∞

lim
W→∞

lim
M→∞

SBG(t)/k
t

= λ > 0 , (32)

thus verifying the Pesin identity. One consistently verifies that, for q > 1,

Kq ≡ limt→∞ limW→∞ limM→∞
Sq(t)/k

t vanishes, whereas, for q < 1, it diverges. In
other words, q = 1 is the unique value of the index for which Sq(t) asymptotically
increases linearly with time.
If the same operations are applied at the edge of chaos corresponding to the double-
bifurcation accumulation point (weak chaos) of the z-logistic map (xt+1 = 1− a|xt|z
with z > 0) and its topologically equivalent one-dimensional dissipative maps, one

verifies that ξ = e
λqt
q with λq = 1/(1− q) [125]. It follows that, for t→ ∞, ξ diverges

subexponentially, namely as the power-law ξ ∝ t1/(1−q). Moreover, it can be shown,
through scaling arguments [128], that

1
1− q

=
1

αmin
− 1

αmax
, (33)

where αmin and αmax refer to the (concave) multifractal function f (α), defined in the
interval [αmin, αmax] with f (αmin) = f (αmax) = 0 [87].
If, for the standard logistic map (z = 2), one actually focuses on the Feigenbaum point
(also referred to as the Feigenbaum–Coullet–Tresser point) a = ac ≡ 1.40115518909 . . . ,
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which corresponds to a vanishing Lyapunov exponent λ (i.e., weak chaos), one does

verify that ξ = e
λqt
q with λq = 1/(1− q) [125], as well as

1
1− q

=
1

αmin
− 1

αmax
=

ln αF
ln 2

, (34)

where αF is the so called Feigenbaum universal constant. From this relation, it
follows that

q = 0.244487701341282066198 . . . (35)

(1018 exact digits are known [50]). Analogously to the Boltzmann–Gibbs case, a q-
generalized Pesin identity Kq = λq is verified. Consistently, Kq numerically appears
to vanish for q above that special value and to diverge for q below that value. In other
words, this is the unique value of the index q, for which Sq(t) asymptotically increases
linearly with time, thus yielding a finite entropy production per unit time.

• Still in the area of nonlinear dynamical systems, now with N ≥ 1 degrees of freedom
{x1, x2, . . . , xN}, scaling arguments [129] are consistent with

1
1− qentropy

=
N

∑
k=1

1
1− qk

, (36)

where qentropy is the value of q for which the entropy Sq production per unit time
is finite, and {qk} characterize the qk-exponential sensitivity to the initial conditions,
respectively, associated with the variable xk (1 ≥ q1 ≥ q2 ≥ · · · ≥ qN > −∞). This
quite general relation is verified in the following illustrative cases:
(i) It suffices that one (q1) of these q-indices equals unity and qentropy = 1 hence
Sqentropy = SBG;
(ii) If all {qk} are equal and smaller than unity, then:

qentropy = 1− 1− q1

N
(q1 < 1) , (37)

hence N → ∞ implies qentropy = 1; Equations (30) and (31) as well as the model (with
N exchangeable random variables) introduced and discussed in [106,130] correspond
to this case;
(iii) If N = 1, then qentropy = q1, which corresponds to the cases (32)–(35) here above.

• Another important issue is the central limit theorem attractor in the space of distri-
butions when time-averaging a single coordinate of the system. Within this theorem,
y ≡ ∑T

t=1 xt is defined. For example, for the logistic map with a = 2 one has that, after
proper scaling and centering, the distribution P(y) is given by a Gaussian, according
to the classical central limit theorem, whereas, for a = ac, it is seemingly given by a
q-Gaussian with q > 1.
Let us further illustrate this issue with a paradigmatic conservative system, namely, the
standard map, introduced by Chirikov in 1979. This area-preserving map turns out
to be relevant within a variety of physical situations such as particle confinement in
magnetic traps, particle dynamics in accelerators, comet dynamics, the ionization of
Rydberg atoms, electron magnetotransport. It is defined as follows:

pi+1 = pi − K sin xi (mod 2π) (K ≥ 0)

xi+1 = xi + pi+1 (mod 2π) (38)

Each (x, p) point yields a Lyapunov exponent λ(1) = −λ(2) ≥ 0. Next, along the
central limit theorem lines, let us define the following quantity:

ȳ ≡
T

∑
i=1

(x(j)
i − 〈x〉) , (39)



Physics 2022, 4 625

with

〈x〉 ≡ 1
M

1
T

M

∑
j=1

T

∑
i=1

x(j)
i , (40)

where M → ∞ is the number of initial conditions and T → ∞ is the number of
iterations for each of those M initial conditions. The limiting K = 0 case (hence a
linear map, though with a highly nontrivial set of stable orbits) exhibits zero Lyapunov
exponent in the entire phase space. It has been studied [131] and the attractor is a
q-Gaussian with

q = 2 . (41)

This is in notorious variance with the attractor corresponding to K � 1, where
the Lyapunov exponents corresponding to almost all the points of the phase space
are positive, Boltzmann’s molecular chaos hypothesis certainly is valid, and the
corresponding attractor is a Gaussian, i.e., q = 1, in conformity with the standard
central limit theorem.

• An interesting short-range-interacting d-dimensional ferromagnetic system is that
whose symmetry is dictated by rotations in n dimensions, i.e., the so called O(n)
symmetry (n = 2 corresponds to the XY model, n = 3 corresponds to the Heisenberg
model, and so on; n→ ∞ corresponds to the spherical model). As soon as one focuses
on the kinetics of point defects during a quenching from a high temperature to a zero
temperature for the d = n model, its theoretical description can be done in terms of a
time-dependent Ginzburg–Landau equation [132,133]. The distribution of the vortex
velocity turns out to be a q-Gaussian with

q =
d + 4
d + 2

. (42)

The index q decreases from two to one when d increases from zero to infinity. It is
certainly intriguing, although yet unexplained, the fact that the value of q given in
Equation (42) separates finite from infinite variance for d-dimensional q-Gaussians.

• For the coherent noise model for earthquakes and biological extinction, it has been
possible to prove [134,135] the emergence of a q-Gaussian with

q =
τ + 2

τ
, (43)

where τ is the index characterizing the (asymptotically) power-law distribution of the
avalanches.

• Cold atoms. Lutz predicted in 2003 [136] that the velocity distributions of cold atoms
in dissipative optical lattices should be q-Gaussians with

q = 1 +
44 ER

U0
, (44)

where ER and U0 are, respectively, the recoil energy and the potential depth. The
prediction was verified three years later [137,138].

• Granular matter. The following scaling law was predicted in 1996 [84] (see also [83]):

µ =
2

3− q
, (45)

where q is the index of the q-Gaussian distribution of d = 1 fluctuations and µ is the
exponent associated with anomalous diffusion (i.e., the quadratic position x2 scales
like tµ; q = 1 recovers the known scaling for Brownian motion normal diffusion,
i.e., µ = 1). This scaling relation was experimentally verified in 2015 [139], within a
±2% precision along a wide experimental range, for vertically confined grains under
horizontal shear.
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• In some simple models, such as the so-called “inelastic Maxwell model,” analytic
calculations can be performed; see, e.g., [140]). The velocity distribution that is
obtained, from the microscopic dynamics of the system of cooling experiments for a
spatially uniform gas whose temperature is monotonically decreasing with time, is
given by (see [141] and references therein) a q-Gaussian with

q = 3/2 . (46)

• Lattice Boltzmann models for fluids. The incompressible Navier–Stokes equation has
been considered [121] on a discretized D-dimensional Bravais lattice of coordination
number b. It is further assumed that there is a single value for the particle mass,
and also for speed. The basic requirement for the lattice Boltzmann model is to be
Galilean invariant (i.e., invariant under a change of inertial reference frame) like the
Navier–Stokes equation itself. It has been proved [121] that an H-theorem is satisfied
for a trace-form entropy only if it is Sq with

q = 1− 2
D

. (47)

Therefore, q < 1 in all cases (q > 0 if D > 2, and q < 0 if D < 2), and approaches unity
from below in the D → ∞ limit. This study has been generalized by allowing multiple
masses and multiple speeds. Galilean invariance once again mandates [122] an entropy
of the form Sq, with a unique value of q determined by a transcendental equation
involving the dimension and symmetry properties of the Bravais lattice as well as the
multiple values of the masses and of the speeds. Of course, Equation (47) is recovered
for the particular case of a single mass and a single speed. Finally, Equation (47) may
be seen as one more verification of the structure reflected in Equation (37).

• In the area of high-energy collisions, a highly interesting development based on first-
principle Yang–Mills/QCD grounds became available a couple of years ago [142]. It
yielded

1
q− 1

=
11
3

Nc −
2
3

N f , (48)

where Nc is the number of colors and N f the number of flavors. If Nc = N f /2 = 3,
one finds 1/(q− 1) = 7, hence q = 8/7 ' 1.14, which is amazingly close to the LHC
(Large Hadron Collider) values indicated in the figure of [143] exhibiting the fittings
(along very many experimental decades; notice also that the fitting temperature
T = 0.13 GeV practically corresponds to the mass of pions, ubiquitous in proton–
proton collisions) with which Kapusta begun his talk. Furthermore, if Nc = N f = 3
is used, q = 10/9 ' 1.11 is obtained which, interestingly enough, coincides with the
value phenomenologically advanced in 2000 by Walton and Rafelski [144] in their
approach of a heavy quark diffusing in a quark–gluon plasma.
By the way, let me mention at this point that some years ago I briefly met in Brazil
with the CERN researcher J. R. Ellis. I asked him whether he was aware that the
q-exponential distribution ubiquitously emerged in high-energy collision data. He
answered that he was aware. I then asked him whether he thought that this fact
could be deduced from QCD. He answered that the value of q possibly yes, but the
whole distribution probably not. The Deppman–Megias–Menezes relation (48) is by all
means relevant along that line of thought; so are also the Wilk–Wlodarczyk, Beck and
Beck–Cohen connections between q, fluctuations and degrees of freedom [145–147].

3. Final Remarks

Kapusta started his presentation by declaring “I am going to get to the bottom of
this”. He said that “q is not a fundamental or an intrinsic quantity to be interpreted in
terms of new statistics” and “should not be considered a fundamental constant”, and, while
conceding that it constitutes an efficient fitting parameter, he concluded by stating that the
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index q “is not a fundamental quantity in any sense”. Along the same line, Giorgio Torrieri
enthusiastically congratulated a “really great talk” and declared, in a very happy tone, “I
will forward the video to many people”.

Before ending, it might be useful to make explicit the following analogy. Within the
Newtonian theory of the planetary system, there is only one fundamental fitting parameter,
namely, the gravitational constant, G. All the rest about the orbits and motion of planets,
asteroids, comets, etc., would be uniquely determined if (and what a big if is this one)
we knew all the involved masses and their initial conditions at some time of the system’s
history. It is our human impossibility of having not only this information but also access
to an unthinkably powerful computer to allow the corresponding Newtonian equations
to be blamed if the task cannot be completed, certainly not the Newtonian theory. Still,
this theory showed to be capable of reproducing the Kepler’s empirical laws, in particular
the elliptic analytic form of the orbits of the planets. Using these general mathematical
forms, astronomers have been able to quite precisely determine the orbit of say Mars by
introducing as many fitting parameters as necessary to close the description.

Similarly, nonextensive statistical mechanics has only one fundamental fitting param-
eter, namely, the Boltzmann constant, k, shared in fact with Boltzmann–Gibbs statistical
mechanics. All the rest would be uniquely determined if (and what a big if is this one) we
were able to analytically scrutinize the usually intractable mathematics associated with
the microscopic (or at least the mesoscopic) dynamics of the nonlinear system so that the
necessary indices q are determined from mechanical/electromagnetic first principles. It
is our human impossibility of handling this formidable mathematics to be blamed if the
task cannot be completed, certainly not the nonextensive thermostatistical theory! Still, this
theory showed to be capable of providing useful analytical forms such as q-exponentials
and q-Gaussians, as well as H-theorems, generalized central limit theorems, among others,
which make possible the desired study of a specific complex system by introducing as
many fitting parameters as necessary to close the description.

The present paper replies to Joseph Kapusta’s talk and hopefully puts things in a
further updated and more reliable perspective, proving in particular that the q indices
surely are definitively more than possible convenient fitting parameters. As the reader
has had the opportunity to directly verify here by themselves, the “bottom of this” is
quite further deeper. Allow me to finish by reminding that, in fact, theoretical physics,
like anything else, always appears to admit some new deeper steps down, below what
was previously thought to be the bottom line (e.g., the nowadays celebrated emergence of
relativity from Newtonian mechanics and, almost simultaneously, of quantum mechanics
as well). Quoting Henry David Thoreau (Walden; or, Life in the Woods): “It is never too late
to give up our prejudices. No way of thinking or doing, however ancient, can be trusted
without proof. What everybody echoes or in silence passes by as true today may turn out
to be falsehood tomorrow, mere smoke of opinion, which some had trusted for a cloud that
would sprinkle fertilizing rain on their fields.”

An oral reply [148] to the content of Kapusta’s talk was delivered on April 12, 2022 at
a seminar, hosted by the Santa Fe Institute, New Mexico, and chaired by Sidney Redner.
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