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Abstract: We consider spatial population dynamics on a lattice, following a type of a contact (birth–
death) stochastic process. We show that simple mathematical approximations for the density of cells
can be obtained in a variety of scenarios. In the case of a homogeneous cell population, we derive
the cellular density for a two-dimensional (2D) spatial lattice with an arbitrary number of neighbors,
including the von Neumann, Moore, and hexagonal lattice. We then turn our attention to evolution-
ary dynamics, where mutant cells of different properties can be generated. For disadvantageous
mutants, we derive an approximation for the equilibrium density representing the selection–mutation
balance. For neutral and advantageous mutants, we show that simple scaling (power) laws for the
numbers of mutants in expanding populations hold in 2D and 3D, under both flat (planar) and range
population expansion. These models have relevance for studies in ecology and evolutionary biology,
as well as biomedical applications including the dynamics of drug-resistant mutants in cancer and
bacterial biofilms.

Keywords: evolutionary dynamics; mutations; agent-based modeling; somatic evolution; computational
methods; mathematical modeling

1. Introduction

Before we begin describing some of our attempts to derive a number of mathematical
laws for biological population dynamics, one of the authors (N.L.K.) would like to express
her eternal gratitude to Michael Tribelsky, who was her teacher in the Physics Department,
Moscow State University, at the beginning of the 1990s. Without his advice and guidance,
N.L.K. would not be what she is now. Tribelsky’s relentless optimism (often disguised)
has taught her to overcome whatever difficulties life has posed. N.L.K. always follows
Tribelsky’s principle that problems (in life, as well as in science) must be addressed at the
same pace, and not faster, than they are thrown at you (“Проблемы нужно решать по
мере их поступления”). Tribelsky’s “special course”, delivered to the theoreticians from
the Low Temperature Division, opened up a universe of diverse phenomena that are, at
the same time, fascinating and amenable to understanding. He helped instill the sense of
wonder at the beauty of the surrounding world, and this has stayed with N.L.K. no matter
what subject matter she happened to focus on, from language evolution to virus dynamics.

Much has been said about the existence of laws in biology. Physicists in particular
often feel that some beautiful (and, hopefully, simple) formal relations must exist to help
us navigate the complexities of life. In this paper, we look for universal biological laws
in the area of population dynamics, which is an area relevant for studies in ecology and
evolutionary biology. A rich literature exists about the evolutionary dynamics of mutant
spread and invasion, investigating aspects such as fixation probabilities and fixation times
of different kinds of mutants in constant populations [1,2], as well as mutant dynamics in
growing populations [3–5], where mathematical approaches were motivated by the famous
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Luria–Delbruck experiments [6]. Traditionally, much of this work has focused on well-
mixed (non-spatial), homogeneous populations. In a wide array of biological scenarios,
however, cells and organisms evolve in more complex settings, such as in spatially struc-
tured habitats (bacterial biofilms, cells in tissues and tumors) and within heterogeneous
population structures (such as stem and more differentiated cells in tissues [7] or bacteria
with different degrees of specialization in biofilms [8,9]). In the last 15 years, theoretical
work has extended our understanding of mutant emergence in spatially structured popula-
tions [10–18]. An excess of mutational jackpot events was observed in spatial compared to
well-mixed systems; such events result from mutations arising at the surface of expanding,
spatially structured populations, surfing at the edge of range expansions, and appearing as
mutant “bubbles” or “slices”. These jackpot events have been implicated in the finding that
the average number of neutral mutants when the total population reaches a given threshold
size is significantly larger in spatial compared to non-spatial settings [18]. Further work by
our group [19] showed that the evolutionary dynamics of mutants in spatially structured,
expanding populations are characterized by additional complexities.

In general, spatial population dynamics are significantly more complex compared
to the mass-action dynamics, and analytical approximations are not easily derived. In
this paper, we describe two examples where our group has been successful in obtaining
analytical approximations for laws of spatial dynamics: (a) steady-state density in space;
(b) scaling laws for the number of mutants in expanding populations.

(a) Analytical approximations for steady-state density. In [20], we considered the
phenomenon of range expansion, the process in biology by which a species spreads to
new areas. We derived a numerical methodology that allowed for efficient computations
of the number of individuals as the species expands its range in space. In addition, we
found approximations for the steady-state density of populations, or the core density of
expanding colonies, in several cases, such as the von Neumann and Moore neighborhoods
on a square lattice and for a honeycomb neighborhood on a hexagonal lattice; see Table 1.
For the same death-to-birth ratio, the grid is more packed under the Moore neighborhood,
because of the availability of more neighbors per site. As a consequence, the equilibrium
density corresponding to the Moore neighborhood is higher and closer to that of mass-
action. A general formula that provides an approximation for the steady-state density as
a function of the number of neighbors is also given (Table 1). In this paper, we provide a
novel mathematical derivation of these laws, which generalizes to any neighborhood size
(Section 3).

Table 1. Steady-state densities for different types of lattices, as well as the mass-action system and a
generalized, Nb-neighbor system; see [20]. Here, δ = D/L, the division-to-death rate ratio. Red dots
denote the focal cell and the blue ones stand for its neighbors.

Lattice Geometry Density

von Neumann 3−4δ
3−δ

Moore 7−8δ
7−δ

Hexagonal 5−6δ
5−δ

Mass-action 1− δ

Nb neighbors Nb−1−Nbδ
Nb−1−δ
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(b) Laws of disadvantageous, neutral, and advantageous mutant spread in different
geometries. In [19], we studied the evolutionary dynamics of disadvantageous, neutral,
and advantageous mutants in spatially expanding populations, where the growing front
was characterized by different symmetries in two dimensions (2D) and 3D; see Table 2. In
particular, while disadvantageous mutants grow linearly with N (and differences among
different cases are more subtle), neutral mutants grow as a decreasing power of N as we go
from a 2D flat front (which is essentially a 1D growth), to a 2D and 3D range. There are
always fewer neutral or advantageous mutants in the mass-action (exponentially growing)
case compared to any spatially restricted growth. Here (Sections 4 and 5), we provide a
derivation of these laws, which follows [19].

Table 2. Mutant scaling laws for expanding populations; see [19]. Here, N is the population size, u is
the mutation rate, and α > 1. See text for details.

2D Flat 2D Range 3D Flat 3D Range Exponential

Mutant property

Disadvantageous uN uN uN uN uN

Neutral uN2 uN3/2 uN2 uN4/3 uN ln N

Advantageous uN3 uN2 uN4 uN2 uN(2α−1)/α

In the case of disadvantageous mutants, the number of mutants always scales with the
first power of N. In addition to this scaling law, for the case of disadvantageous mutants,
we also derive an approximate expression for the number of mutants in quasi-steady-state,
given that the number of wild-type cells is N:

# mutants =
DwLw(4D2

m + 3DmLw + DwLm)uN
Dm(4Dm + 3Lw)(DmLw − DwLm)

; (1)

see Section 4.1 for details and Section 2 for definitions (this expression is valid for a 2D von
Neumann grid, and can be generalized to other cases). We show that the proportion of
mutants at selection–mutation balance is higher for spatially distributed systems compared
to well-mixed systems at equilibrium.

2. General Setup and Agent-Based Modeling of Population Dynamics

In order to describe the spatial growth and turnover of cells, as well as the population
dynamics of species, we use a continuous-time Markov process, which is a generalization of
the usual birth–death process and a type of a contact process. We assume that individuals
of one or two different types exist, which we call “wild-type” and “mutant” individuals
(to reflect the versatility of these models, we use both “individuals” and “cells” to refer to
the biological agents under consideration). At the core of the description is a lattice that
specifies possible locations of cells. This can be viewed as a geometric network, where
each node is connected with its neighbors. The state space consists of different locations
of the cells of the two types on the lattice. Cells are characterized by division and death
rate parameters, which are denoted by Lw and Dw for the division and death rates of the
wild-type cells and Lm and Dm for division and death rates of mutants. In the case where
only one type of cell is considered, the notation is simply L and D for the two rates.

Each of the nodes can either be empty or contain one cell of either type. During an
infinitesimally small time increment, ∆t, a given wild-type cell can attempt a division with
probability Lw and death with probability Dw. If division is attempted, then an offspring
is placed in one of the neighboring locations, chosen randomly and uniformly; division
only happens if the chosen node is empty. The offspring cell is wild-type with probability
1− u and mutant with probability u, where 0 ≤ u < 1 is the mutation rate. Mutant cells
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divide and die according to similar rules, except in the models considered here, we always
assume that an offspring of a mutant cell is a mutant cell.

A number of biological phenomena can be studied by slight modifications of this pro-
cess. To study the growth laws in the absence [20] or presence [19] of mutants, we assume
an infinitely large grid. To study the quasi-steady-state (which describes, e.g., the turnover
of cells in homeostasis), we make the grid finite and impose relevant boundary conditions.

For numerical explorations of these processes, agent-based modeling (ABM) is often
used; see, e.g., [21–23]. For example, consider a two-dimensional ABM on a square grid
with individuals of two types. A spot on the grid can be empty or can contain a cell, which
is either wild-type or mutant. At each time step, the grid is randomly sampled N times,
where N is the total number of cells currently in the system. If the sampled cell is wild-type,
the cell attempts division (described below) with a probability proportional to Lw or dies
with a probability proportional to Dw. When reproduction is attempted, a target spot is
chosen randomly among the Nb nearest neighbors of the cell. A neighborhood may contain,
e.g., Nb = 4 cells (the von Neumann neighborhood) or Nb = 8 neighbors (the Moore
neighborhood). If that spot is empty, the offspring cell is placed there. If it is already filled,
the division event is aborted. (This modeling choice represents the assumption that the
probability of divisions is reduced under more crowded conditions. This is similar to the
logistic growth term often used in deterministic models.) The offspring cell is assigned
wild-type with probability 1− u, and it is a mutant with probability u. If the sampled
spot contains a mutant cell, the same processes occur. Attempted division occurs with a
probability ∝ Lm, and the cell dies with a probability ∝ Dm. Initial and boundary conditions
are determined by the specific geometric setting investigated. For 2D spatial simulations,
an n× n square or an n× w rectangular domain could be considered. At the boundaries
of the domain, a spot is assumed to have fewer neighbors, i.e., more division events will
fail. The process starts with a single wild-type cell, placed, e.g., in the center of the grid.
Simulations always stop before the boundary of the grid is reached.

In what follows below, we derive some approximations of important observables
from these types of dynamics, which have a clear biological meaning. We discuss both
single-type populations and the co-dynamics of wild-type and mutant individuals.

3. Analytical Approximations for Steady-State Density (A Single Type)

In this Section, we consider populations consisting of only a single cell type with
division and death rates L and D < L and no mutations (u = 0).

Equilibrium Density in Space: An Analytical Method

The process of range expansion (colonization) is one of the basic types of biological
dynamics, whereby a species grows and spreads outwards, occupying new territories.
Spatial modeling of this process is naturally implemented as a stochastic ABM of the
type described above, with individuals (in this case, of only a single type) occupying
nodes on a rectangular grid, births and deaths occurring probabilistically, and individuals
only reproducing onto un-occupied neighboring spots. This approach is known to be
computationally expensive. In [20], we derived a set of efficient computational tools, which
were shown to be in good agreement with the underlying stochastic process of spatial
expansion. As part of the method development, we were able to obtain approximate
expressions for the quasi-steady-state (core) density of the individuals for different types of
grids. In [20], we provided the density formula for the contact process:

ρ =
Nb − 1− Nbδ

Nb − 1− δ
, (2)

where δ = D/L and Nb is the number of neighbors. Equation (2) was derived for several
cases of Nb, but no general derivation that would work for a given Nb was supplied. Here,
we present such a derivation, starting with Nb = 2 and generalizing to any Nb.



Physics 2022, 4 816

In 1D, with only Nb = 2 neighbors, Equation (2) gives

ρ =
1− 2δ

1− δ
, (3)

which, although a slight overestimation of the density, provides a good approximation. To
derive this formula, consider a 1D ABM of the type described above. At the equilibrium,
denote by p1 the probability that a cell is located next to an existing cell and by p0 the
probability that a cell is located next to an existing empty spot. These two quantities can be
estimated numerically.

A 1D realization of the population at a fixed moment of time can be viewed as a
Markov chain with states {0, 1}, where state 0 corresponds to the absence of a cell at a given
spot and state 1 denotes the presence of a cell at a given spot. The transition probability
matrix is given by

P =

(
p1 1− p1
p0 1− p0

)
where P11 is the probability that there is a cell on the right of a cell, P12 is the probability
that the spot on the right of a cell is empty, P21 is the probability that there is a cell on the
right of an empty spot, and P22 is the probability that an empty spot is on the right of an
empty spot. The steady-state probability distribution of this process is (ρ, 1− ρ), where
ρ is the probability that a given spot contains a cell. This can be found as the eigenvector
corresponding to the unit eigenvalue and is given by

ρ =
p0

1− p1 + p0
. (4)

This quantity (given the numerically calculated p0 and p1) is a very good approxima-
tion of the actual (numerical) density. Another way to derive this connection between ρ
and p0, p1 is as follows:

ρ = ρp1 + (1− ρ)p0, (5)

where the left-hand side is the probability to have a cell at a given point, the first term on
the right assumes that there is a cell to the left of that point (ρ) and, then, the given point
contains a cell with probability p1, and the second term on the right assumes that there is no
cell to the left of that point (1− ρ) and, then the given point contains a cell with probability
p0. Solving this for ρ gives expression (4).

Now, suppose that a cell is located at a given location. Then, a cell is located to the
right of it (which we call the focal location) with probability p1. We have, after a single
update of the contact process:

p1 = (1− p1)

(
L
2
+ p0

L
2

)
1
N

+ p1

(
1− D

N

)
. (6)

The first term on the right assumes that there was no cell at the focal location (1− p1),
but a cell on its left was chosen (probability 1/N) that divided to its right (L/2) or that
a cell on its right exists (probability p0), was chosen (1/N), and divided to its left (L/2).
The second term assumes that there was a cell at the focal location (p1) and it did not die
(1− D/N). The equality follows from the assumption of having an equilibrium.

Similarly, we can assume that there is no cell at a given location, then to its right (the
focal location), the probability to have a cell, p0, satisfies:

p0 = (1− p0)p0
L

2N
+ p0

(
1− D

N

)
. (7)

The first term on the right assumes that there was no cell at the focal location (1− p0),
but a cell on its right exists (probability p0), was chosen (1/N), and divided to its left (L/2).
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The second term assumes that there was a cell at the focal location (p0) and it did not die
(1− D/N).

Solving Equations (6) and (7) for p0 and p1, we obtain:

p1 = 1− D
L

, p0 = 1− 2D
L

.

Substituting this into Equation (4), we obtain expression (3).
This analysis easily generalizes to other systems (including higher dimensionalities),

where the number of neighbors is given by Nb. Instead of Equations (6) and (7), we have

p1 = (1− p1)

(
L

Nb
+

(Nb − 1)p0L
n

)
1
N

+ p1

(
1− D

N

)
, (8)

p0 = (1− p0)
(Nb − 1)p0L

NbN
+ p0

(
1− D

N

)
. (9)

Solving this system, we obtain

p1 = 1− D
L

, p0 = 1− NbD
(Nb − 1)L

.

Substitution into Equation (4) (which holds in these systems because Equation (5)
remains valid in these systems) yields Equation (2).

Figure 1 plots the quasi-equilibrium density approximated by Equation (2) as a func-
tion of D/L for two finite values of Nb corresponding to the von Neumann and Moore
neighborhoods. Figure 1a compares them with the well-known mass-action result, show-
ing that higher connectivity of the underlying network corresponds to a higher density
of the cells. Figure 1b and Figure 1c compare the results with numerical simulations,
demonstrating that Equation (2) provides a very good approximation. We notice that the
approximation works better at higher densities, compared to lower ones. In the derivation,
we assumed that the state of a given position on the lattice only depends on its immediate
neighbor, and not on other, more distant, sites. This assumption becomes less valid at low
densities, because macroscopic structures with strong correlations over distances > 1 form.
Therefore, the approximation becomes worse as the death rate approaches the division rate.
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Figure 1. Quasi-equilibrium density of cells. (a) Equation (2), showing the equilibrium density
as a function of D/L for Nb = 4 (von Neumann lattice), Nb = 8 (Moore lattice), and Nb → ∞
(mass-action). (b) Comparison of Equation (2) (solid line) with numerically calculated density values
(dots) for Nb = 4. The dashed-dotted line represents a higher-order approximation; see [20] for
details. (c) Comparison of Equation (2) (solid line) with numerically calculated density values (dots)
for Nb = 8. See text for details.

4. Disadvantageous Mutants and Selection–Mutation Balance in Spatial Models

In the remainder of the paper, we consider two types of individuals, wild-type and
mutants. This Section deals with disadvantageous mutants (defined below), while Section 5
focuses on neutral and advantageous mutants. We start with an Ordinary Differential
Equation (ODE) formulation.

4.1. A Basic ODE Formulation

Let us denote the wild-type population as x(t) and the mutant population as y(t).
Suppose that mutations happen at the rate u, and Dw < Lw. Then, the competition
dynamics of cells in a mass-action system can be formulated as follows:

ẋ = Lwx(1− u)
(

1− x + y
K

)
− Dwx, (10)

ẏ = (Lwxu + Lmy)
(

1− x + y
K

)
− Dmy, (11)
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where K is the carrying capacity. This system illustrates differences in the behavior of
advantageous and disadvantageous mutants. If

Dm

Dw
− Lm

Lw(1− u)
< 0,

then the globally stable solution is x = 0, y = K(1− Dm/Lm), that is the mutant excludes
the wild-type and takes over. In this case, we say that the mutant is advantageous. If the
inequality above is reversed, the mutants are disadvantageous and the so-called selection–
mutation balance is reached, where mutants and wild-type cells coexist. This happens
because the (stronger) wild-type cells produce mutants at a nonzero rate u, but the latter
cannot take over and remains at a fraction of the population. For simplicity, let us assume
that the mutation rate is low:

u� Dm

Dw
− Lm

Lw
≡ γ.

Then, we can say that the mutants are disadvantageous if

Dm

Dw
− Lm

Lw
> 0, (12)

and then, the equilibrium solution is given by

x̄ = K
(

1− Dw

Lw

)
, (13)

where we neglected terms of the order u/γ, while the number of mutants is

ȳ = x̄u
(

Dm

Dw
− Lm

Lw

)−1
, (14)

where we neglected terms of the order (u/γ)2.
Below, we calculate the equilibrium densities of disadvantageous mutants and (advan-

tageous) wild-type cells in a spatially distributed system at steady-state. This will also corre-
spond to the densities in the core of an expanding system away from the advancing front.

4.2. A Spatial Description: Equations for the Densities

We restrict our description to a 2D square grid, with the von Neumann neighborhood
(that is, each location has four nearest neighbors); the methodology is generalizable to
the Moore neighborhood (eight neighbors). We use a method similar to that of [20]. Two
random variables describe the state of the stochastic system at each spatial location, x: ρx
describes wild-type cells, such that

ρx =

{
1, if a wild-type cell is at location x,
0, otherwise,

and ηx describes mutant cells, such that

ηx =

{
1, if a mutant cell is at location x,
0, otherwise.

Note that ρx and ηx cannot be equal to one simultaneously; an empty spot corresponds
to ρx = ηx = 0. We assume that wild-type cells have division and death rates Lw and Dw
and mutant cells have division and death rates Lm and Dm. Wild-type cells mutate with
probability u, and no back mutations are considered.

Denote the expectation of ρx and ηx by

〈ρx〉 = ρ, 〈ηx〉 = η,
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where we assumed that the expected values do not depend on spatial location, since we are
interested in spatially homogeneous equilibrium solutions. We have

ρ̇ =

〈
Lw

Nb
(1− u)(1− ρx)(1− ηx)∑

k
ρ
(k)
x − Dwρx

〉
, (15)

η̇ =

〈
1

Nb
(1− ρx)(1− ηx)∑

k

(
Lwuρ

(k)
x + Lmη

(k)
x

)
− Dmηx

〉
, (16)

where the product (1− ρx)(1− ηx) is nonzero only if location x is empty, and the summation
goes over all the neighbors of point x, which reproduce into location x at rates Lw/Nb and
Lm/Nb if they are wild-type or mutant, respectively. The superscript in the notation ρ

(k)
x ,

η
(k)
x refers to the quantity at a location, k, neighboring the focal location, x.

Let us consider the von Neumann neighborhood (Nb = 4). In the right-hand side of
Equation (15), the terms are the summation having the form

〈(1− ρx)(1− ηx)ρ
(k)
x 〉 = 〈ρ

(k)
x 〉 − 〈ρxρ

(k)
x 〉 − 〈ρ

(k)
x ηx〉+ 〈ρ(k)x ρxηx〉 = ρ−W − I, (17)

and in Equation (16), there are also terms of the form

〈(1− ρx)(1− ηx)η
(k)
x 〉 = 〈η

(k)
x 〉 − 〈ρxη

(k)
x 〉 − 〈η

(k)
x ηx〉+ 〈η(k)

x ρxηx〉 = η − I −M. (18)

In the expressions above, we have 〈ρxρ
(k)
x η

(k)
x 〉 = 0, because either η

(k)
x or ρ

(k)
x is zero

at location x(k), and the three types of dyads are defined as follows:

• W = 〈ρxρ
(k)
x 〉 is the probability to have two wild-type cells at two neighboring locations;

• I = 〈ρxη
(k)
x 〉 is the probability to have a wild-type cell and a mutant at two neighboring

locations;
• M = 〈ηxη

(k)
x 〉 is the probability to have two mutant cells at two neighboring locations.

Figure 2a illustrates these three configurations. In terms of these correlations, Equa-
tions (15) and (16) can be rewritten as

ρ̇ = Lw(1− u)(ρ−W − I)− Dwρ, (19)

η̇ = Lwu(ρ−W − I) + Lm(η − I −M)− Dmη. (20)

The correlations for the three dyads that appear in these equations require their own
equations to close the system. Let us derive an equation for W. We have

Ẇ =

〈
2(1− ρx)(1− ηx)ρ

(k)
x ∑

j
ρ
(j)
x

Lw

Nb
(1− u)− 2DwW

〉
,

where we assume that one of the points in the dyad contains a wild-type cell (term ρ
(k)
x ),

while the other point is empty (term (1− ρx)(1− ηx)), and that one of its neighbors (location
x(j)) contains a wild-type cell, which reproduces faithfully into point x at rate Lw(1− u)/Nb.
Note that either of the two points could be empty, which results in the multiplier of two in
the first term on the right-hand side. Similarly, either of the dyad’s locations can experience
cell death, resulting in the negative rate 2Dw. In order to calculate the average, we need to
consider terms

〈(1− ρx)(1− ηx)ρ
(k)
x ρ

(j)
x 〉. (21)

Note that here and below, the operation of averaging makes the expression indepen-
dent of the actual location x. Further, the superscripts (k) and (j) do not refer to any specific
neighbor of x, but to any neighbor of x; in particular, location x(j) may be the same as or
different than location x(k). In the case when the two locations are different, the correlation
(21) is presented in Figure 2b, on the left.
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Figure 2. Steps in the derivation of equations for a two-component system of wild-type and mutant
cells. Blue circles denote wild-type, and purple denote mutant cells. (a) Three configurations, whose
correlations appear in Equations (19) and (20). (b) Three types of correlations needed for equations
for W, I, and M.

In the equations for Ṁ and İ, the following expressions appear in addition to
Equation (21):

〈(1− ρx)(1− ηx)ρ
(k)
x η

(j)
x 〉, 〈(1− ρx)(1− ηx)η

(k)
x η

(j)
x 〉.

These correlations are shown in Figure 2b, center and right. Therefore, denoting by a
and b either ρ or η, we evaluate the average of the form

〈(1− ρx)(1− ηx)a(k)x b(j)
x 〉, (22)

which corresponds to a dyad with one of the locations (location x) empty and the other
(location x(k)), containing type “a”, while a neighbor of x (location x(j)) contains type “b”.
First, let us assume that location x(j) is different from location x(k). Under von Neumann
neighborhoods, this implies that x(j) and x(k) are not each other’s neighbors because
on a square grid, there could not be a non-degenerate triangle with diameter 1 or less.
expression (22) is equal to

P(b(j)
x = 1|a(k)x = 1, ρx = ηx = 0)P(a(k)x = 1, ρx = ηx = 0) ≈

P(b(j)
x = 1|ρx = ηx = 0)P(a(k)x = 1, ρx = ηx = 0) = (23)

P(b(j)
x = 1, ρx = ηx = 0)P(a(k)x = 1, ρx = ηx = 0)

P(ρx = ηx = 0)

The expression in the denominator is calculated as follows:

P(ρx = ηx = 0) = 〈(1− ρx)(1− ηx)〉 = 〈1− ρx − ηx + ρxηx〉 = 1− ρ− η.

Depending on the types at location x, the expressions in the numerator of Equation (23)
can be of two types:

P(ρ(k)x = 1, ρx = ηx = 0) or P(η(k)
x = 1, ρx = ηx = 0),

and they are calculated in (17) and (18), respectively.
Next, we assume that location x(j) is the same as x(k). Then, if types “a” and “b” in

expression (22) are different, then we obtain 〈(1− ρx)(1− ηx)ρ
(k)
x η

(k)
x = 0. If the types are

the same, then we obtain expression (17) or (18). To summarize, expressions of type (22)
are given as follows:
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〈(1− ρx)(1− ηx)ρ
(k)
x ρ

(j)
x 〉 =

{
(ρ−W−I)2

1−ρ−η , x(j) 6= x(k),
ρ−W − I, x(j) = x(k),

〈(1− ρx)(1− ηx)ρ
(k)
x η

(j)
x 〉 =

{
(ρ−W−I)(η−I−M)

1−ρ−η , x(j) 6= x(k),
0, x(j) = x(k),

〈(1− ρx)(1− ηx)η
(k)
x η

(j)
x 〉 =

{
(η−I−M)2

1−ρ−η , x(j) 6= x(k),
η − I −M, x(j) = x(k).

The equation for W is then given by

Ẇ =
Lw

2
(1− u)

(
ρ−W − I +

3(ρ−W − I)2

1− ρ− η

)
− 2DwW. (24)

Similarly, the other two equations can be derived:

İ =
3
4
[Lw(1− u) + Lm]

(ρ−W − I)(η − I −M)

1− ρ− η
+

Lwu
4

Lm

(
ρ−W − I +

3(ρ−W − I)2

1− ρ− η

)
− (Dw + Dm)I, (25)

Ṁ =
3Lwu

2
(ρ−W − I)(η − I −M)

1− ρ− η
+

Lm

2

(
η − I −M +

3(η − I −M)2

1− ρ− η

)
− 2Dm M. (26)

The closed system of equations for ρ, η, W, I, and M is given by Equations (19), (20),
and (24)–(26).

4.3. Selection–Mutation Balance Solution

Solving these equations in the steady-state exactly is difficult, but if the mutation rate
u� 1, we can find the approximate solution. We start by setting u = 0 and obtaining the
steady-state solution. Apart from the trivial solution and a negative solution, there are two
symmetric solutions where only one type survives (competitive exclusion). We use the one
where the wild-type excludes mutants:

ρ(0) = 1 +
3Dw

Dw − 3Lw
, W(0) = 1− 6Dw

Dw − 3Lw
− 4Dw

Lw
, η(0) = I(0) = M(0) = 0, (27)

where the superscript corresponds to the zeroth order in the expansion in terms of small u.
Note that, as expected, the expression for ρ(0) coincides with the one given in Table 1 for
von Neumann grid (Nb = 4). We then look for the first correction by substituting

ρ = ρ(0) + uρ(1), η = uη(1), W = W(0) + uW(1), I = uI(1), M = uM(1),

inserting in the system of five equations, keeping only the first order of expansion in u, and
solving for ρ(1), . . . , M(1). We obtain

η = η(1)u =
DwLw(4Dw − 3Lw)(4D2

m + 3DmLw + DwLm)u
Dm(Dw − 3Lw)(4Dm + 3Lw)(DmLw − DwLm)

. (28)

This is the equilibrium solution corresponding to mutation–selection balance in the
presence of spatial interactions. This approach is valid as long as the wild-type is advanta-
geous (inequality (12)). In the opposite scenario, this solution is unstable, and the system
converges to the mutants excluding the wild-type.
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Under selection–mutation balance, of interest is the equilibrium proportion of mutants
in the system given by

ν
eq
vN =

η(1)u
ρ(0)

=
DwLw(4D2

m + 3DmLw + DwLm)u
Dm(4Dm + 3Lw)(DmLw − DwLm)

. (29)

It is instructive to compare this quantity with the equilibrium proportion of mutants
in a mass-action system, ν

eq
m−a = ȳ/x̄, Equation (14):

ν
eq
m−a =

DwLwu
DmLw − DwLm

.

We have
ν

eq
vN

ν
eq
m−a

= 1 +
DwLw

Dm(4Dm + 3Lw)
> 1.

In other words, the relative contents of mutants (in proportion to the wild-types) are
higher in spatially distributed systems compared to mass-action systems at equilibrium.
This result resembles our recent analysis presented in [24], where we showed that the
mean number of disadvantageous mutants is higher in fragmented populations compared
to well-mixed populations. A comparison with non-equilibrium, growing, well-mixed
populations is presented in [19] and not discussed here.

4.4. Applications and Comparison with Computations

The result in Equation (29) is applicable to two relevant scenarios.

• Quasi-equilibrium density in finite populations. If simulations are continued until a
finite grid is filled, the population reaches a quasi-equilibrium state where wild-type
and disadvantageous mutant cells coexist. For a 2D square grid under a von Neumann
neighborhood, the density of the mutants is approximated by η in Equation (28), while
the density of wild-types is given by ρ(0), Equation (27). The total numbers of mutant
and wild-type cells are obtained by multiplying the quantities η and ρ(0) by the total
number of grid points, respectively. Note that this scenario is not interesting in the
case of advantageous or neutral mutants, as the entire population will eventually
consist of mutant cells.

• Number of mutants in spatially expanding populations. Simulating a growing pop-
ulation (on a large grid where the boundaries are not reached), we can ask how the
number of disadvantageous mutants scales with the total number of cells, N. Since
the core of the expanding colony is in quasi-equilibrium, Equation (29) shows that
the number of mutants grows as the first power of N. Results for the scaling laws for
neutral and advantageous mutants are discussed in the next Section.

The expected number of mutants predicted theoretically was compared with the
results of numerical simulations. This was done in the following way. At size N, the
number of mutants (in the von Neumann case) is predicted to be Nuν

eq
vN; see Equation (29).

Solving the equation Nuν
eq
vN=const, we can obtain the pairs (Lm, Dm) of mutant kinetic rates

corresponding to a predicted given number of mutants in a system of size N. Figure 3a
shows the predicted number of mutant as a contour plot. The closer to the “neutrality” line
(see inequality (12)), the larger the predicted number of mutants. The solution of equation
Nuν

eq
vN = const is shown in Figure 3b and for five points from the solution set, the predicted

number of mutants (given by Nuν
eq
vN = 10) is compared with the numerically obtained

mean (plotted together with the standard deviation, Figure 3c. We can see that for larger
mutant division rates, the deviation from the theory becomes significant. Figure 3d shows
a histogram of the numbers of mutants for the parameters corresponding to the fifth point.
One can see that the distribution has a long tail and a very large standard deviation. This is
the consequence of macroscopic structures (“slices”) that cannot be handled by the present,
local, method.



Physics 2022, 4 824

Figure 3. The level of mutants in the spatial (von Neumann) system: analytical approximation and
numerical results. (a) The quantity Nuν

eq
vN is presented as a contour plot as a function of Lm and Dm,

for fixed values of Lw and Dw. Mutants are disadvantageous above the red line (inequality (12)).
The contours’ values are specified. (b) Solution Lm of equation Nuν

eq
vN = 10 as a function of Dm; the

5 points, used in panel (c), are marked in red and numbered. (c) The comparison of the predicted
number of mutants, Nuν

eq
vN = 10, (horizontal red line) and simulated number of mutants in the 5

parameter pairs from panel (b). Simulated means and standard deviations are shown (out of 2.5× 106

runs). (d) For the 5th parameter combination, the numerically obtained histogram of the number of
mutants is shown. The rest of the parameters are: u = 2× 10−5, N = 105, Lw = 0.08, and Dw = 0.015.
See text for details.

5. Laws of Neutral and Advantageous Mutant Spread in Different Geometries

In the previous Section, we showed that (under the assumption of small mutation
rates) the number of disadvantageous mutants in a spatially growing population scales
with the total number of cells, as ∝ Nu. If cells are advantageous or disadvantageous, they
obey different scaling laws [19]. In this Section we present simple derivations for those
laws in different geometries.

5.1. Derivation of the Growth Laws

Below, we consider several scenarios that differ by the dimensionality of the grid (2D
or 3D) and by the direction of growth (planar growth vs. range expansion; see Table 2.

5.1.1. Two-Dimensional Flat Front

Let us first assume that the death rate of cells is equal to zero. Consider cells growing
along the surface of a cylinder of width W. This represents a one-directional growth
process, where during each generation, we assume that W new cells appear, and the the
total population is given by N = LW, where L represents the number of layers. The value
of L is proportional to the number of generations, and thus to the physical time, t:

L ∝ t.

The following calculation estimates the growth law of mutants. Every time a new
layer (of width W) is added, the mean number of new mutations is given by Wu. Suppose
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that mutants are neutral. Then, each such mutation will give rise to an array of daughter
mutant cells of width 1; see Figure 4. The length of this array is given by L− i, where i is
the layer at which the mutation occurred. Therefore, the total expected number of neutral
mutants is a cylinder of length L given by

Mneut
2D flat =

L
∑
i=1

Wu
L
∑

j=i+1
1 =

uWL(L− 1)
2

≈ uWL2

2
=

u
2W

N2, (30)

where we assumed L � 1. Note that in this derivation, we assumed that the number of
mutants is small compared to the total population, and individual mutant clones do not
interact. In a more precise calculation, the number of wild-type cells in each layer is smaller
than W because of the existence of mutants, and thus, the rate of new mutant production is
smaller than Wu. We, however, assume that uLW � 1, such that the number of mutants is
relatively small.

Note that the number of neutral mutants decreases with W; see Figure 5; the largest
number of mutants is achieved in the case of W = 1, a one-dimensional expanding array
of cells.

Figure 4. The conceptual model for mutant number calculations, the case of neutral mutants in a
colony growing along the surface of a cylinder (2D flat front). Red circles denote mutants and blue
circles wild-type cells.

Figure 5. The number of mutants during a 2D flat front expansion decays with the front width.
Equation (30) is presented with N = 10,000 and u = 5× 10−5.

Next, let us consider advantageous mutants. In this case, each new mutant gives rise
to a triangular clone. In the first layer, the width of the clone is 1; in the next layer it is 1 + s;
in the kth layer, it is 1 + (k− 1)s, where parameter s ≥ 0 measures the advantage of the
mutants (with s = 0 corresponding to neutral mutants). Therefore, we have
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Madv
2D flat =

L

∑
i=1

Wu
L
∑

j=i+1
(1 + (j− (i + 1))s) = uWL(L− 1)

(
1
2
+

s(L− 2)
6

)
(31)

≈ uWsL3

6
=

us
6W2 N3,

where for the approximation, we assumed that Ls � 1. Furthermore, for this simple
calculation to be valid, we need to assume that the wedges created by mutants do not come
close to the cylinder’s width, W, that is Ls�W. In particular, Equation (31) can be valid
for small values of W > 1, but only for mutants that are neutral for practical purposes
(s� 1).

Note that when N is fixed, the total number of cell divisions that the system has
undergone is also fixed. The number of mutants however is vastly different depending
on the spatial configuration. It is the highest for W = 1 (one row of cells) and decreases
drastically with the width of the cylinder. This is consistent with the notion that spatial
restrictions result in a heightened number of mutants, the 1D space (W = 1) being the most
spatially restrictive system. The reason for this is that in 1D, a mutant, once created, blocks
the whole range of expansion and prevents wild-type cells from reproducing. The wider
the front, the weaker this effect. Further, we note that in the special case where W = 1,
mutant advantage does not play a role, and the number of advantageous, neutral, and even
disadvantageous mutants is given by the same formula, Equation (30).

In the derivations above, a zero death rate of cells was assumed. This means that the
colony spreads as a solid mass, where all of the spots in the core are occupied. Including
a nonzero death rate does not change the geometric argument presented here, because
the only difference now is that the expanding population is “porous”, such that the same
number of cells occupies a larger number of spots on the grid. Therefore, adding a nonzero
death rate does not alter the scaling laws derived here and in the other cases. For this reason,
we present calculations assuming a zero death rate. Numerical calculations in Section 5.2
confirm that the scaling laws remain the same in the presence of nonzero death rates.

5.1.2. Two-Dimensional: Circular Range Expansion

Next, we turn to the dynamics of neutral mutants on a circle. Let us suppose that the
radius of the circle is R and N = πR2. The size of the colony increases via surface growth
with N ∝ t2 and

R ∝ t.

As the range expansion proceeds, the circular layer of radius r will on average give
rise to 2πru new mutations. Each mutation will result in a wedge expanding outwards.
If the new mutation occurred in the layer with radius r, the number of mutating cells in
layer r is 1. The number of mutants in the next layer is given by r+1

r , because under the
assumption of mutant neutrality, the fraction of mutants in each new layer of radius j > r
(with surface 2π j) should stay constant and equal to 1

2πr . For layer j, the number of mutants
is then given by j/r. This gives rise to the following calculation:

Mneut
2D range =

R

∑
r=1

2πru
R

∑
j=r+1

j
r
=

2
3

πR(R2 − 1)u ≈ 2πR3u
3

=
2u

3π1/2 N3/2

(the approximation is valid for R� 1).
For advantageous mutants in a growing 2D circle, the fraction of mutants will grow

with each layer:
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Madv
2D range =

R

∑
r=1

2πru
R

∑
j=r+1

(1 + (j− (r + 1))s)
j
r
= πR(R2 − 1)u

(
2
3
+

1
4

s(R− 2)
)

≈ πR4su
4

=
su
4π

N2, (32)

where we assumed Rs� 1. For this approximation to be valid, the mutant wedges should
not exceed the circumference of the colony. Strictly speaking, this results in the condition
Rs << 2πR, that is s� 1. For larger values of s, the events where the mutant covers the
whole surface of the colony are no longer negligible.

5.1.3. Three-Dimensional Flat Front

In a 3D space, let us first consider a solid cylinder of constant radius R0, where initially,
the cells are situated as a layer at the bottom of the cylinder and proceed to grow by adding
layers of size πR2

0. Each generation contributes πR2
0u new mutants, and as the colony

grows to length L (and volume 2πR2
0L), we have in the neutral case:

Mneut
3D flat =

L
∑
i=1

2πR2
0u

L
∑

j=i+1
1 = πR2

0uL(L− 1) ≈ πR2
0uL2 =

u
πR2

0
N2,

which is similar to the 2D flat front expansion. If the mutants are advantageous, then their
number will increase from layer to layer, giving rise to conical wedges. This gives rise to
the following calculation:

Madv
3D flat =

L
∑
i=1

2πR2
0u

L
∑

j=i+1
(1 + (j− (i + 1))s)2

=
L(L− 1)πR2

0u
6

[
(L2 − 3L+ 2)s2 + 4(L− 2)s + 6

]
≈

πR2
0s2uL4

6
=

s2u
6π3R6

0
N4,

where Ls� 1 for the approximation, and the approach is valid as long as the wedge radius
is smaller than that of the cylinder, sL � R0.

5.1.4. Three-Dimensional Range Expansion

Next, we consider a 3D expanding sphere. For a sphere of radius R, we have N = 4/3πR3,
and the surface is given by 4πR2. The size of the colony increases via 3D surface growth
with N ∝ t3. Each spherical layer of radius r will on average give rise to 4πr2u new
mutations. Each mutation will result in a conical wedge expanding outwards. If the new
mutation occurred in layer with radius r, the number of mutating cells in layer r is 1.
The number of mutants in a layer of radius j > r is given by (j/r)2, because under the
assumption of mutant neutrality, the fraction of mutants in each new layer should stay
constant (and equal to 1

4πr2 ). Therefore, we write:

Mneut
3D range =

R

∑
r=1

4πr2u
R

∑
j=r+1

(
j
r

)2
= πR(R2 − 1)(R + 2/3)u ≈ πR4u =

34/3u
π1/344/3 N4/3

(the approximation is again valid for R� 1).
If the mutant in a growing 3D sphere is advantageous, the fraction in each layer will

increase according to the fitness advantage s and stretch from layer to layer in the same
way as for the neutral mutants. We therefore have
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Madv
3D range =

R

∑
r=1

4πr2u
R

∑
j=r+1

(1 + (j− (r + 1))s)2
(

j
r

)2

=
πuR(R2 − 1)

90

[
(20R3 − 48R2 − 5R + 42)s2 + (72R2 − 90R− 108)s + 90R + 60

]
≈ 2

9
πs2uR6 =

s2u
8π

N2.

As before, the approximation holds if Rs� 1. The method assumes that the mutant
colony’s size in each layer does not come close to the surface area, which amounts to the
inequality s� 1.

5.1.5. Exponential (Non-Spatial, Mass-Action) Growth

Finally, for exponentially growing populations, similar formulas could be derived. In
particular, for neutral mutants, we have

Mneut
exp = Nu ln N,

and for advantageous mutants with advantage α (which is the ratio of the net growth rate
of mutants and the net growth rate of wild-type cells), we have

Madv
exp =

α

(α− 1)2
α−1

α

N
2α−1

α ;

see [25], Equation (14c); see also Equation (13) there for a more general formula.

5.2. Comparison with Numerical Simulations

We ran numerical simulations to check the results derived here. Figures 6 and 7, which
are described in detail below, illustrate the accuracy and applicability of the approximations
derived above. They contain colored lines, which are the results of the numerical simula-
tions, and black “guides for the eye”, which represent power-law functions characterized
by the powers predicted by the theory. The figures show that these scaling laws hold over
large intervals of N, the population size.

Table 3. Simulation parameters for Figure 6.

Curve Description Lw Lm Dw Dm

A Neutral, no death 0.7 0.7 0 0

B Neutral, with death 0.7 0.7 0.2 0.2

C Adv, no death 0.7 0.9 0 0

D Adv, no death, larger advantage 0.7 1.0 0 0

E Adv by division, with death 0.7 0.8 0.2 0.2

F Adv by death 0.7 0.7 0.2 0.1

G Adv by death, wider front 0.7 0.7 0.2 0.1
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Figure 6. Neutral and advantageous mutants in a 2D colony under (a) a flat front expansion and (b) a range
expansion. The number of mutants is plotted as a function of the total population, averaged over 1000 stochastic
runs (standard error is too small to see). Cases (A,B) are neutral, and the corresponding solid black lines are
guides to the eye, with (a) slope 2 and (b) slope 3/2 in the log–log plot. Cases (C–G) are advantageous, and the
dashed lines are guides to the eye with (a) slope 3 and (b) slope 2. Curves (A–G) are described in Table 3. The rest
of the parameters are u = 5× 10−5, W = 100 (except G, where W = 1000).

Figure 6 shows results for the case of 2D systems, with flat front expansion presented
in Figure 6a and range expansion in Figure 6b. Plotted are the average numbers of mutants
(the vertical axis) measured at different population sizes, N (the horizontal axis). Different
curves correspond to different parameter values, summarized in Table 3.

To simulate flat front expansion (Figure 6a), ABM simulations were performed in
cylindrical geometry, with an n ×W rectangular domain of width W. We started with
an array of W wild-type cells at the left boundary of the domain and imposed periodic
boundary conditions in the transversal direction. In each simulation, the cell population
was allowed to grow to a size N, and the number of mutant cells at this size was recorded.
Such simulations were performed repeatedly, and the average number of mutants was
calculated. Simulation runs, in which the total cell population went extinct due to stochastic
effects, were ignored.
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Figure 7. Mutants in the 3D expansion: the average number of mutants is plotted as a function of
the total population. (A) Neutral mutants in a range expansion, with the corresponding dotted gray
guide to the eye with slope 4/3 in the log–log plot. (B,C) Advantageous mutants in a range expansion,
and the solid lines are guides to the eye with slope 2. (D) Neutral mutants in a 3D flat front expansion,
and the solid guide to the eye has slope 2. (E,F) Advantageous mutants in a colony with a 3D flat
expansion; the dashed guides to the eye have slope 4. Curve parameters are given in Table 4.

Table 4. Simulation parameters for Figure 7.

Curve Description Lw Lm Dw Dm u

A Neutral, range 0.7 0.7 0.1 0.1 2× 10−5

B, yellow Adv by division, range 0.4 0.8 0.1 0.1 2× 10−5

B, red Adv by division, range 0.7 0.7 0.2 0.2 2× 10−7

C Adv by death, range 0.7 0.7 0.2 0.1 2× 10−7

D Neutral, flat 0.8 0.8 0.1 0.1 2× 10−7

E Adv by division, flat 0.4 0.8 0.1 0.1 2× 10−7

F Adv by death, flat 0.7 0.7 0.2 0.1 2× 10−7

Curves (A) and (B) in Figure 6a represent neutral mutants in the absence (A) and
in the presence (B) of cell death. The black solid lines are guides for the eye with slope
2 in the log–log plot, representing the quadratic scaling law (see Table 2). Curves (C–G)
represent advantageous mutants, and the dashed lines are guides for the eye with slope 3
in the log–log plot, representing the cubic scaling law (see Table 2). The different cases of
advantageous mutants include systems with and without cell death, cases where mutants
are advantageous by divisions (that is, have a larger division rate and the same death rate,
compared with wild-type cells), and cases where mutants are advantageous by deaths (that
is, have a smaller death rate and the same division rate, compared with wild-type cells).
The cubic scaling law holds at least for part of the N values for all these cases; see [19] for
more details.

To simulate range expansion (Figure 6b), we performed simulation on a square grid,
starting with a single cell in the middle and letting the population expand outwards.
Simulations resulting in population extinction were discarded, and all simulations were
stopped before the boundary of the grid was reached. In Figure 6b, curves (A) and (B) again
represent neutral mutants without and with cell death (with solid guides to the eye having
slope 3/2). The rest of the curves again explore advantageous mutants under different
assumptions, with dashed guides for the eye having slope 2. In all cases, the scaling laws
in Table 2 are confirmed.
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Finally, Figure 7 demonstrates numerical results for 3D expanding colonies (with pa-
rameters listed in Table 4). The different cases considered include neutral and advantageous
mutants experiencing 3D flat and range expansion, with the advantage realized through
differences in division and death rates.

6. Conclusions

In this paper, we reviewed some recent results on the behavior of populations in lattice
models. Both homogeneous populations (that is, populations consisting of a single type
of individuals) and evolving populations (wild-type and mutants) were considered, and
some simple laws derived approximate population densities in different dimensionalities,
geometries of growth, and lattice types. The methodologies developed here can be extended
to other cases, for example Equation (1) of mutant density was derived for a 2D von
Neumann grid, but the methodology can be generalized, e.g., to the Moore lattice and also
to 3D systems.

Our results have further practical applications, for example for understanding the
dynamics of drug-resistant mutants in solid tumors [26] or the laws of evolution in bacterial
biofilms [27].

The laws described in this paper can be viewed as a way to reduce a complex (spatial,
stochastic) process to a small number of important observables, such as the mean equilib-
rium population density or the expected number of mutants. These quantities are shown
to obey some simple rules, which relate these observables to the microscopic (kinetic)
parameters of the cellular turnover and to system geometry. Having these simple rules
can be very useful, if one, for example, fits a stochastic agent-based modeling (ABM) to a
set of data: some parameters can be extracted by applying these laws and solving for the
unknown quantities.

Aspects of the theory presented here can be tested in biological experiments. Even
though lattice models present a certain simplification of reality, the scaling laws of mutant
growth (Table 2) are quite versatile, as they have been shown (numerically) to hold in mod-
els with different neighborhood structures and over a large variety of assumptions on cells’
kinetic parameters. While some of these laws were tested previously (see, e.g., [18]), others,
such as 3D flat and 3D range expansion laws, have not yet been confirmed experimentally.

Having simple laws that connect the macroscopic state with microscopic variables can
be useful in interpreting experimental results. The laws in Table 1 describe the equilibrium
density of populations of cells undergoing a turnover. By comparing the observed popu-
lation density in experiments with the theoretical predictions, one could simply deduce
the division-to-death ratio of cells growing in a given system. This can provide a useful
quantitative measure of cells’ state. In particular, the differences in cellular density can
inform one of the changes in kinetic parameters that arise as a consequence of changes
in the microenvironment. Examples of relevant experiments include investigations of the
effect of various drug treatments on the cellular turnover.

Finally, our techniques can be extended to describing more complex systems. One
potential application is deriving spatial laws of the microbial colony dynamics, such as
bacteria growing in a microfluidic trap [28–30]. Deriving rules of global dynamics of
microbial communities from local interaction rules is a task that is similar in spirit to the
efforts that were described in the present paper.
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