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Abstract: When a Hamiltonian system undergoes a stochastic, time-dependent anharmonic perturba-
tion, the values of its adiabatic invariants as a function of time follow a distribution whose shape
obeys a Fokker–Planck equation. The effective dynamics of the body’s centre-of-mass during human
walking is expected to represent such a stochastically perturbed dynamical system. By studying, in
phase space, the vertical motion of the body’s centre-of-mass of 25 healthy participants walking for
10 min at spontaneous speed, we show that the distribution of the adiabatic invariant is compati-
ble with the solution of a Fokker–Planck equation with a constant diffusion coefficient. The latter
distribution appears to be a promising new tool for studying the long-range kinematic variability
of walking.

Keywords: gait variability; adiabatic invariant; random noise; Fokker-Planck equation; phase-space
dynamics

1. Introduction

Action-angle coordinates (Iα, θα), with α = 1, . . . , n , are of central importance in the
study of deterministic classical systems with finitely many degrees of freedom. A time-
independent integrable Hamiltonian can indeed be formulated as a separable function of
the action variables only: H = ∑n

i=α H0α(Iα) . The equations of motion for such a system
read ([1], Chapter 45):

İα = − ∂H
∂θα

= 0, θ̇α =
∂H
∂Iα

=: ωα . (1)

The action variables are constants of the motion and therefore ωα is also constant,
implying that the angle coordinates read θα = ωα t + θα

0 , where ωα = 2π/Tα and Tα is the
period of the motion in the plane (Iα, θα). Since the Kolmogorov–Arnold–Moser theorem
(see Refs. [2] (Ref. [3] for English translation), [4,5], and, for a historical overview, Ref. [6])
and the studies of Nekhoroshev [7,8], the action-angle variables have proven to be the most
useful for the study of stability of dynamical systems, including chaotic systems. We now
restrict our formalism to systems with n = 1, whose sole degrees of freedom consist in the
pair (I, θ) .
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Suppose that H depends on a function λ(t) . The action variable I then becomes
time-dependent and is called an adiabatic invariant. On the one hand, if λ changes slowly
during the typical period of a cycle, then the adiabatic invariant also changes slowly:
İ ∼ λ̇ [1,9,10]. On the other hand, if λ is a perturbative stochastic noise, the adiabatic
invariant also becomes randomly time-dependent and the deviation from its average value
remains perturbative. Detailed demonstrations and bounds for the deviation can be found
in Refs. [11,12]. Moreover, for a Hamiltonian H(I, λ(t)) with perturbative stochastic noise
λ(t), it has been shown that the density ρ(I, t) of the values of the adiabatic invariant as
a function of time obeys a Fokker–Planck equation [13–15]. The latter phenomenon is a
diffusion process in phase space. Besides its intrinsic interest, such a formalism has already
found an important application in plasma physics, where it allows us to relax the standard
simplifying assumptions and describe the problem in a less model-dependent way [16].
The Fokker–Planck equation has also been recently applied to the study of robustness in
gene expression [17].

Biomechanical models of voluntary rhythmic movements in humans, of which walk-
ing has been studied most extensively, may also benefit from the above results. Such
movements are quasi-periodic because of physiological noise, which prevents an individ-
ual from being in the same invariant state during repeated movements. The resulting
variability has motivated many studies of human gait, most of which rely on the compu-
tation of nonlinear indices to assess variability (Hurst exponent, fractal dimension, etc.).
See Refs. [18,19] for the pioneering studies and Refs. [20,21] for recent reviews. To our
knowledge, the variability of gait has never been studied by assessing the shape and time
evolution of the distribution ρ(I, t). In the present paper, we show that the distribution,
ρ(I, t), in human walking indeed obeys a Fokker–Planck equation, i.e., that diffusion in
phase space is experimentally observable in walking. Biomechanical models can then
inherit the advantages of this formalism.

The paper is structured as follows. In Section 2, diffusion in phase space and its use
in modelling human walking is proposed. Then, in Section 3, the experimental setup is
presented and numerical results are given in Section 4. Finally, in Section 5, the results are
discussed and concluding remarks are given.

2. Diffusion in Phase Space
2.1. Generalities

Let us consider a one-dimensional Hamiltonian, H0(I), where I and θ are the action
and angle coordinates, respectively. Suppose that a time-dependent stochastic perturbation
is added to H0 and that the latter Hamiltonian satisfies the stability assumptions underlying
the Nekhoroshev theorem [7,8]. The total Hamiltonian H can be written as follows:

H = H0(I) + ε ξ(t) V(I, θ) , (2)

where 0 < ε � 1 and ξ(t) is a stochastic noise with a vanishing mean value. Under the
dynamics controlled by H, the action variable becomes time-dependent and the deviation
from the initial value I0 is of order

√
ε up to a time of order 1/ε or even better [11,12].

More precisely, |I(t)− I0| = O(
√

ε) and a time-dependent density distribution ρ(I, t) of
the values of the adiabatic invariant can be associated with its time evolution I(t) . As
shown and illustrated in Refs. [13–15], the density distribution ρ(I, t) obeys a particular
Fokker–Planck equation given by

∂tρ = ∂I(D(I)∂Iρ) , (3)
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where the function D(I) is called the diffusion function and ∂I ≡ ∂/∂I . Considering the
Fourier decomposition, V(I, θ) = ∑k Vk(I) eikθ , of the perturbation function that appears in
the Hamiltonian, the following expression is obtained [15] for the diffusion function:

D(I) =
ε2

2 ∑
k

k2|Vk(I)|2φ̃(kω) , (4)

where φ̃(ν) is the noise spectral density, i.e., φ̃(ν) =
∫ +∞
−∞ φ(u) cos(νu) du with the autocor-

relation function,

φ(u) = lim
T→+∞

1
T

∫ T

0
ξ(t)ξ(t + u) du . (5)

Two particular cases can be highlighted. First, when H = (ω + ε ξ(t))I , only the
k = 0 mode V0 is non-zero and D = 0. There is no diffusion in a pure harmonic oscillator
with a randomly perturbed frequency [13]. Second, in the case of a constant diffusion
coefficient, the normalised solution of Equation (3) on the interval I ∈ [0,+∞) with
boundary conditions, ρ(I, 0) = δ(I − I0)Θ(t) , Θ being the Heaviside step function, δ(I −
I0) the Dirac delta function, and ρ(0, t) = 0 = limI→+∞ ρ(I, t), can be obtained:

ρ(I, t) = Θ(t)
e−

(I−I0)
2

4Dt − e−
(I+I0)

2

4Dt

√
4πDt erf

(
I0√
4Dt

) = Θ(t)
e−

(I−I0)
2

4Dt
√

4πDt
1− e−

I I0
Dt

erf
(

I0√
4Dt

) . (6)

The normalisation is such that
∫ +∞

0 ρ(I, t) dI = Θ(t). Hereafter, we are interested in
the second case of a constant, but a non-vanishing diffusion function.

For a general discussion about the construction of solutions of the Fokker–Planck
equation, see Ref. [22], and Refs. [23,24] for explicit solutions with non-constant and
non-zero diffusion and drift coefficients.

2.2. Application to Human Walking

It is known that the vertical displacement of the body’s centre-of-mass (COM) during
human bipedal walking at spontaneous speed is compatible with a simple, spring-mass-like,
model; see, for example, the seminal paper [25]. It is therefore tempting to model the vertical
motion of the COM by the harmonic oscillator Hamiltonian, H0 = 1

2 (P2 + ω2Q2) = ω I ,
where P and Q are the vertical momentum and position of the COM, respectively. By
definition, and assuming the standard relation, P ∝ Q̇ , one has

I =
1

2π

∮
Γ

P dQ =
TEc

π
, (7)

with Γ a cycle in phase space, T the duration of the cycle and Ec the averaged kinetic energy
over Γ .

Some phenomena suggest that the inclusion of other terms, at least in the perturbation,
is necessary to obtain a more realistic model. First, the minimum (maximum) of the poten-
tial energy and the maximum (minimum) of kinetic energy are not reached at exactly the
same time: a time shift of about 3% of the gait cycle duration is observed [26]. Such a feature
requires a time-dependent correction to be added. Second, the Hamiltonian H0 corresponds
to a linearised pendulum only in the limiting case of small amplitudes. Anharmonic cor-
rections should be added. See Ref. [27] for a more explicit model of the pendulum, in
which the potential term is nonlinear, and Ref. [28] for a computation of action-angle vari-
ables for the fully non-linear pendulum with Hamiltonian, H0 = P2/2 + 1− cos Q. Third,
the parameters of the model (ω here) must have some time-dependent variability due to
physiological noise; the state of a complex system like the human body is not identical from
one gait cycle to another.

In view of the above discussion, a Hamiltonian of the form (2), in which H0 contains
anharmonic terms also, seems to be a relevant model of the vertical COM dynamics in



Physics 2023, 5 171

action-angle formalism. As far as the perturbation, H1(I, θ) = ε ξ(t) V(I, θ) is concerned,
assuming a constant but non-vanishing diffusion coefficient, D, will considerably simplify
the model. Referring to Equation (4), this implies that all functions, Vk(I), are constant,
so that H1(I, θ) only depends on the angle variable θ . H1 does not depend on the total
amount of action or energy in the system, but only on time through the stochastic noise,
ξ(t), and on the position in the cycle through V(θ) . Therefore, here, we assume that the
influence of physiological noise on walking is related to the position in the gait cycle and
not to the total action or the averaged kinetic energy of the walker—recall that I ∼ Ec.
Consequently, Equation (3) with a non-zero diffusion coefficient yields the heat equation,

∂tρ = D ∂2
I ρ , (8)

and the diffusion of the adiabatic invariant should be observable experimentally.

3. Experimental Setup
3.1. Protocol

The protocol was validated by the Academic Ethical Committee Brussels Alliance for Re-
search and Higher Education (B200-2021-123). Participants were healthy students recruited
in the physiotherapy department of the Haute-Ecole Louvain en Hainaut (Montignies-
sur-Sambre, Belgium). After being informed about the study, each participant signed an
informed consent form.

Biometric data were first collected (age, weight, height), as well as information on
the wearing of orthopaedic insoles and the participant’s medical and trauma history.
The participant is then asked to put on a tight-fitting garment. In order for his or her
movements to be recorded by a Vicon optoelectronic system (Vicon Motion Systems Ltd.,
Oxford Metrics, Oxford, UK) consisting of 8 cameras (Vero version 2.2) with a recording
frequency of 120 Hz, 4 reflective markers with a diameter of 14 mm were placed on the
participant according the Plug-In-Gait model (Oxford Metrics, Oxford, UK): Left Anterior
Superior Iliac Spine (LASI), Right Anterior Superior Iliac Spine (RASI), Left Posterior
Superior Iliac Spine (LPSI), and Left Posterior Superior Iliac Spine (RPSI).

After this preparatory phase, the participant walked for 3 min on an N-Mill instru-
mented treadmill (Motekforce Link, Amsterdam, The Netherlands). The purpose of this
familiarisation phase is to determine the participant’s spontaneous walking speed. No
other data were recorded during this period. After the walking speed was recorded, the par-
ticipant walked on the treadmill for 10 min at the previously determined spontaneous
speed. During these 10 min, the average number of steps per minute was measured by the
treadmill and the three-dimensional trajectory of the 4 markers, ~xa(t), was recorded by the
Vicon system using the Vicon Nexus software (version 2.7.1, Oxford Metrics, Oxford, UK).

The general characteristics of the participants are listed in Table 1. Let us note that an
initial analysis of these data was presented in a recent paper [29], in which we showed that
an adiabatic invariant exists in the vertical motion of the COM. Here, we go further in the
analysis to assess whether or not the variability of the latter adiabatic invariant is modelled
by Equation (8).

Table 1. Features of the population. Results are written under the form median [Q1–Q3], with Q1
and Q3 being the first and third quartiles, respectively.

Population Feature Median, Interval
Participants (n) 25

Age (years) 23 [20–23]
Mass (kg) 65.0 [58.8–73.4]

Height (cm) 169 [164–176]
Walking speed (km/h) 3.9 [3.5–4.2]

Sex (men/women) 9/16
Gait cycles 532 [513–552]
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3.2. Data Processing

For a given participant, the position of the centre-of-mass is defined as the average
position of the four markers: 6 ~xCOM = ∑α ~xα/4. A focus in the study here is on the vertical
component of the COM motion, Q(t). To reduce measurement artefacts, Q(t) was filtered
with a fourth-order Butterworth low-pass filter, preserving 99.99% of the signal power.
Cubic spline interpolation of the data was also performed, multiplying the frequency by 10
to 1200 Hz. The speed, Q̇, is computed from the time series Q by finite differentiation.

An identification, P = Q̇, is performed, i.e., standard Hamiltonian dynamics is as-
sumed and the mass scale is set equal to 1 (this normalisation removes the variability
induced by participants’ masses). Then, we identify gait cycles by analysing the peaks
in Q(t): the duration of gait cycles i, Ti = ti+2 − ti, were computed from the times ti, at
which the peaks occur. The times, ti, can be defined as the times, atwhich a new step
begin, a gait cycle consisting in two steps (left and right). Then, the average kinetic ener-
gies, Eci , were computed as the mean values of Q̇2/2 on the successive cycles, and the
adiabatic invariants,

Ii =
TiEci

π
(9)

were also computed.
The values collected in the sets Ai = {Ij≤i} are then binned according to Sturges

rule [30], leading to n bins. The centres I(i)a , and the frequencies, ϕ
(i)
a , i.e., the number

of items in bin a divided by total number of items, are computed, with a = 1, . . . , n.
The experimentally computed distribution, ρexp(ti, I), of the adiabatic invariant after a
walking duration, ti, is defined via ρexp(ti, I) =

(
I(i)a , ϕ

(i)
a

)
.

A fit of the form (6) is then performed on the sets ρexp(ti≥100, I) using the least-squares
method and the parameters I0i and Di are recorded. The latter parameters are the fitted values
of I0 and D at time ti. No fit was made for the first 100 points. This threshold is arbitrary,
but avoids situations where the distribution has too little structure for the adjustment to be
relevant. Finally, we compute the average values, I0 = E(I0i) and D = E(Di), resulting in a
distribution (6) called the model, ρth(t, I).

The compatibility of the experimental distributions ρexp(ti≥100, I) and the model pre-
dictions ρth(ti, I) is assessed by a Kolmogorov–Smirnov test with a significance level of
0.05. Let us note Π, the percentage of tests with the p-value, p > 0.05, i.e., the percentage of
cases, in which the model is incompatible with the experimental data. One-sample t-tests
were performed with null hypothesis of zero mean for I0 and D.

All the computations were performed using the free software R (version 4.1.0) [31].

4. Results

The attractors of the centred vertical position and speed of the COM versus time are
shown in Figure 1A,B, along with a typical phase space trajectory shown in Figure 1C.
The attractor is computed as follows. After each step cycle is identified, an average cycle
is computed. For this purpose, each step was normalised to a duration of 1 time unit
(0–100%). Then, 1200 bins, one for each frame, were created and filled with the data of all
steps of a given participant under a given condition. For each bin, the mean and standard
deviation were computed. This yields the average cycle, which we refer to as the attractor,
following Refs. [32,33]. The attractor can be interpreted as the basic motor pattern that a
participant tries to achieve during each step cycle—without achieving it exactly due to
intrinsic physiological noise.

From the attractor, one can see that the effective dynamics is not a pure harmonic
oscillator, as it moves away from an elliptical shape in the first quadrant, as indicated by a
straight arrow in Figure 1C. Note that here we use the trigonometric convention in order to
split the plane into four quadrants, with the angle going from 0 to π/2 in the first quadrant,
from π/2 to π in the second quadrant, etc. The deformation is systematic and present
in all participants. Therefore, the model presented in Section 2 can be applied since the
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diffusion coefficient can be non-zero. Here, each step cycle starts when the COM is at its
higher position and its speed is null, i.e., when the subject is in midstance: one foot on
the ground, the knee is extended and the other foot is in swing phase and crossing the
stance leg. The direction of the trajectory of the COM in phase space is clockwise: from the
fourth to first quadrant. In the fourth and third quadrants, the COM position decreases
(downward movement) and the speed is negative. The attractor shape is elliptical as in
a spring-mass model of the stance leg [27], inducing a harmonic motion. In the second
and first quadrants, the COM position increases (upward movement) and its speed is now
positive. In the fourth quadrant, the participant is in a single leg stance (SS) on one foot and
this phase continues during the first part of the third quadrant. In the second part of the
third quadrant, the participant is in a dual stance (DS), which begins when the COM speed
is at its lowest value and ends when the COM postion is at its lowest value [34]. At the
end of the second quadrant and the first one, the participant is in single leg stance on the
other foot.

Figure 1. (A) Attractor of the centred vertical position of the body’s centre-of-mass (COM) versus time,
expressed in % of step time. (B) Attractor of the vertical speed of the COM versus time, expressed in %
of step time. (C) Typical plot of COM vertical trajectory in phase space (solid green lines representing
508 gait cycles) during walking for a participant and of the corresponding attractor (solid black line).
The straight arrows outline the deviation from genuine harmonic oscillator. The curved arrow is the
arrow of time. Note that a closed loop corresponds to one step cycle, a complete gait cycle being
composed of two step cycles. The blue dotted line separate the single stance (SS) and dual stance
(DS) phases.

It appears that the fit is relevant since Π > 97% for 20 participants out of 25. Hence,
the model (6) fairly well agrees with the time evolution of the distribution of the adiabatic
invariant. Fitted parameters are summarized in Table 2. The mean value of I reads:

〈I〉 =
∫ +∞

0
ρ(I, t)dI =

Θ(t)

erf
(

I0√
4Dt

) I0 , (10)

and its behaviour versus time is displayed in Figure 2. The mean value stays of order I0 during
the protocol: Less than 10% of variation is observed. The values obtained are comparable to
the mean value found by an independent analysis in Ref. [29]: π 〈I〉 = 0.0143 ± 0.0058 J·s/kg.

The ability of the model to fit the data can be appraised in Figure 3, where a typical plot
of the fitted distributions versus experimental observations is displayed for one participant.
All participants show the same qualitative agreement between the model and the data.
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dotted line.
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Figure 3. (A) Adiabatic invariant versus time (grey points) for a given participant. Lines are added
to guide the eyes, and time is expressed in cycle number. (B) Typical plots showing the comparison
between the theoretical distribution, ρth(ti, I) (solid line), and the experimental distribution, ρexp(ti, I)
(histograms), after 50, 150, 250, 350, 400 and 450 cycles for the same participant as in (A), with Π = 99.4%.
Fitted parameters are equal to π I0 = 0.0123 J·s/kg and D = 1.05 × 10−8 m2/s. See text for details.

Table 2. Results of the fits of experimental distributions of the adiabatic invariants to model (6).
Results are written under the form median [Q1–Q3]. The p-values of the one-sample t-tests are given.

Parameter Fit Value p-Value
D (10−9 m2/s) 11.618 [6.024–37.712] <0.001
π I0 (J·s/kg) 0.0123 [0.0061–0.0178] <0.001

Π (%) 100 [98.6–100]
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5. Discussion

By studying the vertical motion of the healthy participant during walking, in this
paper, we show that the phenomenon of phase space diffusion can be observed through
the distribution of adiabatic invariant values over time. To our knowledge, this is the first
time that such an observation is made in human motion.

The time evolution of the distribution of the adiabatic invariant over time is compatible
with the Fokker–Planck equation with a constant diffusion coefficient for healthy young
adults walking at a spontaneous speed of progression. Thus, up to the experimental precision
here, no drift and no deformation of the constant-D distribution for high or low values of
I are observed. A change in the most likely value of I can presumably be associated with
a change in energy expenditure during walking. As argued in Ref. [29], the value of the
adiabatic invariant should be proportional to oxygen consumption during walking, and an
increase in the former should be associated with an increase in the latter.

There are a number of immutable factors in the environment in which we live. One is
gravity. The brain, instead of fighting against the effects caused by its presence (e.g., the
emergence of a weight that counteracts movements) has developed strategies to make the
most of it and optimize movements [35]. In other words, humans move more optimally
in the presence than in the absence of a gravitational field. One can make a parallel
with the existence of noise in physiological systems. These emerge at every level of the
decision-action chain, from perception to motoneurons. The authors have proposed, in the
optimal movement variability framework, that the central nervous system could actually
exploit the presence of noise and, hence, act more optimally in the presence of certain
levels of uncertainties. Following Refs. [36–38], we interpret the variability measured in
this investigation by the distribution not as an “imperfection”, but rather as an indication
of the adaptability of the participants to the motor task. A given value of the adiabatic
invariant corresponds to a given area in phase space for the step cycle under consideration.
Thus, the changes in I indicate that the participants have access to a wide range of motor
strategies, visualised as closed step cycles in phase space. The distribution becomes wider
and wider over time: more and more different motor patterns are “explored”. In the
approach given in this paper, there is no drift: the most likely value of I, i.e., the attractor
defined as the ideal trajectory in phase space that the participant is aiming for, does not
change with time.

We conjecture that the shape of the distribution ρ(I, t) might be sensitive to the exper-
imental condition and/or to each participant, as shown in Figure 4. In particular, there
should be an optimal values of the diffusion coefficient D and of I0 for a young, healthy
individual. Too large value obtained for D would reflect a lack of or altered motor control
of the participant, leading to variability that tends to be random, as observed in the stride
interval variability of patients with neurodegenerative diseases [39], for example. Too small
value for D can be related to insufficient adaptability of the participant: the number of avail-
able patterns (i.e., different values of I) is not maximal. Such a case is observed, for example,
in the electrocardiographic signal of patients with cardiovascular disease [36] or in healthy
children, whose walking patterns are more stereotyped than in adults [40]. The diffusion
coefficient then offers a novel way to quantify the general behaviour of internal models
developed for a given task. Indeed, wide distributions (high D value) are observed after
time spent to experience or explore a task. On the other hand, narrow distributions (small
D value) may reflect a lack of generalisation of the motor strategies adopted. In motor
control—and rehabilitation in particular—the concept of generalisation is tightly linked
to the one of transfer [41–43]. When working toward recovering lost or impaired motor
functions, the challenge is to find the best possible movements that can be transferred to as
many functional tasks as possible. These movements may be interpreted as fundamental
bricks of the action repertoire. An interesting question is why would a participant opt for a
narrow distribution? One possible explanation for this is related to the way motor learning
works. There are different learning mechanisms, the most powerful being error-based
learning. In this one, one plans the best possible action by minimising a cost function
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that includes target reaching in the general sense and effort. An error signal is observed
in case of a discrepancy between observation and what has been predicted by forward
models [44,45], which induces strategic changes, and encourages exploration. Another
learning mechanism, however, co-exists with slower dynamics: use-dependent-learning.
When relying on this mechanism, one tends to repeat the same action if it led to success in
the past, thereby discouraging exploration in the task space. Adopting this strategy results
from a compromise between cost and benefit: the target can be reached, but the control
policy may be stuck in a local minima of the cost function.

Figure 4. Schematic representation of several types of adiabatic invariant densities. Here is assumed
that the black solid line is the density of a young, healthy, individual. The maximally probable
adiabatic invariant in this case is denoted I∗. The “locked” (dashed line) and “random” (dotted
line) curves correspond to, respectively, smaller and higher diffusion coefficients than the optimal
one. The “higher energy” curve (grey solid line) has an optimal diffusion coefficient, but a higher
maximally probable adiabatic invariant, denoted I∗’.

In the future, we consider to apply the present formalism to participants with different
ages or experimental conditions to investigate the effects of deviations from the optimal
“healthy young adult state” on ρ(I, t). More precisely, our hope is to design appropriate
experimental contexts that would manipulate I and D independently, then providing a
better functional understanding of these indexes in motor control.
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this article; (2) Data_SI contains the time series of Stride Interval (SI; in seconds) for each participant
(first two characters) in each condition (CTRL and METRO) in plain text; (3) Data_VICON contains,
in xlsx format, the 3D position (X, Y, Z; in millimeters) of each marker of interest (LASI, RASI, LPSI,
RPSI), their mean (x, y, z; in meters), their speed following a simple finite difference scheme and the
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