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Abstract: Graphene exhibits diamagnetism, enabling it to be lifted by the repulsive force produced in
an inhomogeneous magnetic field. However, the stable levitation of a graphene flake perpendicular
to the magnetic field is impeded by its strong anisotropic of magnetic susceptibility that induces
rotation. A method to suppress this rotation by applying the Casimir force to the graphene flake is
presented in this paper. As a result, the graphene flake can archive stable levitation on a silicon plate
when the gravitational force is small.

Keywords: Casimir effect; Casimir force; Casimir torce; diamagnetic levitation

1. Introduction

One of the promising applications of the Casimir effect [1,2] is the actuation of mi-
croelectromechanical systems (MEMS) [3–6]. Unlike conventional actuation methods that
rely on electric power sources, the Casimir force, which arises from vacuum fluctuations,
does not require an external energy source such as a battery. This advantage makes it a
desirable option for MEMS actuation. However, the Casimir force can also lead to unex-
pected adhesion [7] between different parts of MEMS, causing their function to cease due
to the omnipresence of vacuum fluctuations. To prevent this adhesion, a straightforward
approach is to generate a repulsive force that levitates the MEMS parts. While the repulsive
Casimir force [8] has been studied and observed in liquid environments [9], its utilization
in atmospheric conditions has not been explored [10].

Levitating MEMS parts without them adhering to substrates can reduce friction and
enhance the sensitivity sensors. Numerous methods for levitating objects in the atmosphere
have been proposed, with magnetic levitation being a well-known technique. According
to Earnshaw’s theorem, the stable levitation of magnets cannot be achieved through a
combination of static magnetic or gravitational force alone; additional control is required.
However, the unique property of diamagnetism enables levitation in the atmosphere
without the need for control [11,12].

Graphite, a highly diamagnetic material [13], can be stably levitated above neodymium
magnets, and more recently, multi-layer graphene flakes have also been successfully levi-
tated [14,15]. However, achieving stable levitation of a single-layer graphene flake above a
magnet in an atmosphere setting remains an unmet challenge. When a magnetic field is
applied perpendicularly to the surface of graphene, a strong magnetic moment is induced.
In contrast, applying a magnetic field parallel to the surface results in minimal magnet mo-
ment induction. Consequently, the graphene rotates to align itself parallel to the magnetic
field, leading to a loss of the levitation force.

This study investigates the levitation of a single graphene flake above a substrate,
considering the interplay between the diamagnetic force and the Casimir force within the
framework of the proximity force approximation (PFA) [16]. Normally, the Casimir force
between a graphene sheet and a substrate is attractive, thereby reducing the levitation force.
However, it is demonstrated that the Casimir effect can counteract rotation and enable the
stable levitation of graphene.
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For a configuration involving a small square plate and an infinitely large substrate
arranged in parallel, the Casimir energy between them is negative and proportional to
the area of the small plate. When the small plate tilts around an axis passing through its
center and parallel to its sides, the projection area onto the substrate decreases due to the
inclination. This decrease in the projection area contributes to an increase in the Casimir
energy. Additionally, the distance between one side of the small plate and the substrate
increases, further increasing the Casimir energy. However, the distance between the other
side of the small plate and the substrate decreases, leading to a decrease in the Casimir
energy. The stability of the parallel state relative to the substrate is determined by the
summation of these contributions. For large separations, the last contribution is smaller
than the others, resulting in a stable parallel state. If the torque induced by magnetic
interaction can be canceled out by the Casimir effect, a graphene flake can be levitated
stably in a vacuum.

The remainder of this paper is organized as follows: In Section 2, the magnetic
properties of a graphene flake based on the tight-binding model is explained. Section 3
focuses on the levitation of a graphene flake, considering the balance between the force
induced by a magnetic field and gravity. In Section 4, the approximation of the Casimir
energy between a single-layer graphene and a silicon substrate as a summation of power
functions is given. In Section 5, the change in the Casimir energy which is expressed as a
power function, due to the rotation being is calculated. This also explores the relationship
between the stability of the parallel state and the separation distance. In Section 6, the
stability of a levitated graphene flake above a silicon substrate through the application of
diamagnetic force is examined. In Section 7, the optimizing the applied magnetic field can
lead to stabilization through the Casimir effect on Earth is demonstrated. Additionally,
the calculation method beyond PFA is discussed. Finally, in the conclusion, the essential
conditions required to achieve stable levitation are summarized.

2. Magnetic Properties of Graphene

The potential energy of a graphene flake in the presence of an external magnetic
field is examined. In this study, the magnetic field is generated by passing an electric
current through a coil. When the electric current is sufficiently large, the graphene flake
can be levitated above the coil, as depicted in Figure 1a. The coil, with a radius R, is
positioned above a silicon substrate at a separation distance d as illustrated in Figure 1b. It
is important to note that the discussion focuses solely on the levitation achieved through
the magnetic force, while the influence of the Casimir effect on the levitation is explored in
subsequent Sections.
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d

x
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Figure 1. (a) Illustration of the levitation of a graphene flake in a magnetic field generated by an
electric current flowing through a coil positioned above a silicon plate. (b) Positional relationship
between the inclined graphene, coil, and silicon plate.
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The magnetic flux density along the z-axis is expressed as follows:

Bz(z) =
µ0 IR2

2[(z− d)2 + R2]3/2 , (1)

where I is the electric current through the coil, and µ0 = 1.257 × 10−6 NA−2 is the per-
meability in the vacuum. The direction of the electric current is counterclockwise when
observed from above the ring. On the z-axis, the component of the magnetic flux density
parallel to the substrate is zero.

The diamagnetic characteristics of graphene stem from the interaction between the
induced electric current and the magnetic field. This study neglects the spin interactions
and focus on the calculation of the energy eigenvalues of graphene, denoted as εi(B),
which depend on the magnetic field. These eigenvalues are typically determined using the
tight-binding model and the Peierls substitution method [17–19]. The Hamiltonian can be
expressed as follows:

H = −γ0 ∑
〈n,m〉

eiφnm ĉ†
n ĉm, (2)

where γ0 (=3 eV) is the transfer energy; ĉ†
n and ĉn are the annihilation and creation operators

of an electron at site n, respectively. The magnetic dependence of the Hamiltonian is
represented by Peierls phase, φnm, defined by

φnm =
e
h̄

∫ ~rm

~rn
d~r · ~A, (3)

where ~A(r) is the vector potential, and~rs is the position of site s. The symbols e and h̄
denote the elemantary charge and the reduced Planck constant, respectively. If the applied
uniform magnetic field, B, is perpendicular to the graphene surface, the vector potential
can be expressed by (0, Bx, 0) in the Landau gauge.

By calculating eigenvalues εi(B) of the Hamiltonian, the free energy of graphene
including the contribution from the orbital current induced by applying the magnetic field
at temperature T is expressed as

Fm(B) = −2kBT ∑
i

ln
[

1 + exp
(

µ− εi(B)
kBT

)]
, (4)

where kB and µ denote the Boltzmann constant and the chemical potential, respectively.
In Equation (4), the factor of 2 is the spin degeneracy of the levels. The present sudy
considers only the case of µ = 0. When considering small magnetic fields, the induced
magnetic moment of the graphene flake is directly proportional to the applied magnetic
field. Consequently, the magnetic potential can be described as proportional to the inner
product of the magnetic moment and the magnetic field. Thus, the magnetic potential for
the small magnetic field is expressed as cmB2. The coefficient cm depends on the size and
edge type of graphene and is expressed as follows:

cm =
1
2

∂2Fm(B)
∂B2

∣∣∣∣
B=0

. (5)

3. Levitation by Diamagnetic Force

In the case when the angle of inclination is zero and the change in the magnetic field
within the graphene flake is disregarded, the total energy of the graphene system can be
expressed as the sum of the magnetic energy and the gravitational energy:
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Umg(z, d) = cm
µ2

0 I2R4

4[(z− d)2 + R2]3
+ mgz, (6)

where m is the mass of graphene and g is gravitational acceleration. If d = 0 and the
normalized position, ζ ≡ z/R, is introduced, the total energy is expressed as

Umg(ζ) = c0

[
1

(ζ2 + 1)3 + γζ

]
, (7)

where

c0 =
cmµ2

0 I2

4R2 , (8)

γ =
mgR

c0
. (9)

Figure 2a shows the dependence of Umg on ζ for a different γ. For a small γ, there
is a local minimum of Umg, at which the magnetic force balances. Furthermore, this
equilibrium point is stable. Thus, the graphene can be levitated stably along the z-axis. If
γ > γc ≡ 1.329, no local minimum exists and the graphene falls to the substrate. Figure 2b
shows the dimensionless levitation height, ζm, where Umg takes a minimum valueas a
function of γ. The dimensionless levitation height approaches 0.378 in the limit of γ→ γc.
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Figure 2. (a) The sum, Umg (7), of magnetic and gravitational potential energies as a function of the
nondimensional height, ζ, for different ratios, γ (9). (b) Relationship between the nondimensional
levitation height, ζm, and γ.

The magnetic susceptibility of graphite vertical to the surface per mass, χ⊥, is
−2.7× 10−7 m3/kg and one parallel to the surface per mass, χ‖, is −6.3× 10−9 m3/kg.
Similarly, the orbital magnetic susceptibility of graphene when aligned parallel to the
surface is expected to be significantly smaller than that when aligned perpendicularly to



Physics 2023, 5 927

the surface. Thus, it is assumed that χ‖ is zero in the following calculations. Accordingly,
the magnetic energy of the inclined graphene with the angle θ of inclination is given by

Um(ζ, θ) =
c0 cos2 θ

(ζ2 + 1)3 . (10)

The gravitational energy of a graphene flake remains unaffected by its rotation. Con-
sequently, the flake will rotate until it aligns as parallel to the magnetic field, causing the
levitation force to diminish. As a result, the graphene flake descends and eventually comes
in contact with the substrate.

4. Casimir Force between a Graphene Flake and a Silicon Plate

To address the issue of rotation, the utilization of the Casimir effect becomes cru-
cial. According to the Lifshitz theory, the Casimir free energy per unit area between a
single-layer graphene sheet and a dielectric plate, separated by a separation a and at a
temperature T, can be expressed as the sum of contributions for different polarizations η of
the electromagnetic field, namely transverse magnetic (TM) and transverse electric (TE):

FC(a) = FTM(a) +FTE(a), (11)

where

Fη(a) =
kBT

8πa2

∞

∑
l=0

′
∫ ∞

ζl

ydy ln[1− r(g)
η (iζl , y)r(p)

η (iζl , y)e−y]. (12)

Here, ζl with nonnegative integer variable l is the dimensionless Matsubara frequen-
cies defined by 4πakBTl/h̄c, with c denoting the speed of light, and r(g)

η and r(p)
η are the

reflection coefficients on graphene and on a plate for the polarization η, respectively [20–25].
The reflection coefficients on a silicon plate are expressed as

r(p)
TM(iζl , y) =

εly−
√

y2 + ζ2
l (εl − 1)

εly +
√

y2 + ζ2
l (εl − 1),

, (13)

r(p)
TE (iζl , y) =

y−
√

y2 + ζ2
l (εl − 1)

y +
√

y2 + ζ2
l (εl − 1)

, (14)

where εl is the dielectric permittivity of silicon at the imaginary frequency, 2πikBTl/h̄, and
calculated from the optical data [26] based on the Kramers–Kronig relation,

ε(iξ) = 1 +
2
π

∫ ∞

0

ωImε(ω)

ω2 + ξ2 dω. (15)

The reflection coefficients on graphene using the Dirac model are expressed as follows:

r(g)
TM(iζl , y) =

yΠ00

yΠ00 +
h̄
a (y

2 − ζ2
l )

, (16)

r(g)
TE (iζl , y) = −

(y2 − ζ2
l )Πtr − y2Π00

(y2 − ζ2
l )(Πtr +

h̄
a y)− y2Π00

, (17)

where Π00 is the 00-component of the polarization tensor, Π, and Πtr = Π1
1 + Π2

2. The
polarization tensor is determined by the temperature [27], mass gap parameter, δg, chemical
potential, µ, and the Fermi velocity, vF = c/300. The polarization tensor is described in
detail in Ref. [21].
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The circles in Figure 3 show the dependence of the Casimir energy per area between
graphene with δg = µ = 0 and a silicon plate on the separation distance at temperature
300 K. The line represents a fitting function,

uC(z) = − c3

z3 −
c2

z2 , (18)

where c3 = 1.11× 10−12 Jm and c2 = 7.96× 10−11 J.
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Figure 3. Casimir energy per area between a graphene sheet and a silicon plate calculated using the
Lifshitz formula (circles) and the fitting function (line).

5. Change in the Casimir Energy by Inclining

The calculation of the Casimir energy between an inclined plate and a flat plate
can be a computationally intensive task [28–30]. As an alternative approach, the PFA is
employed. Within the PFA framework, the Casmir energy between an inclined square
plate, with one side measuring 2L, and an infinite substrate can be approximated by the
following expression:

UC(a, θ) = 2L
∫ L cos θ

−L cos θ
u[a− (tan θ)x]dx, (19)

where u(z) is the Casimir energy per area. If the Casimir energy per area obeys the
power function, u(z) = −cβz−β, where cβ is a constant and β > 1, its dependence on θ is
expressed as

UC(a, θ, β) = −
2cβL

(1− β) tan θ

[
(a + L sin θ)1−β − (a− L sin θ)1−β

]
. (20)

By introducing a dimensionless coordinate α ≡ a/L, the normalized energy, Ũ, with
the absolute value at θ = 0 is expressed as

Ũ(α, θ, β) ≡ U(a, θ, β)

|U(a, 0, β)| , (21)

= − αβ

2(1− β)

(α + sin θ)1−β − (α− sin θ)1−β

tan θ
. (22)

Figure 4a shows Ũ(α, θ, 2) for α = 1.2,
√

2, and 3. For the small values of α, representing
small separation distances, a local minimum is present at the nonzero inclination angle
and the flat state (θ = 0) becomes unstable. As the separation increases above a threshold,
αc =

√
2, the Casimir energy takes the minimum value at θ = 0, and the flat state becomes

stable. Figure 4b shows the relationship between the threshold αc and exponent β. The
thresholds αc are 2 and 2

√
5/3 for β = 3 and 4, respectively. A smaller exponent in the
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Casimir energy equation enables the suppression of plate rotation to suppress from a
smaller separation distance.
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Figure 4. (a) Dependence of the potential energy, U(α, θ, β = 2) (21), of an inclined plate on the angle,
θ, of inclination for different dimensional heights, α. (b) Relationship between the threshold, αc,
above which the flat state is stable and the exponent, β, of the potential energy.

6. Levitation of a Graphene Flake above a Silicon Plate in a Magnetic Field

Let us proceed to investigate whether the suppression of rotation, discussed in
Section 5, can contribute to stabilizing the levitation of a graphene flake in the presence of a
magnetic field. If the graphene flake is levitated on a silicon plate, as depicted in Figure 1b,
the total potential energy can be approximated given the following expression:

U(z, θ) = UC(z, θ, 2) + UC(z, θ, 3) + Umg(z), (23)

= − 2c2L cos θ

L2 sin2 θ − z2
− 2c3Lz cos θ

(L2 sin2 θ − z2)2

+
cmµ2

0 I2R4

4[(z− d)2 + R2]3
+ mgz, (24)

where the Casimir energy between a graphene flake and a coil is neglected. Figure 5a
shows the relationship between the total energy of a flat graphene flake and a silicon plate,
and the separation distance, considering the gravitational acceleration g = 0 and 0.1 m/s2.
The parameters employed in the calculation are summarized in Table 1. Notably, one of
the parameters, cm, plays an important role in determining the magnetic force. Its value is
specific to a graphene flake with hexagonal armchair edges at a temperature of 300 K (see
Ref. [17] for details).
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Table 1. Parameters used in the calculations. See text for details.

Parameters Values

L 11.58 nm
R 4 µm
d 2.5 µm
I 0.3 A

cm 1.24 × 10−5 eV/T2

c2 7.96× 10−11 J
c3 1.11× 10−12 J m
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Figure 5. (a) Dependence of the total Casimir energy, magnetic energy, and gravitational energy on
the separation distance for gravitational acceleration g = 0 and 0.1 m/s2. (b) Dependence of the total
energy at equilibrium heights on the inclined angle.

The levitation heights are measured to be 7.3 and 6.9 µm for the gravitational accelera-
tion of 0 and 0.1 m/s2, respectively. Figure 5b displays the change in the total energy due
to inclination, with the minimum value of ∆U set to zero. The total energy monotonously
increases as the graphene flake tilts away from θ = 0, indicating stable levitation when the
gravitational acceleration is small. As the gravitational acceleration increases, the levitation
height decreases. The results for g = 0.3 m/s2 and 0.4 m/s2 are presented in Figure 6a,b and
illustrate the dependence of total energy on the position and inclination angle, respectively.
When the graphene flake derivates from θ = 0, the total energy decreases, reaching its
minimum at θ = 0.52 rad for g = 0.3 m/s2. The inclined angle increases with an increase
in gravitational acceleration. For g = 0.4 m/s2, the angle of inclination, at which the total
energy is minimized, is 0.67 rad. Figure 6c shows the total energy of inclined graphene
flakes at θ = 0.52 rad for g = 0.3 and θ = 0.67 rad for g = 0.4 m/s2. In the case of g = 0.3 m/s2,
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a local minimum exists in the total energy, enabling the levitation of the graphene flake
in the inclined state. However, for g = 0.4 m/s2, no local minimum exists, causing the
graphene flake to fall onto the substrate after tilting.
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Figure 6. (a) Dependence of the total energy of the flat graphene flake for g = 0.4 and 0.3 m/s2

on the vertical position. (b) Dependence of the total energy at equilibrium heights on the inclined
angle for g = 0.4 and 0.3 m/s2. The angle at which takes the minimum potential energy exists at
non-zero inclined angle. (c) Dependence of the total energy of the graphene flakes that incline with
the equilibrium angle on the separation distance.

7. Role of a Diamagnetic Force and the Casimir Torque

A diamagnetic force and the Casimir torque must be effectively combined to achieve
stable levitation. In previous calculations, the magnetic field is generated by a circular
current and the levitation was unsuccessful for large gravitational accelerations. However,
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if an appropriate magnetic field is generated, then stable levitation can be realized. For
example, when the magnetic flux density, which is expressed by 0.5 − 0.35 z + 0.08z2 T,
(where z is in µm) near z = 2 µm is generated, the total energy of the flat graphene flake
for g = 9.8 m/s2 takes a minimum at 2 µm as shown in Figure 7a. Furthermore, Figure 7b
shows the total energy at the levitation height and takes the minimum in the flat state
(θ = 0), and indicates that stable levitation can be achieved on Earth if the appropriate
magnetic field is generated.

(a)

1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

2.6

2.8

3.0

3.2

3.4

z ( m)

U
(×
1
0
-
2
6
J
)

(b)

0.0 0.5 1.0 1.5

2.6

2.8

3.0

3.2

3.4

3.6

θ (rad)

U
(×
1
0
-
2
6
J
)

Figure 7. (a) Dependence of the total energy of the flat graphene flake for g = 9.8 m/s2 on the vertical
position. (b) Dependence of the total energy at equilibrium heights of 2 µm on the inclined angle for
g = 9.8 m/s2.

The stabilization of levitation results from the feature that the Casimir energy takes
a minimum value when the plates are parallel for large separations. PFA worsens as the
separation distance increases. However, the predicted stability of parallel configurations
may be correct. For perfectly conductive plates, an analytical formula of the Casimir energy
between non-parallel plates was presented in Ref. [30] using the optical approximation,
which is one of the calculation methods beyond PFA [31–33]. Figure 8 shows the inclination
angle of a square plate with side of size L above an infinite plate in a stable configuration,
calculated using the optics approximation; θ∗ is a function of the ratio of the separation
distance between the square center and the infinite plate (δ). The parallel configuration
with a zero inclination angle stabilizes when δ > 0.81. Although sophisticated calculation
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methods are necessary to determine the magnetic field accurately to realize levitation, the
guideline indicating that stabilization through the Casimir effect is highly effective for large
separations can be useful.
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Figure 8. Dependence of the equilibrium of inclination angle, θ∗, obtained by the optical approxima-
tion on nomalized separation distance with the size of a plate, δ. The parallel configuration is stable
for δ > 0.81.

8. Conclusions

The coexistence of attractive and repulsive forces is crucial for achieving the levitation
of objects. Furthermore, the behavior of these forces near the equilibrium point is of great
importance. If they follow the power functions with the same exponent, the resulting
function becomes monotonic, rendering stable levitation impossible.

The Casimir energy between objects is influenced by various physical parameters,
such as the objects’ shapes, distance between objects, permittivity, and temperature [27,34].
It is often represented by a power function. In the case of perfectly conductive plates,
Casimir energy is inversely proportional to the cube of the separation distance, i.e., a−3,
regardless of the distance. However, if the permittivity is finite, Casimir energy varies as
a−2 for small separations. This implies that the force between objects and its derivative
can be manipulated by selecting appropriate materials and separation distances from an
engineering perspective.

To counteract the rotation of the graphene flake and achieve stable levitation, a dia-
magnetic force was employed as a repulsive force. In order for the flake’s surface to remain
perpendicular to the magnetic field, it is necessary to fixate the surface and ensure that the
product of the applied magnetic field and its derivative is sufficiently large. However, in
a vacuum environment, the graphene flake tends to rotate, causing its surface to become
parallel to the magnetic field. To address this issue, the Casimir torque was utilized as one
of the methods for stabilization.

The numerical analysis revealed that the Casimir effect can provide some degree of
stabilization for the diamagnetic levitation of a graphene flake. However, its effectiveness
is limited, and it is insufficient to fully suppress the rotation in Earth’s gravity by the
magnetic field generated through the circular electric current. This limitation arises from
the feature that the suppression of the rotation by the Casimir effect is most effective at
larger separation distances. As the separation distance increases, the Casimir energy rapidly
diminishes, resulting in a weaker restoring torque. Therefore, in order to achieve magnetic
levitation in a strong gravitational field, furthering the optimization of the magnetic field is
necessary as shown in Section 7.

As the separation distance approaches zero, the magnetic energy remains finite. How-
ever, the Casimir energy diverges to negative infinity. This implies that the levitation state
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is metastable [35–37], and a potential barrier is present near the surface. The height of this
potential barrier is not significant. Therefore, to maintain the levitation state, it is necessary
to maintain a high vacuum and low temperature. These conditions help to stabilize the
system and prevent the graphene flake from falling onto the substrate.
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