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Abstract: The study of opinion formation and dynamics is one of the core topics in sociophysics. In
this paper, the results of computer simulation of opinion dynamics based on social impact theory
are presented. The simulations are based on Latané theory in its computerised version proposed
by Nowak, Szamrej and Latané. The active parameters of the model describe the volatility of the
actors (social temperature T) and the effective range of interaction (governed by an exponent α in a
scaling function of distance between actors). Initially, every actor i has his/her own opinion. Our
results indicate that ultimately at least 90% of the initial opinions available are removed from the
society. For a low social temperature and a long range of interaction, only one opinion survives. Also,
a rough sketch of the system phase diagram is presented. It indicates a set of (α, T) leading either to
(1) the dominance of the unanimity of the opinions or (2) mixtures of unanimity and polarisation, or
(3) taking random opinions by actors, or (4) a mixture of the final fates of the systems. The drastic
reduction of finally observed opinions vs. their initial variety may be generic for many sociophysical
models of opinions formation but masked by assuming an initially small pool of available opinions
(in the worst case, in models with only binary opinions).

Keywords: sociophysics; social impact; opinion dynamics; social temperature; clustering and
polarisation

1. Introduction

The studies of opinion formation and dynamics are one of the core topics in socio-
physics [1–6]. For example, Galam models of opinion dynamics [7–20] are based on the
reaction–diffusion model: the dynamics operates via local update rules and reshuffling.
In these models, three kinds of actors correspond to floaters, contrarians, and inflexibles.
The models assume two or three opinions available in the society [21]. Among other
discrete models of opinion formation, one should mention the majority rule [8,10,22,23],
voter [24–27], and Sznajd [28–32] models. In these models, usually only binary opinions
are considered, which naturally causes society polarisation. However, modifications that
allow for multiple opinions were also studied [33–45].

The Nowak–Szamrej–Latané model [46] is based on the Latané social impact
theory [47–49]. Latané himself defined his theory as a “bulb theory” of social impact.
According to this physical analogy, every actor plays simultaneously the role of an isotropic
single wavelength light emitter and a multi-wavelength light detector. We assume that
every actor can emit and detect easily distinguished K various light colours. Every dis-
crete time step t actor i switches the emitted wave length (colour) λi(t) to that perceptible
illuminance is detected in his/her position as the strongest. The decision of which colour
λi(t + 1) will be emitted by actor i depends on (i) the number of each colour sources, (ii) the
distance from this point to every other source of light, (iii) and intensities (illuminance flux,
“bulb” power) of each light source.
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The earlier attempts to employ this model for sociophysical studies included: observ-
ing the influence of the strong leader on opinion formation [50]; studying the noise-induced
order/disorder phase transition [35,51]; searching for self-organised criticality in opinion
systems [36]; observing the disappearance of some opinions [37] (see Ref. [52] for review).

In this paper, with a computer simulation based on the Nowak–Szamrej–Latané
model [46], we check how the initial diversity of opinions influences the possibility of
reaching a unanimity of opinions. Namely, we build a phase diagram in the social temper-
ature and the effective range of the interaction space based on the number of surviving
opinions; numbers of clusters of opinions; and the probability distribution of the size of
the largest cluster. Unlike previous works—where the number of available opinions was
usually small (two [50,51], up to three [36], or up to five [35,37])—we proposed as a starting
point a situation in which each actor has their own opinion.

2. Model Formalisation

Every actor i at time t has an opinion λi(t). The social impact Ii,k(t) exerted in time t
on an actor i by all actors who share opinions Λk is calculated as

Ii,k(t) =
L2

∑
j=1

4sj

g(di,j)
· δ(Λk, λj(t)) · δ(λj(t), λi(t)) (1)

or

Ii,k(t) =
L2

∑
j=1

4pj

g(di,j)
· δ(Λk, λj(t)) · [1− δ(λj(t), λi(t))], (2)

where sj is j-th actor supportiveness, pj is j-th actor persuasiveness, di,j stands for Euclidean
distance between actors i and j, g(·) is an arbitrary distance scaling function, and Kronecker
delta δ(x, y) = 0 when x 6= y and δ(x, y) = 1 when x = y. The sum in Equations (1) and (2)
reflects the increase in impact Ii,k by increasing the number of “bulbs” (point (i) of the
model description in Section 1), the decrease in impact with the distance between “bulbs”
(fraction denominator, point (ii) of the model description in Section 1), and the fraction
nominator corresponds to the intensities of “bulbs” (point (iii) of the model description in
Section 1). The terms with Kronecker’s delta are equal to either zero or to one:

• Equation (1) applies to the calculation of the impact of actors currently sharing the
opinion of actor i;

• while Equation (2) allows the calculation of the impact of all other opinions.

The parameters supportiveness si and persuasiveness pi describe i-th actor intensity
of interaction with actors sharing their opinions or with believers in opposite opinions,
respectively. We decided to use ∀i : pi = si = 1/2 (as in Ref. [35]) because whether it is
easier to stick to our opinion or change it depends on numerous factors, such as the social
context, emotions, beliefs, authorities, and persuasion strategies. People’s decisions on
this matter can vary widely and depend on individual circumstances and preferences. On
the one hand, there are theories that explain the tendency to change opinions, such as:
social influence theory and conformity [53]; motivation and belief theory [54]; authority
influence theory [55] or persuasion theory [56]. On the other hand, there are theories
that point to an advantage in trying to keep our opinions, such as cognitive consistency
theory [57] or cognitive dissonance theory [58]. Furthermore, keeping the supportiveness
and persuasiveness equal for each actor makes the initial variety of opinions (next to social
temperature and range of interactions) the dominant factor in the results of our studies.
With such assumption, the social impact (1) and (2) may be reduced to

Ii,k(t) =
L2

∑
j=1

2 · δ(Λk, λj(t))
g(di,j)

. (3)
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To ensure a lower impact on the opinions of actors from a more distant neighbour, the
distance scaling function g(·) must be an increasing function of its argument. Here, we
assume that

g(x) = 1 + xα, (4)

where the exponent α is a model control parameter while the first addition component
ensures finite self-supportiveness Ii,i. The parameter α qualitatively describes the effective
range of interaction between the actors. Its quantitative meaning was delivered recently in
Ref. [37] where it was shown that for α = 2, about 25% of the impact comes from only nine
nearest neighbours. This ratio increases to approximately 59%, 80% and 96% for α = 3, 4
and 6, respectively. Calculating the relative impact exerted by 25 nearest neighbours gives
about 39%, 76%, 92%, and 99% of the total social impact for α = 2, 3, 4, and 6, respectively
(see Ref. [37], Figure 2, Table 1). In Ref. [37], it is concluded that “the parameter α says how
influential the nearest neighbours are with respect to the entire population: the larger α,
the more influential the nearest neighbours are”.

The example of calculating the social impact of nine actors and three colours is avail-
able as supporting information in Ref. [36].

In the deterministic version of the algorithm [37], the actor’s opinion λi(t + 1) = Λk,
when Ii,k(t) has the maximum value among all impacts Ii,j(t) for j = 1, · · · , K (3). Follow-
ing our previous studies [35–37], we employ the actors with “free will” by allowing them
to avoid taking the opinions that believers exert the greatest impact on them. This scenario
is realised in a probabilistic way by introducing a parameter T often termed “information
noise” or “social temperature”. Quoting Ref. [59]: “Using the statistical mechanical founda-
tion, [· · · ] the most probable collective behaviour depends on a group’s social temperature,
a measure of the group’s decision-making volatility. The extreme of zero temperature leads
to stable, unchanging collective behaviour with pockets of minority and majority opinions.
As group temperatures increase, the model’s collective behaviour tends toward a uniform
decision without clustering of minority opinions. When the social temperature exceeds a
certain limit, the group will have a well defined average opinion, but individuals are no
longer stable and vacillate in a nearly random manner between different possible opinions”.
Quoting Ref. [60] by the same authors: “Individuals are influenced by the group’s temper-
ature. When a group’s social temperature is high, very little provocation is necessary to
induce an individual to change opinion. At low group temperatures, individuals appear
more phlegmatic or stubborn, and much greater provocation is required to induce a change
in opinion. High social temperatures amplify the slightest excuse for change, whereas
low temperatures diminish the arguments for change. Note that each individual’s opinion
strength is unaltered, but as the group’s temperature changes, so does an individual’s
decision making abilities.”

In our recent studies [36,37], we observed the exact same effects on the system evo-
lution as described above, when social temperature T is introduced as a parameter in
probabilities in time t of taking in the next time step opinion Λk by actor i based on
Boltzmann-like factors,

pi,k(t) =

0 ⇐⇒ Ii,k = 0,

exp
( Ii,k(t)

T

)
⇐⇒ Ii,k > 0,

(5)

which yet requires proper normalisation,

Pi,k(t) =
pi,k(t)

∑K
j=1 pi,j(t)

. (6)
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In contrast to our earlier attempt, due to a huge number of available opinions in the
system, we reset to zero probability pi,k(t) when the impact from opinion Λk holders is
zero, i.e., when believers of this opinion vanished.

Initially, every actor i has his/her opinion λi(t = 0) = Λi = i among the K = L2

opinions available in the system (see the Listing A1 in Appendix B). The time evolution
for L2 = 212 actors who decorate the nodes of the square network takes τ = 105 time
steps. The single step is completed when all L2 actors attempt to change their opinions.
The results are averaged over R = 102 independent simulations. The averaging procedure
is marked by a 〈· · · 〉. The open boundary conditions are assumed.

To learn more about the spatial distribution of opinions, we detect, count, and measure
the sizes of clusters of agents sharing the same opinion. To this end, we apply the Hoshen–
Kopelman algorithm [61] (see also [62] (pp. 59–60), [63,64]) allowing the labelling of every
actor in such a way that actors who share the same opinions in various clusters are labelled
with various labels and actors belonging to a given cluster are labelled with the same label.
The number of clusters and the size of the largest cluster at time t = τ are indicated as nc
and Smax, respectively.

3. Results

In this Section, we present the results of computer simulation—based on a computer
programme written in Fortran—for τ = 105 and R = 100. Typically, simulation for this set
of parameters τ and R and a single pair of (α, T) takes around 3 days of Central Processing
Unit (CPU) time on the Dell Precision Rack 7920 Workstation with a 3.20 GHz CPU clock.

In Figure 1, the results of simulations concerning the average final (at t = τ): number
of opinions, 〈no〉 (Figure 1a), number of clusters 〈nc〉 (Figure 1b), and their largest size,
〈Smax〉 (Figure 1c), are presented. The values of 〈no〉 and 〈nc〉 are normalised to the number
K of opinions available in the system while 〈Smax〉 is normalised to the system size L2.
Thus, these numbers are presented as percentages.

In Figure 2, examples of probability distribution function, F, for the size of the largest
clusters 〈Smax〉 are presented. Figure 2a shows the initial distribution (i.e., at t = 0,
when no = K) of the largest cluster size, while Figure 2b–j show examples of the typical
distribution obtained at the end of simulations, i.e., at t = τ. In Figure 2b,c,h,i, the
probability distribution of the largest cluster size for the “corners” of the parameter system
plane (α, T)—see Figure 1—are presented. Furthermore, in Figure 2j, we present the
function F for the limiting case T → ∞, α→ ∞.

In the system of opinions studied, independently of the control parameters of the
model, at least about 90% initially available opinions are removed from the system. For
low social temperature (small T) and effectively long range of interactions (small α), only a
single opinion (when consensus on common opinion in society occurs) or two opinions
survive (when system polarisation takes place). For high social temperature (large T) and
effectively short range of interactions (large α), no clustering of opinions is observed (with
their number reduced as mentioned above). Unlike many binary models, these effects are
not embedded in the model rules themselves. With computer simulations of the opinion
dynamics model, we have shown that successive disappearing of opinions are naturally
associated with social impact theory, and the initial diversity of opinion vanishes in several
time steps of system evolution. As mentioned in Section 2, the disappearing of any opinion
in a given simulation is irreversible—this is not different from the sociological equivalent
of Muller’s ratchet [65] observed also in Eigen’s quasi-species [66].
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(b) 〈nc〉/K [%]
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(c) 〈Smax〉/L2 [%]
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Figure 1. Ultimate (at time t = 105 steps) averaged (over R = 102 simulations) numbers (a) of
observed opinions, 〈no〉, (b) clusters of opinions, 〈nc〉, and (c) the largest cluster size, 〈Smax〉. The
data are normalised to the initial available number of opinions, K (a,b), and the system size, L2 (c).
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(a) initial probability distribution (at t = 0 when no = L2)
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Figure 2. Examples of probability distribution function, F, of the size of the largest clusters 〈Smax〉
for (a) initial configuration (at t = 0, no = L2), (b) T = 0.5, α = 2 (the lowest left corner of Figure 3),
(c) T = 0.5, α = 6 (the lowest right corner of Figure 3), (d) T = 1, α = 5, (e) T = 1.25, α = 4,
(f) T = 1.5, α = 3, (g) T = 2, α = 2, (h) T = 2.5, α = 2 (the highest left corner of Figure 3), (i) T = 2.5,
α = 6 (the highest right corner of Figure 3), (j) T → ∞, α→ ∞.

In Appendix A, we show six examples of the time evolution of the number no of
opinions observed in the system. The presented results are for T = 0.5, α = 2 (Figure A1a),
T = 2.5, α = 6 (Figure A1b), T = 0.5, α = 2 (Figure A1c), and T = 2.5, α = 6 (Figure A1d).
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Figure 3. Model phase diagram on (α, T) plain. The numbers correspond to the list enumerator given
in Section 4.

4. Discussion

In a single simulation, the number no(t) is always a monotonically nonincreasing
function of time (see Figure A1). The assumed simulation time τ = 105 seems to be long
enough to ensure reaching a plateau in the time evolution of no. Please note that vanishing
during evolution any of the initially available opinion Λv, i.e., when at time tv none of
the actors share this opinion Λv, then for any t ≥ tv, this opinion Λv will not be restored.
Here, we deal with the sociological equivalent of the famous Muller’s ratchet [65] known
in evolutionary genetics.

Changes in the number of observed opinions (surviving temporal evolution) 〈no〉
(Figure 1a) are accompanied by changes in the number of clusters 〈nc〉 (Figure 1b) and
their largest size 〈Smax〉 (Figure 1c). These numbers bring complementary quantitative
information on the system: for instance, for α = 2 and T = 0.5, one simultaneously has
〈no〉 = 1, 〈nc〉 = 1 and 〈Smax〉 = L2—which are straightforward signatures of unanimity of
opinion.

The analyses of the averages 〈no〉, 〈nc〉, and 〈Smax〉 presented in Figure 1 together with
the analyses of the probability distribution function P(Smax) shown in Figure 2 allow the
identification of four possible phases observed in the system. These phases correspond to:

1. reaching unanimity of opinions (〈no〉 = 1, 〈nc〉 = 1, 〈Smax〉/L2 = 1, probability
distribution function of the largest cluster size as in Figure 2d,g);

2. reaching unanimity of opinions or society polarisation (probability distribution func-
tion of the largest cluster size as in Figure 2b,c);

3. taking random opinions by actors (probability distribution function of the largest
cluster size as in Figure 2h,i);

4. mixture of the phases mentioned above (probability distribution function of the largest
cluster size as in Figure 2e,f).

These four scenarios, observed after system time evolution up to τ = 105 time steps,
can be mapped into (α, T) space to create the phase diagram of the computerised model of
the Nowak–Szamrej–Latané social impact theory [46]. This diagram is presented in Figure 3
and the numbers there correspond to the list enumerator given above.

Looking for sociological theories that would explain the disappearance of some of
the available opinions, one can refer to Nan Lin’s hypothesis on the theory of social
capital [67,68]. According to Lin’s concept, opinions may be treated as a resource in a
social network. The process by which resources in social networks become meaningful
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and valuable for members of these networks can be considered in relation to several
principles ([67], pp. 30–33):

• The first principle has to do with consensus or influence developed or exercised within
a group. Consent as to whether a resource is valuable or not can be achieved as a
result of persuasion (communication and interaction without sanctions or penalties
lead to the formation of an internal conviction in individuals as to the value of a
given resource), request (appeals or lobbying result in recognising a given resource
as valuable even when the individual does not understand its meaning but wants to
remain a member of the group or identify with it), or coercion (an alternative to not
recognising the value of a given resource is the threat of sanctions or penalties).

• The second mechanism that allows one to assign value to resources boils down to
taking actions by all actors aimed at promoting their own interests by protecting or
acquiring valuable resources. For example, it is in the community’s well-understood
interest to give a higher status to those who, in the opinion of its members (between
whom consensus is reached), have valuable resources (knowledge, physical strength,
knowledge of members of other communities, etc.). In this sense, the self-interest
of individual members of the community becomes convergent with the collective
interest (development, security, and cooperation). The devaluation of a given asset
requires more than individual effort—it requires the consent of others who make
similar demands.

• The third principle regarding valuable resources assumes that their maintenance and
acquisition are the two basic motives of individuals’ actions, although the former is
more important than the latter. Only when the group’s resources are secured can its
members make an effort to acquire additional resources.

In the case of social resources, two types of mechanisms can be distinguished: network
resources to which an individual has access by virtue of membership in that network and
contact resources that an individual actually uses in the course of action. The first of them
represents constantly available resources due to the durability of social relations in the
network, the second represents resources that can be mobilised in order to achieve specific
benefits. The nature of the resources contained in the social network to which an individual
has access is determined by several factors. First, the range of resources in the network is
important, that is, the “distance” between the most valuable and least valuable resource.
Second, the most valuable resource available to an individual within the entire hierarchy of
resources contained in the network is of importance. Third, the diversity or heterogeneity
of resources in a social network plays an important role, and fourth, the composition of
resources shaped by those of them that are average or the most typical composition is
also significant [67] (p. 37), [68]. In the field of social sciences, Lin’s theory is one of the
most coherent and well-established theories of social capital. It deals with the exchange
of resources in social networks. Like most sociological theories, it does not attempt to
indicate how exchange occurs (in quantitative terms), but rather why it occurs. Therefore,
it creates a context for understanding the complexity of interpersonal relationships in their
social dimension.

The existence of these two mechanisms was confirmed by Luca Valori and coleeagues
research [69], which used a large and detailed data set [69]. They have characterised the
empirical properties of the large-scale distribution of individuals in multidimensional
cultural space. By using simple models, they showed that ultrametricity has profound and
nontrivial consequences on short- and long-term cultural dynamics. In the short term, they
found the existence of a symmetry-breaking phase transition where collective behaviour
arises out of purely local interactions. However, in the long term, the same ultrametric
property suppresses cultural convergence by restricting it within disjoint domains, implying
a strong sensitivity to the initial conditions. Thus, the apparent paradox of the coexistence
of short-term collective social behaviour and long-term cultural diversity might have, as a
simple and parsimonious explanation, the empirically observed hierarchical distribution of
individuals in cultural space.
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The character of actors’ connections in social networks determines the availability of
social resources and their size. If one treats information or opinion as a social network
resource, then some members of the social network (opinion leaders) play a greater role in
its propagation [70] than the sender of the message itself. In the first model (two-step flow),
the key role is played by opinion leaders who mediate between the sender (mass media)
and the rest of society. In this model, unlike the one-step or “hypodermic” model [71],
individuals are not treated as atomised recipients of media influence.

Depending on whether the actors in social networks are similar or different from
each other, the links between them can be bonding or bridging [72]. Ronald Burt [73,74]
characterised two mechanisms of social contagion in the diffusion of innovation (opin-
ions) in social networks depending on their structure: cohesion-induced contagion and
equivalence-induced contagion. Cohesion-induced contagion occurs in cohesive networks
between actors that maintain frequent and emphatic relationships. It is based on socialising
communication. However, equivalence-induced contagion occurs in bridging networks
as a result of competition between two actors who have similar relationships with other
people. This applies to the competition of people who just use each other to evaluate
their relative adequacy. Quoting Ref. [73] (p. 1291): “The more similar ego’s and alter’s
relations with other persons are—that is, the more that alter could substitute for ego in
ego’s role relations, and so the more intense that ego’s feelings of competition with alter
are—the more likely it is that ego will quickly adopt any innovation perceived to make
alter more attractive as the object or source of relations.” Ultimately, a large number of
bridges connecting diverse groups is essential for reducing opinion fractionalisation within
societies [75]. A large number of bridges also has the effect of reducing distances between
unconnected citizens [76].

5. Conclusions

In this paper, the Latané social impact theory is employed to build a model of opinion
formation. With computer simulation, we investigate how the initial variety of opinions
assigned to actors in such a way that initially every actor has his/her own opinion influences
the final opinions number and their spatial distribution. The latter may be, to some extent,
automatically checked (without direct analysis of snapshots from simulations) by means of
techniques known from studies of site percolation phenomena.

As was pointed out in Refs. [36,37], a small noise dose (not too high a social temper-
ature T) helps to reach consensus (not necessarily observed for the deterministic version
of this model, i.e., for T = 0, cf. Figure 3 in Ref. [37] and Figure 7 in Ref. [36], where,
however, the number of available opinions was restricted to several, namely K = 3 [36] and
K = 5 [37]). This is well seen in Figure 1 and also in Figure 3 for T = 1 and α ≤ 5.

Independently of the model control parameters, at least 90% of the initially available
opinions are removed from the system. In some cases, only two opinions (when society
polarisation occurs) or even a single opinion (when consensuses on a common opinion takes
place) survive. As explained by Lin [68], there are various mechanisms that connect the
individual to the group around shared resources [67,68]. The group provides the individual
with a more effective way of pursuing their interests than if the individual were to act
individually. In order to remain a member of the group, one must agree to a consensus on
the value of the resources held by the group. This consensus also applies to opinions. In
Burt’s theory [73,74], opinion reduction is caused by the action of opinion leaders. Opinion
leaders are the people whose conversations trigger contagion across the social boundaries
between status groups. As a consequence of such actions, groups can become more similar
in terms of opinions.

Finally, it would be interesting to investigate if the observed vanishing of opinions
is generic, i.e., if it may also be observed in other discrete models of opinion formation.
Further studies of the model may also include investigating the influence of the network
topology on obtained results: the studies may either deal with regular lattices—triangular
(six neighbours) or honeycomb (three neighbours)—or complex networks (including small
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world networks). The latter requires, however, a redefinition of the distance, di,j, from its
Euclidean definition to the shortest paths between actors.
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Appendix A. Examples of Time Evolution of the Observed Number of Opinions

In Figure A1 the time evolution of the observed number of opinions no(t) for T = 0.5,
α = 2 (Figure A1a), T = 0.5, α = 6 (Figure A1b), T = 2.5, α = 2 (Figure A1c) and T = 2.5,
α = 6 (Figure A1d).
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Figure A1. Cont.
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(c) T = 2.5, α = 2
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(d) T = 2.5, α = 6
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Figure A1. Time evolution of the observed number of opinions no(t) for (a) T = 0.5, α = 2, (b) T = 0.5,
α = 6, (c) T = 2.5, α = 2 and (d) T = 2.5, α = 6.

Appendix B. Examples of Spatial Opinion Distribution

An initial state of the system for L = 21 and K = L2 is presented in Listing A1. In
Listings A2–A7, examples of the final state of the system evolution for L = 21 after τ = 105

time steps are presented. The numbers represent opinions. The examples are associated
with four phases identified and presented in Figure 3. In Listing A2, the case of unanimity
of opinions is presented. In Listings A3–A5, three variants of society polarization (with
no = 2 and nc = 2) are presented. In Listings A6 (with no = 30, nc = 399) and A7 (with
no = 32, nc = 415), snapshots of the (still dynamical) state of the system are presented.

Listing A1. An initial state of the system for L = 21 and K = L2. The numbers represent opinions.
Every agent starts with his/her own opinion, which is different from the opinions of any other actor.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
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Listing A2. α = 2, T = 0.5, no = 1, nc = 1, Smax/L2 = 100%.

# irun= 10
# t= 100001 , lambda:
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284
# histogram of cluster sizes:
# 441 1
### Smax= 441
### nc= 1
### no= 1

Listing A3. α = 6, T = 0.5, no = 2, nc = 2, Smax/L2 ≈ 52%.

# irun= 2
# t= 100001 , lambda:
50 50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387
50 50 50 50 50 50 50 50 50 50 387 387 387 387 387 387 387 387 387 387 387

# histogram of cluster sizes:
# 212 1
# 229 1
### Smax= 229
### nc= 2
### no= 2
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Listing A4. α = 6, T = 0.5, no = 2, nc = 2, Smax/L2 ≈ 52%.

# irun= 23
# t= 100001 , lambda:
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
# histogram of cluster sizes:
# 210 1
# 231 1
### Smax= 231
### nc= 2
### no= 2

Listing A5. α = 4, T = 0.5, no = 2, nc = 2, Smax/L2 ≈ 67%.

# irun= 92
# it= 100001 , lambda:
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2
96 96 96 96 96 96 96 96 96 96 96 96 96 96 2 2 2 2 2 2 2

# histogram of cluster sizes:
# 147 1
# 294 1
### Smax= 294
### nc= 2
### no= 2
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Listing A6. α = 3, T = 1.5, no = 30, nc = 399, Smax = 4.

# irun= 23
# t= 100001 , lambda:
245 40 126 419 51 440 90 245 142 22 274 103 441 245 419 274 22 187 406 147 91
245 194 187 441 40 142 280 22 419 280 406 142 316 40 441 126 194 187 194 51 334
441 316 22 90 97 147 40 280 169 103 43 245 91 280 194 194 194 43 90 316 187
147 90 90 43 126 226 142 194 40 419 440 91 173 185 185 419 419 406 211 327 43
40 97 90 419 419 51 274 334 97 245 91 147 147 43 274 173 185 194 334 126 334

316 22 173 327 316 419 440 194 51 187 419 327 43 419 406 245 90 40 280 280 194
245 22 187 226 194 327 187 441 90 97 280 440 334 334 173 40 327 226 185 316 90
173 173 316 173 235 406 316 406 185 22 142 147 97 406 327 22 327 22 334 245 22
43 327 327 43 126 43 173 147 91 406 274 40 441 103 22 126 245 316 43 419 440

280 441 40 173 440 90 440 316 327 406 97 406 185 294 406 294 90 316 173 406 280
406 441 280 440 40 91 40 187 294 235 316 51 22 51 22 142 419 22 22 142 103
51 22 294 51 126 294 187 440 226 187 169 280 406 441 327 316 185 22 406 40 43

211 294 334 97 22 294 173 40 91 51 235 51 441 316 142 245 274 211 147 235 43
40 97 40 226 327 327 294 274 226 334 43 294 327 235 40 40 22 142 194 51 169

440 22 22 334 211 440 40 334 245 126 147 316 187 91 280 280 316 441 211 245 441
173 142 294 142 103 91 126 245 173 51 280 211 187 173 441 40 274 97 440 51 103
226 406 194 185 51 51 274 173 147 419 40 185 103 211 194 406 334 211 274 274 441
43 40 294 185 327 90 327 334 419 316 245 103 419 211 185 40 226 280 235 280 103

142 294 194 280 142 142 274 334 43 51 187 185 334 327 406 126 103 226 142 419 441
187 294 334 441 441 211 97 211 226 334 294 173 147 235 406 43 103 406 142 51 103
194 51 169 327 327 126 245 90 97 22 142 169 441 185 185 142 440 185 245 142 194
# histogram of cluster sizes:
# 1 361
# 2 35
# 3 2
# 4 1
### Smax= 4
### nc= 399
### no= 30

Listing A7. α = 6, T = 2.5, no = 32, nc = 415, Smax = 3.

# irun= 10
# t= 100001 , lambda:
121 191 91 372 52 120 421 191 424 238 421 361 327 128 330 330 198 294 238 193 286
343 421 52 424 233 193 424 273 330 233 198 421 330 327 286 304 416 286 360 294 416
361 134 276 204 204 330 284 361 198 198 343 327 330 258 273 330 273 120 343 191 9
128 204 204 233 286 360 154 238 193 317 327 121 120 424 284 197 361 120 421 121 284
330 343 294 330 191 121 372 9 361 284 421 198 233 360 191 330 330 204 121 154 317
317 304 258 258 134 273 421 233 424 361 286 286 52 273 238 304 360 424 193 317 238
317 233 360 121 91 204 91 284 284 121 284 276 154 154 273 9 327 128 120 360 421
120 416 286 233 330 198 372 284 273 121 52 294 258 372 193 191 372 360 258 330 238
360 294 121 91 233 286 361 276 52 121 317 154 286 286 134 9 121 193 361 198 273
198 360 198 121 421 276 120 233 424 416 193 424 330 330 343 424 198 372 284 304 198
191 286 416 330 361 258 52 128 121 421 424 121 134 233 284 421 91 52 304 372 304
258 9 193 360 258 327 276 204 286 154 273 198 197 204 154 134 317 424 193 284 128
317 421 154 372 330 193 52 238 304 294 191 361 198 360 204 273 198 424 191 276 191
372 258 9 424 154 204 91 317 52 128 372 284 361 343 154 343 327 286 360 424 197
191 91 197 276 121 197 294 193 9 154 304 9 304 330 317 233 191 204 154 327 233
284 421 330 154 317 416 294 330 361 343 9 372 204 421 421 360 424 360 421 416 343
198 134 128 372 317 304 9 343 154 154 52 128 421 343 421 233 286 424 121 327 258
421 52 121 191 52 360 284 421 204 360 191 360 154 258 360 276 294 421 134 360 238
120 198 294 304 294 294 128 286 317 361 294 421 361 286 52 424 330 317 294 424 286
304 134 204 191 360 276 128 154 121 372 416 204 330 317 198 154 233 121 284 120 134
128 191 91 361 52 9 120 193 276 286 197 360 421 286 198 120 421 134 416 361 286
# histogram of cluster sizes:
# 1 392
# 2 20
# 3 3
### Smax= 3
### nc= 415
### no= 32
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