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Abstract: Here, we investigate the actuation dynamics of a micro device with different intervening
liquids between the actuating components under the influence of Casimir and dissipative hydrody-
namic forces. This is enabled via phase space portraits, which demonstrate that by increasing the
dielectric response of the intervening layer the autonomous device may not come into stiction due
to the decreasing in magnitude Casmir force. Unlike the micro devices that are placed in vacuum
with an intervening liquid, the phase portraits show only a spiral trajectory which eventually stops at
a rest position due to the strong energy dissipation by the position dependent hydrodynamic drag
forces, even when considering sufficiently strong restoring forces. Moreover, it is feasible to expand
the area of motion using intervening liquids with lower dynamic viscosity or increasing the slip
length of the intervening fluid. Finally, under the influence of an external driven force, which is the
realistic case for possible applications, the system can reach stable oscillation at larger separations
with an amplitude higher for the liquid that led to lower Casimir and hydrodynamic forces. Hence,
the results presented in this study are essential for studying the dynamical behavior of MEMS and
their design in liquid environments.
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1. Introduction

During the past decades the emergence of rapid development in micro/nano fabrica-
tion has led to scaling down of electromechanical systems into submicron-length scales.
This opens new areas for the application of the Casimir forces, since they could inevitably
play role in the operation of micro/nano systems [1–8]. These devices have sufficiently
large surface areas and gaps small enough for the Casimir force to pull components together
leading to permanent adhesion, a phenomenon known as stiction [9–12]. This malfunction
in many cases is unavoidable for the dynamical stability of micro/nano electromechanical
systems (MEMS/NEMS) such as sensors, micro switches, actuators. Hence, a comprehen-
sive knowledge about the magnitude and direction of the Casimir force can provide strong
insight into the design and architecture of MEMS/NEMS.

The Casimir force, which originates from perturbations of fluctuating electromagnetic
(EM) fields [13,14], was discovered in 1948 by the Dutch physicist Hendrick Casimir [15].
This is a quantum mechanical attractive force between two parallel, neutral, and per-
fectly conducting flat plates, and without considering thermal fluctuations (at temperature
T = 0 K) [15]. In the 1950s, Evgeny Lifshitz and collaborators proposed the general theory
for the Casimir force between parallel flat plates made of real dielectric materials [16]. For
this purpose, the fluctuation–dissipation theorem was utilized to relate the dissipative prop-
erties of the plates (optical absorption by many microscopic dipoles) and EM fluctuations.
The Lifshitz theory predicts the attractive force between the two parallel plates of arbitrary
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materials and covers both at short ranges (non-retarded regime) the van der Waals forces,
and at longer ranges (retarded regime) the Casimir forces. [16,17].

Furthermore, the Lifshitz theory enables the prediction of the actuation dynamics of
micro/nano devices actuation since the omnipresent Casimir force could play a significant
role. This is because the Lifshitz theory allows to compute the tuning of the Casimir
force, actually, for both the magnitude and direction, by a suitable choice of the interacting
materials with the necessary optical properties [18–21]. As a result, several studies have
been performed on the effect of optical properties on the actuation dynamic of devices in
order to widen the range of their applications [22–25]. For example, in Ref. [23], it was
illustrated how the use of phase change materials can delay chaotic motion in MEMS
without changing the materials. Also, in Ref. [24], it was investigated how one can decrease
the influence of the temperature on the magnitude of the Casimir force with the use of
suitable materials in order to survive operation at low or high temperatures. Finally, in
Ref. [25], it was demonstrated how the magnetoelectric effect in micro devices consisting of
topological insulators can become dominant on the operation of MEMS and taking into
account its sensitive dependence on thermal fluctuations.

Actually, a three-layer system consisting of two actuating components immersed inside
a liquid has attracted extensive attention because it provides unique advantages. In this
system, under certain conditions, it is possible to generate repulsive Casimir forces leading
to stable operation without employing a restoring mechanical spring [26–36]. Moreover,
with a ferrofluid between the actuating components one can open new opportunities in
nanotechnology [29], for instance, in micromechanical sensors [30], microfluidics [31,36],
and micro robotics [37]. Therefore, we consider here a MEMS operating inside a fluid, and
the main aim is to investigate how stable operation is sensitive to optical properties of
the intervening layer by taking also into account the dynamic viscosity of the intervening
fluids as well as the fluid slip length on the walls of the actuating plate. Hence, the results
presented in this study are essential for studying the dynamical behavior of MEMS and
their design in liquid environments.

2. Methods and Materials

Here, we assume that the actuating components of the MEMS device are coated with Au,
which is a good conductor. The latter has static conductivity ωp

2/ωτ|Au ≈ 1600 eV [38] (ωp
and ωτ define the plasma and relaxation frequencies, respectively), and it is also extensively
used for Casimir force measurements. Moreover, ethanol and kerosene are used as the
intervening layer between the Au plates. Previous studies have shown that ethanol could
produce repulsive Casimir forces in a system consisting of different interacting bodies
(with dielectric functions εLiquid, ε1, ε2, respectively) if the condition ε1 < εLiquid < ε2 is
satisfied [26–28], and kerosene is also used in ferrofluid-based microdevices. In any case,
both materials, as an intervening medium, have attracted attention in investigations related
to Casimir forces [29–32]. The dielectric response of ethanol at imaginary frequencies can
be described by a three-oscillator Ninham–Parsegian model [29]:

εE(iξ) = 1 +
ε0 − ε IR

1 + (ξ/ωMW)
+

ε IR − (n0)
2

1 +
(

ξ/ωIR)
2
+

(n0)
2 − 1

1 +
(

ξ/ωUV)
2

, (1)

where ζ is the Matsubara frequency, n0 = 1.35 is the refractive index in the visible range,
ε0 = 25.07 is the static dielectric constant, and εIR = 4.2 is the dielectric constant where the
microwave (MW) relaxation ends and the infrared (IR) begins. ωMW = 6.97 × 109 rad/s,
ωIR = 2.588 × 1014 rad/s, and ωUV = 1.924 × 1016 rad/s are the characteristic MW, IR, and
ultraviolet (UV) absorption frequencies, respectively. Similarly, one has for the dielectric
function of kerosene at imaginary frequencies [29]:

εK(iξ) = 1 +
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+
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1 +
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2
+

CUV

1 +
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2
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where the second term on the right-hand side describes the contribution to the dielec-
tric permittivity from the orientation of permanent dipoles. The values of B = 0.020
and 1/τ = 8.0 × 108 rad/s were determined from the measured data of Ref. [38] in the
MW region. The third term shows the effect of ionic polarization with CIR = 0.007 and
ωIR = 2.14 × 1014 rad/s as obtained using the infrared optical data of Ref. [39]. The fourth
term describes the optical data in the UV region with the values CUV = 0.773 (obtained from
the static dielectric permittivity at zero frequency εK = 1.8 [38] since εK = 1 + B + CIR + CUV)
and ωUV = 1.0× 1016 rad/s. Finally, the dielectric functions, ε(iξ), of all media at imaginary
frequencies, which are vital as input for the calculations of the Casimir force via the Lifshitz
theory, are shown in Figure 1a.

Physics 2023, 5, FOR PEER REVIEW  3 
 

 

𝜀௄(𝑖𝜉)  =  1 + ஻ଵ ା (కఛ)  +  ஼಺ೃଵ ା (క/ఠ಺ೃ)మ  + ஼ೆೇଵ ା (క/ఠೆೇ)మ , (2)

where the second term on the right-hand side describes the contribution to the dielectric 
permittivity from the orientation of permanent dipoles. The values of B = 0.020 and 1/τ = 
8.0 × 108 rad/s were determined from the measured data of Ref. [38] in the MW region. 
The third term shows the effect of ionic polarization with CIR = 0.007 and ωIR = 2.14 × 1014 
rad/s as obtained using the infrared optical data of Ref. [39]. The fourth term describes 
the optical data in the UV region with the values CUV = 0.773 (obtained from the static di-
electric permittivity at zero frequency εK = 1.8 [38] since εK = 1 + B + CIR + CUV) and ωUV = 1.0 
× 1016 rad/s. Finally, the dielectric functions, 𝜀(𝑖𝜉), of all media at imaginary frequencies, 
which are vital as input for the calculations of the Casimir force via the Lifshitz theory, 
are shown in Figure 1a. 

 
Figure 1. (a) Dielectric functions 𝜀(𝑖𝜉) of imaginary Matsubara frequencies for the materials con-
sidered in this study. The inset shows the MEMS design for this study. (b) Schematic of three-layer 
Au micro system with no-slip/slip (having slip length, b) boundary conditions. See text for details.  

The dielectric function ε (i𝜉) is a vital input function to compute the Casimir force 
using the Lifshitz theory [16]. The Casimir force between two parallel plates at T = 300 K 
is given in terms of the Lifshitz theory (at the imaginary frequency representation) by the 
equation 𝐹(𝑇, 𝑧) = ௞గ் ∑ ′ஶ௡ୀ଴ ׬  𝑑𝒒 𝒒 |𝑘଴| 𝑔(𝒒, 𝑖𝜁௡ஶ଴ ) , 

(3)

where z denotes the separation, q denotes the in-plane vector, the imaginary frequencies 
(𝜉) describe the discreet Matsubara frequencies (ζ = 2𝜋𝑘𝑇𝑛/ħ). Here, ħ is the reduced 
Planck’s constant, k denotes the Boltzmann constant, and the prime in the sum of Equa-
tion (3) means that the n = 0 term must be taken with half weight. The term 𝑔(𝒒, 𝑖𝜁௡) 
describes the multiple reflections from the inner surfaces of the interacting bodies, which 
is represented by the equation 𝑔(𝑞, 𝑖𝜁௡)  =  ෍ 𝑟ଵఔ𝑟ଶఔ𝑒ିଶ௞బ௭/(1 − 𝑟ଵఔ𝑟ଶఔ𝑒ିଶ௞బ௭),ఔ ୀ ௦,௣  (4)

Figure 1. (a) Dielectric functions ε(iξ) of imaginary Matsubara frequencies for the materials consid-
ered in this study. The inset shows the MEMS design for this study. (b) Schematic of three-layer Au
micro system with no-slip/slip (having slip length, b) boundary conditions. See text for details.

The dielectric function ε (iξ) is a vital input function to compute the Casimir force
using the Lifshitz theory [16]. The Casimir force between two parallel plates at T = 300 K
is given in terms of the Lifshitz theory (at the imaginary frequency representation) by
the equation

F(T, z) =
kT
π

∞

∑
n=0

′ ∫ ∞

0
dq q |k0| g(q, iζn), (3)

where z denotes the separation, q denotes the in-plane vector, the imaginary frequencies (ξ)
describe the discreet Matsubara frequencies (ζ = 2πkTn/h̄). Here, h̄ is the reduced Planck’s
constant, k denotes the Boltzmann constant, and the prime in the sum of Equation (3)
means that the n = 0 term must be taken with half weight. The term g(q, iζn) describes the
multiple reflections from the inner surfaces of the interacting bodies, which is represented
by the equation

g(q, iζn) = ∑
ν=s,p

rν
1rν

2e−2k0z/
(

1− rν
1rν

2e−2k0z
)

, (4)

where the Fresnel reflection coefficients are given by

rs
i = (k0 − ki)/(k0 + ki) (5)
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and
rp

i = (εi k0 − ε0 ki)/(εi k0 + ε0 ki) (6)

where the superscript “s” indicates the transverse electric polarization (TE), and the sub-
perscript “p” indicates the transverse magnetic polarization (TM) of the electromagnetic
field, respectively. ε0 (iξ) and εi (iξ) are the dielectric functions of the intervening layer and
the interacting components, respectively. ki =

√
εi (iξ) ξ2/c2 + q2 (i = 0,1,2) describes the

out-off plane wave vector in the intervening layer between the interacting components
(k0), and in each of the interacting components (ki=1,2), c is the speed of light, and q is the
in-plane wave vector.

Moreover, we consider a typical MEMS, which is shown in the inset of Figure 1a,
consisting of two plates with the upper one being able to move. Both components are
assumed to be coated with Au, (with a coating thickness of more than 100 nm in order
to be considered optically bulk material) [40]. Moreover, we assume flat plates because,
at short separations (<<100 nm), nanoscale roughness can significantly affect the Casimir
force. The initial distance of the parallel plates is assumed to be d = 300 nm, and the
system temperature being T = 300 K. The intervening medium between these components
is assumed to be ethanol or kerosene. The equation of motion for the MEM system without
any external driven force is given by

M
d2z
dt2 +

(
Mω0

Q

)
dz
dt

= Fres + FCas + Fh, (7)

where M is the mass of the moving plate. The term (Mω0/Q) (dz/dt) describes the Stokes
term for the energy losses of the moving plate, whereas Q defines the quality factor
of the MEMS (in this study, Q = 400 is considered, while the calculations performed
with low values of Q = 10 do not have significant effect). We also assume ω = 300 kHz,
which is a typical frequency for Atomic Force Microscopy cantilevers and MEMS [41].
Fres(z) = −k(d − z) is the restoring force, where k is the elastic spring stiffness, and FCas(z)
is the Casimir force, which is computed via the Lifshitz theory. Finally, Fh defines the
separation-dependent hydrodynamic force, which is the dominant dissipation term due to
its 1/z dependence at short separations, and it is given by [42–51]

Fh(z) = −
Aµ

z
dz
dt

f ∗ , (8)

where A is the area of the plates, and we consider for both the length (Lx) and width (Ly) of
the plates the value of 10µm. µ is the dynamic viscosity of the intervening liquid. The latter
at 300 K has the value µ = 0.001 kg/ms and µ = 0.0016 kg/ms for ethanol and kerosene,
respectively. f ∗ is the correction due to deviations from the Reynolds flow because of fluid
slip on solid surfaces (see Figure 1b). In this study we consider the same slip length b on
the surface of both plates. If b = 0 then f ∗ = 1, otherwise it is given by [42–51]

f ∗=
1
4
{1 + 3z

2b
[(1 +

z
4b

) (1 +
4b
z
) − 1]}. (9)

Equation (8) is valid for fluid flow with low Reynolds numbers and short separations
between the interacting components.

3. Results and Discussion

Before analyzing the actuation dynamics, we illustrate the influence of the optical
properties of the intervening layer on the Casimir force via Lifshitz theory calculations.
In order to achieve the aim, we introduce the reduction factor ηp(z) (<1) to normalize the
Casimir force, with respect to the maximum Casimir force (FC = π2h̄c/240z4) [15] between
ideal metals at T = 0 K. The Casimir force calculations are shown in Figure 2 and confirm
that, by increasing the magnitude of the dielectric function ε(iξ) of the intervening layer
(since εAu(iξ) > εethanol(iξ) > εkerosene(iξ)), the strength of the Casimir force is reduced.
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Figure 2. Casimir reduction factor for different three-layer micro systems versus separation between
the plates. The fixed and moving components are assumed to be decorated Au with 100 nm thickness
in order to be considered optically bulk. The intervening liquid layer is indicated.

Furthermore, for the discussion of the actuation dynamics for the three-layer micro
device, it is helpful to consider the separation of z∗, where there is equilibrium between the
Casimir and the restoring forces or Fc(z∗) + Fres(z∗) = 0. The latter yields the characteristic
spring stiffness, K∗ = (z∗)/(d − z∗). d defines the initial separation between plates where
the spring is supposed to be unstretched (d = 300 nm). Indeed, K∗ determines the minimum
spring stiffness for the system to be able to sustain some form of motion against the stiction
of the moving component on the fixed plate.

In the beginning, in order to show how the presence of the hydrodynamic drag force
can change the motion and consequently the phase portrait, we have considered a micro
device which is placed in vacuum or air. Under these conditions, the energy dissipation
is described only by the Stokes dissipation term (Mω0/Q) (dz/dt), where the values of
the Q factor considered here are typical for a multitude of MEMS/NEMS operating in
vacuum [4,41]. Figure 3 shows the corresponding phase portraits for a microsystem con-
sisting of Au coated components that are placed in vacuum. As it can be seen in Figure 3a,
when the stiffness of the restoring force is sufficiently strong the phase portrait reveals
closed orbits, which correspond to periodic motion around a stable center equilibrium
point. Also, by decreasing the magnitude of the restoring force for lower stiffness, the
size of orbits enlarges, allowing the moving plate to come rather close to the fixed plate
and preserve its stable operation. Notably, the stable operation can be preserved until
the restoring force is stronger than the force corresponding to K∗ for a considered initial
condition. Hence, if the restoring force becomes smaller than the force corresponding to
K∗, there is no more closed orbit. Indeed, according to Figure 3b, by considering a weak
value of the restoring force (K < K∗), it can be seen that the close orbit changes into an open
orbit, which is the evidence of motion of the moving plate towards the fixed one, leading
to irreversible adhesion between the components. This phenomenon is called stiction. If,
however, the restoring force is increased, the dissipation energy, or equivalently the quality
factor Q is decreased, then it is still possible to decrease the possibility to drive the system
into stiction. The effect of the finite value of Q, due to intrinsic and extrinsic dissipation
mechanisms of the oscillating plate, is shown in Figure 3b. Indeed, calculations illustrate
that the transition from unstable motion towards stiction to stable oscillation is possible if
dissipative motion takes place. Therefore, proper tuning of the system Q factor can also aid
to prevent the permanent adhesion of an otherwise unstable micro system.
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point and unstable saddle point are indicated. See text for details.  

Figure 3a,b is considered with an initial condition (z = 0.95d) and for different values 
of the stiffness for the restoring force (K < K* and K > K*). In Figure 3c, a fixed stiffness K 
(which corresponds to z = 0.95d) is assumed, and different initial conditions are consid-
ered. According to Figure 3c, there is a homoclinic orbit, including one unstable equilib-
rium point on the sharp side of the orbit and one stable equilibrium inside it. This ho-
moclinic curve can sharply separate unstable motion (leading to stiction within one pe-

Figure 3. Phase portraits for micro system coated with Au. Q = 10,000, λ = 0.95 (λ = z∗/d), d = 300 nm,
and K∗ = 0.000465 are used. (a) K >> K∗, where the value of K is indicated. (b) Influence of the
damping term on the actuation dynamics of the Au−Au micro device with K = 0.000464 (K < K∗), and
different values of the quality factor Q as indicated. The closed orbits indicate stable motion, while
an open orbit is the sign of unstable motion leading to stiction. (c) Phase portraits for K = 0.000465
(K = K∗), and initial conditions inside and outside the homoclinic orbit. The stable center point and
unstable saddle point are indicated. See text for details.

Figure 3a,b is considered with an initial condition (z = 0.95d) and for different values
of the stiffness for the restoring force (K < K* and K > K*). In Figure 3c, a fixed stiffness K
(which corresponds to z = 0.95d) is assumed, and different initial conditions are considered.
According to Figure 3c, there is a homoclinic orbit, including one unstable equilibrium
point on the sharp side of the orbit and one stable equilibrium inside it. This homoclinic
curve can sharply separate unstable motion (leading to stiction within one period) from
the periodic closed orbits around the stable center point. Any solution of the equation
of motion with initial conditions within the homoclinic orbit that goes until the unstable
saddle point (square in shape in Figure 3c) will lead to stable periodic motion around the
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stable center. However, for any other initial conditions outside of the homoclinic orbit, the
upper plate will perform unstable motion, leading to collapse on the fixed plate. In the
latter case, the micro system is unstable during oscillation around these points due to the
stronger Casimir force which leads to the collapse of the moving plate on the fixed one.
The periodic solutions indicate that the restoring force is strong enough to keep system in
operation and avoid any stiction instabilities.

Further, we consider the three-layer microsystem consisting of Au-coated components
within a liquid (ethanol or kerosene) playing the role of an intervening layer. In this system,
besides the Stokes dissipation term (Mω0/Q) (dz/dt), the additional hydrodynamic force
also describes dissipation for the micro system, and consequently can play an inevitable
role for the motion and phase portrait of these devices. In this case, the phase portraits
related to the autonomous micro device containing liquid do not reveal closed orbits or
equivalently continuous oscillation. Unlike the micro device, which is placed in vacuum,
even by considering a sufficiently strong restoring force, the phase portraits show a spiral
trajectory which eventually stops at the resting position z = d. This is shown in the
calculations in Figure 4, where λ* (=z∗/d) = 0.5 is considered as an initial position to activate
the actuation. If the spring stiffness is K > K∗, then for both micro systems the moving
component approaches slowly the resting position toward z = d and eventually stops.
By considering K >> K∗, the corresponding curve in phase space shows that the moving
component exhibits stronger velocity due to the enhancement of the restoring force. For
the value of K < K∗, the moving component eventually collapses on fixed plate leading to
permanent adhesion or stiction.
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d = 300 nm, and b = 0 are used. Phase space dissipative motion for various values of K (0.0005,
0.005, 0.05 N/m). K∗E = 0.000635 N/m and K∗K = 0.000675 N/m are considered for the micro systems
containing ethanol and kerosene, respectively.

Further, Figure 5 shows phase space portraits using as initial condition λ∗ = 0.5
and significant spring stiffness K >> K∗, leading to spiral trajectory towards immobility.
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By increasing the restoring force, the spiral curve and consequently the velocity of the
moving component becomes wider. Also, by increasing the slip length b, the hydrodynamic
dissipation, which acts against the motion, reduces and, as a consequence, the spiral
trajectory is more extended for both liquids. However, the effect of the slip length (b), as
the spring stiffness increases, becomes more pronounced for the micro system containing
kerosene, for which the Casimir force is stronger than that of micro system containing
ethanol as shown also in Figure 2. However, both micro systems preserve the ability to
move if the spring stiffness K is stronger than the value that corresponds to λ∗ (K∗E and
K∗K for micro system containing ethanol and kerosene, respectively), while for both micro
systems stiction occurs if K < K∗. Although the hydrodynamic force cannot influence the
magnitude of K∗ (which depends on the magnitude of the Casimir force), this term is
significantly important in phase space. Indeed, as Figure 6 shows, for K < K∗ the reduction
of the hydrodynamic force causes the approach to stiction to take place significantly faster.
Therefore, increasing the slip length (b), or equivalently decreasing the hydrodynamic
dissipation in the system containing kerosene, it is possible to make the trajectory of both
micro systems similar to each other (Figure 6b).
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z∗ = 0.5d, d = 300 nm, and K >> K∗ are used. The value of the slip length, b, is indicated.
K∗E = 0.000635 N/m and K∗K = 0.000675 N/m are considered for the micro systems containing ethanol
and kerosene, respectively.

Figure 7 compares the magnitudes of Casimir and hydrodynamic forces for a three-
layer system including ethanol for the spring stiffness K = 0.008 N/m. As can be seen
for small and large separations, the magnitudes of both forces become comparable and
consequently both forces play role in the dynamical behavior of the microsystem.

Finally, in Figure 8, we investigate the response of the three-layer micro device with a
liquid as an intervening medium under the presence of an external driven periodic force
(F(t) = F0cos(ωd t)), which is a realistic case for possible applications. In this case, the
equation of motion has the more general form:

M
d2z
dt2 +

(
Mω0

Q

)
dz
dt

= Fres + FCas + Fh + F0cos(ωdt) (10)
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are considered for the micro systems containing ethanol and kerosene, respectively. λ = 0.5 is
considered as initial condition (I.C).
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Figure 7. Casimir and hydrodynamic forces for the three−layer Au microsystem with ethanol.
λ = z/d and d = 300 nm are used. For computing hydrodynamic force z*/d is considered of 0.1 and
K = 0.008 N/m.

By decreasing the magnitude of the Casimir force (for large value of λ or, equivalently,
larger separations) and the hydrodynamic force, the influence of the periodic driven force
becomes dominant, and the micro system can achieve continuous stable oscillation around
the resting position (z = d). Indeed, according to Figure 8a, the amplitude of the stable
oscillation is higher for micro system containing ethanol due to the lower magnitude
of Casimir and hydrodynamic forces. This is also depicted in Figure 8b,c, where the
amplitude of the continuous oscillation is smaller in the micro system containing kerosene
due to the stronger magnitude of the Casimir force and hydrodynamic force. Moreover, as
Figure 8b,c indicate, an increasing amplitude of the external driven periodic force (F0) leads
to significant influence on the continuous oscillation, while decreasing the hydrodynamic
force (by increasing slip length) is no longer making significant difference on the oscillatory
motion for both liquids.
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4. Conclusions

In this study, we investigated the actuation dynamics of a micro device consisting of
Au-coated components with different intervening liquids between the actuating compo-
nents under the influence of Casimir and separation-dependent dissipative hydrodynamic
drag forces. This is accomplished via phase space portraits, which demonstrate that by
increasing the dielectric response of the intervening layer, one can prevent the microdevice
to come into stiction due to decreasing in magnitude Casmir forces. Using the phase
portraits of a microsystem that is placed in vacuum or air, it has been shown how the
presence of a liquid and, as a consequence, the additional dissipation term due the position
dependent hydrodynamic drag force can significantly influence the actuation dynamics
of MEMS/NEMS. By assuming vacuum or air between the actuating components, there
are closed or open orbits inside the phase portraits providing evidence that the restoring
force is sufficiently strong or very weak in order to preserve stable operation of the micro
devices. In addition, it is shown how the reduction of the quality factor Q or, equivalently,
by enhancing the Stoke energy dissipation can change an unstable motion towards stiction
to stable dissipative motion.
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However, by considering liquid (ethanol or kerosene) as the intervening medium, and
as a consequence the existence of the additional hydrodynamic force between the compo-
nents of MEMS the actuation dynamics changes drastically. Indeed, for both at the absence
and presence of the external driven force, it is illustrated that it is feasible to expand area of
motion using intervening liquids with lower dynamic viscosity or increasing the slip length
(b) of the surrounding fluid leading to weaker hydrodynamic forces. It is indicated that
the phase portraits related to the autonomous micro device containing liquid do not reveal
closed orbit or, equivalently, continuous oscillation. Even by considering sufficiently strong
restoring force, the phase portraits show spiral trajectory which eventually terminates
the motion at a rest position. Finally, we investigated the influence of an external driven
periodic force, which is the realistic case for device applications. It is demonstrated that the
system can reveal continuous stable oscillation with an amplitude higher for the liquid that
led to lower Casimir and hydrodynamic drag forces. Notably the amplitude of the driven
force leads to significant influence on the continuous stable oscillation that takes place
at relatively larger separations, while any decrease in hydrodynamic force via increasing
the slip length has limited influence. Therefore, this study addresses the influence of the
optical properties of the intervening layer for the three-layer actuating micro system. And
the results presented in this study are essential for studying the dynamical behavior of
three-layer micro devices, and for the designing and manufacturing of MEMS in order to
operate in a stable manner in different environments.
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