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Abstract: In this paper, we study the influence of a small group of agents (i.e., a lobby) that is trying
to spread a rumor in a population by using the known model proposed by Serge Galam. In particular,
lobbies are modeled as subgroups of individuals who strategically choose their seating in the social
space in order to protect their opinions and influence others. We consider different social gatherings
and simulate, using finite Markovian chains, opinion dynamics by comparing situations with a
lobby to those without a lobby. Our results show how the lobby can influence opinion dynamics in
terms of the prevailing opinion and the mean time to reach unanimity. The approach that we take
overcomes some of the problems that behavioral economics and psychology have recently struggled
with in terms of replicability. This approach is related to the methodological revolution that is slowly
changing the dominant perspective in psychology.
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1. Introduction

Besides the known incident [1] and the more recent case [2] in behavioral economics,
replicability has also been questioned in psychology since at least 2015 [3], and alternative
approaches to analyzing the phenomena studied by these disciplines could help to shed
light on human behavior in groups.

Social influence is a topic that has attracted great interest in both social psychology [4]
and behavioral economics [5]. Social psychology in particular has provided some ground-
breaking experiments in which the effect of groups in changing opinions [6] has been
investigated. Of additional relevance is the research on the influence of minorities using
a simulation approach on lattices [7] and on networks [8,9]; for a discussion of spatial
interactions in agent-based models, see [10]. Another interesting example can be found in
studies on the influence of small groups on majority consent [11]. These studies analyze
the influence of groups at the microscopic level and provide some insights that can be
applied in the analysis of political change [12]. Previous research has focused in particular
on two different aspects: the influence of the majority (i.e., conformity, Ref. [6]) and the
influence of the minority [13]. Studies on conformity show that the most common opinion
in a group is able to exert an enormous influence on individuals and leads them to give
inaccurate answers [6]. By contrast, studies on minority influence have focused on how
people resist group pressure and how individuals are able to change the opinion upheld by
the dominant position [14]. Minority studies have been applied to innovation and social
change [15] and also to the study of influence on dominant positions [12]; for reviews
on the influence of small groups, see [11,16,17]. Further experimental studies have been
conducted in order to shed light on the psychological processes of minority influences [18]
and the strategies of influencing dominant positions [19]. In the field of social epistemology,
both mathematical and computational models of social influence are being developed to
compare the ability to secure consensus in different types of social arrangements [20] and
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how agents may fail to converge to the truth [21]. Another important research branch
is devoted to the topic of strategic influence. In particular (see, e.g., [22,23]), strategic
influence is applied to voting schemes. In this paper, we consider lobbies as groups of
individuals who strategically choose their seats in the social space to protect their opinions
and influence other individuals. Finally, some contributions in the literature on group
decision making and consensus building can be found in Refs. [24,25].

More recently, the spread of conspiracy theories [26] on various topics [27], but also
on science [28,29] and the social processes underlying their spread [30], show how relevant
these phenomena can be to the society. Given the problems of replicability mentioned above,
analytical approaches or replicable simulation models can be highly useful. Therefore, we
introduce minorities in the known model of Serge Galam [31], who analyzed the spread of
hoaxes twenty years ago using sociophysics.

The paper is structured as follows. In Section 2, we discuss some possible approaches
to modeling opinion spreading. In Section 3, we summarize Galam’s model [31] and
illustrate how we extend it by introducing lobbies. The results of our simulation are
analyzed in Section 4. Finally, Section 5 gives the conclusions and suggests further research.

2. Analytical and Computational Approaches to Opinion Spreading

Although experimental studies provided by social psychology offer important con-
tributions in understanding the proximate mechanisms that influence human behavior,
this approach presents some intrinsic limits [13]. One of these limits is that experimental
studies cannot investigate the temporal dimensions and the long-run effects of opinion
dynamics on a population. Therefore, it is crucial to integrate the knowledge of the prox-
imate processes derived from social psychology with methods that can focus on a more
dynamic dimension. In other words, once it is known that a local majority opinion can
influence individuals in small groups, how will this effect spread to the population? One
attempt to fill this gap has been provided by sociophysics [32]. A sociophysics approach
focuses on the dynamic dimension, i.e., the time needed for a minority to reach a consensus
in a population. One of the first attempts to integrate social psychological theories with
the methods of sociophysics was proposed in Ref. [33]. This study provides a different
context to test theories developed in an experimental setting and allows for the validation
of these concepts on a broader scale. In particular, this study focuses on the phenomenon
of polarization in groups, i.e., the tendency of individuals to hold more radical opinions in
the presence of others.

Other approaches that can be integrated with social psychology for the study of
opinion dynamics are mathematical modeling [34–36] and agent-based simulations [37,38].
Recently, the integration of other approaches, such as agent-based modeling, has become
more popular (see, e.g., [39]), because they make it possible to consider several phenomena
in social psychology “as emergent results of dynamically interactive processes taking place
in their contexts” [40]. This is part of the quiet methodological revolution referred to in [41],
as statistics moves from the mechanical application of a series of procedures to the building
and the evaluation of models.

Among other disciplines, sociophysics offers some important insights into the analysis
of social influence on opinion dynamics and consensus [37,42,43]. One of the main interest-
ing models is proposed in [31]. Galam’s model focuses on the analysis of the propagation
or diffusion of hoaxes in public debates. To be more specific, in Galam’s model, individuals
interact together on a specific topic in groups of different dimensions. The model shows
that even if, at the beginning, an opinion represents the minority, after a certain amount of
discussion, this opinion can be diffused to the population. The configuration of different
tables of different sizes where people discuss is called a social space [31,44] for details).
An example of interaction in Galam’s model can be found in Figure 1. Further research
has introduced more complexity in this model [45]. For example, the agents proposed
in Ref. [45] hold always the same opinion and have the ability to influence all the agents
sitting at the table. In this research, we introduce the presence of lobbies in Galam’s model.
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Lobbies are modeled as minorities that are able to influence other opinions with a specific
strategy. As a matter of fact, members of the lobby have the ability to find and seat, when
possible, at a table where they can be the majority and exert their influence more efficiently.

Empty social spacesSocial gathering

after discussion

Social gathering

before discussion

Empty social spaces

Figure 1. An exemplification of Galam’s model: a one-step opinion dynamics. Left to right: First
stage: individuals (black and gray circles) sharing the two opinions are moving around in order to
sit at the available seats (white circles) of the tables. Gray circle individuals are “in favor of opinion
X ”, while black circle individuals are “against X ”. Second stage: individuals are partitioned into
groups of various sizes (tables). Before the discussion occurs, there are eleven individual in favor
(gray circles) and thirteen against (black circles). Third stage: within each group, the discussion
occurs and consensus has been reached. As a result, there are now twelve individuals in favor, and
twelve individuals against. Last stage: individuals are again moving around with no discussion.

3. Rumors and Lobbies in Galam’s Model

Galam’s model can be considered a dynamic application of the conformity influence in
different social gatherings. In Ref. [31], individuals have the same characteristics (i.e., they
all meet randomly and change their opinion according to the majority) and a consensus can
be reached when a specific minority threshold is reached. Therefore, Galam’s model does
not explain the dynamics in which small organized groups such as lobbies can implement
some strategies to influence others’ behavior. Lobbies can be modeled in different ways
and can have a wide range of strategies, behaviors or interactions. In this paper, we present
a model of a lobby capable of influencing the dynamics of opinions at strategic tables. More
specifically, as in other studies examining seating positions at specific tables [46–48], lobbies
are groups of individuals who always sit at tables where they can influence others. The
influence rule is the same as in Galam’s model [31] but, in the case considered, one has a
small part of the population who strategically sit at the tables where they possibly represent
the majority and then persuade others. To summarize, we consider a Galam-like model
with a lobby, where the lobby is modeled as a subgroup of individuals who are “against
opinion X ”, and coordinate their sitting at the tables of the social space with the aim of
influencing as many agents as possible of the opposite opinion without being overridden.
As a matter of fact, in the case here considered, the lobby members are subject to the table
majority rule too; in other words, they are different from the opinion leaders considered
in [45], who are always able to persuade all agents at their table. The strategic choice of
the lobby depends on the social space configuration. As it is impossible to consider all the
possible social space configurations for any number of individuals, we consider an example
to study opinion dynamics.

In Galam’s model [31], gatherings take place at different times, and each individual
holds one of two possible opinions, e.g., in favor of X , or against X . When the individuals
meet in a specific gathering configuration (a table with 3, 4, . . . n individuals), they change
their opinion according to the majority. Then, they will discuss again randomly in different
social gatherings and change always their opinion according to this rule.
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3.1. The Model without Lobby

We consider a population of N individuals who, at time t, have either opinion X (in
favor) or X (against). At each time t, j denotes the number of individuals with the opinion
X and defines the state of the system; therefore, the set of the possible statesof the system
is J = {0, 1, . . . , N}, where j = 0 indicates a consensus on the opinion X and j = N on the
opinion X . In particular, as in Ref. [44], individuals interact in a social space consisting
of a set of available tables Tr ∈ N = {T1, T2, . . . , TL}, whose size is denoted sr. The sizes
of the tables in N are represented as a vector s = (s1, s2, . . . , sL) ∈ RL (the case L = N,
i.e., all tables of dimension 1, is trivial and therefore is not considered), where L < N
and ∑Tr∈N sr = N. The number of individuals who hold the same opinion at a given
table of size s is denoted by n(X ) and n

(
X
)
, respectively, so that n(X ) + n

(
X
)
= s. The

distribution of individuals in favor of opinion X across the L tables is represented by the
vector n(X ) = (n1(X ), n2(X ), . . . , nL(X )) and j = ∑L

r=1 nr(X ) is the state of the system.
At each time step t, the dynamics of each individual’s opinion is governed by the

following set of rules:

• individuals are randomly distributed to the available seats;
• individuals change their opinion according to a local or table majority rule, i.e., at

each table, if n(X ) > n
(
X
)
, then all individuals sitting at the table will change to the

opinion X ; vice versa, if n
(
X
)
≥ n(X ), then all the individuals sitting at the table will

change to opinion X .

This approach leads to a stochastic process where the individuals submit to the local
majority with certainty; this is different, for instance, from Ref. [49], where individuals may
also change opinion, with a certain probability that depends on a propensity parameter.

3.2. The Model with Lobby

We assume that an interest group, with the goal of influencing the population’s opinion,
is able to strategically choose seats. Organized interests quite often target opponents and
undecideds [50]. We therefore assume that, within the population of N individuals, there
exists a subset of size N∗ ≤ N—called a lobby—that strategically distributes itself across
the available tables in order to maximize the number of new allies who share its opinion X .
The number of lobbyists seated at a table Tr is denoted as n∗r . The distribution of lobbyists
across the L tables is represented by the vector n∗ =

(
n∗1 , n∗2 , . . . , n∗L

)
. Taking into account

the table majority rule defined above in Section 3.1, the dynamics rules are as follows:

• the lobbyists sit at the tables, possibly occupying half of the seats available at each
table (if s is an even number), or ⌈s/2⌉ (if the seats are an odd number) (recall that the
symbol ⌈·⌉ indicates the ceiling function);

• non-lobbyist individuals are randomly distributed across the remaining seats;
• the table majority rule is applied to both lobbyists and non-lobbyists and the opinions

are updated.

3.3. Simulation Model

The opinion dynamics can be modeled as a finite Markov chain [44], i.e., a discrete-
time process in which the future state depends only on the present state and not on the
past states [51]. As a matter of fact, all possible opinion configurations can be considered as
states and the probability of a transition between any couple of states can be computed as
shown in Ref. [44]:

Pj(n(X )) =

(
j

n1(X ),n2(X ),...,nL(X )

)(
N−j

s1−n1(X ),s2−n2(X ),...,sL−nL(X )

)
(

N
s1,s2,...,sL

) , (1)

where
(

b
b1,b2,...,bL

)
is the common notation for multinomial coefficients.
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When considering lobbies, the previous formula can be adapted as follows, conditional
on the lobbyists’ position:

Pj(n(X )|n∗) =

(
j

n1(X ),n2(X ),...,nL(X )

)(
N−N∗−j

s1−n∗1−n1(X ),s2−n∗2−n2(X ),...,sL−n∗L−nL(X )

)
(

N−N∗
s1−n∗ ,s2−n∗ ,...,sL−n∗

) . (2)

In our study, we consider a population with N = 24 individuals as it offers a large
enough number of social spaces; even in this case, the partition number is too large for
a systematic analysis of all the possible spaces since, for N = 24, the partition number is
1575 [52] (sequence A000041). Therefore, we consider the special case in which all the tables
have the same size. In order to be able to assess the role of the lobby, we limit its size to a
maximum of six individuals. The social spaces that we consider, together with the strategic
seating choices of the lobby members, are shown in Figure 2. Similar to that in Galam’s
model, when a table has the same number of contrasting opinions, the bias is in favor of
the individuals who are “against X ”.

(a) S1 (b) S2 (c) S3

(d) S4 (e) S5 (f) S6

Figure 2. Population of twenty-four people seated in different social spaces. Lobby consists of at most
six people (black dots) who are “against X ” seating at prefixed strategic tables for different social
spaces Sh as follows. (a) S1: twelve tables with two seats each; lobby members sit individually at six
tables. (b) S2: eight tables with three seats each; lobby members sit in couples at three tables. (c) S3:
six tables with four seats each; here, too, lobby members sit in couples at three tables. (d) S4: four
tables with six seats each; lobby members sit in groups of three at two tables. (e) S5: four tables with
six seats each; four lobby members sit at one table and are always able to influence, while the two
remaining sit at another table. (f) S6: two tables with twelve seats each; lobby members sit together at
one table.

As is typical with finite Markov chains, the transition probabilities are arranged in a
matrix [53] (p. 374). For each social space Sh (with h = 1, · · · , 6) of Figure 2, we compare
the two scenarios, one with and the other without a lobby. The transition matrices can be
computed using Formulas (1) and (2) as illustrated in the following example.
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Example

We consider N = 24 individuals and the social space S6, which consists of two tables
of the same size s = 12. The choice of the space S6 is due to the fact that the multinomial
coefficients in the transition probabilities defined in Equations (1) and (2) become binomial
coefficients and the notation is simpler. At the end of each time period, the opinions are
homogeneous; therefore, only the states 0, 12 and 24 have positive probabilities. From
Equation (1), one can derive the positive entries of the matrix M6 for the scenario without
a lobby:

pj,0 = 1 with 0 ≤ j ≤ 6,

pj,0 =

[
s/2
∑

k=j−s/2

(
j
k

)(
N−j
s−k

)]
/
(

N
s

)
with 7 ≤ j ≤ 12,

pj,12 = 2

[
j

∑
k=s/2+1

(
j
k

)(
N−j
s−k

)]
/
(

N
s

)
with 7 ≤ j ≤ 12,

pj,12 = 1 with j = 13,

pj,12 = 2

[
N−j
∑

k=s/2

(
j

s/2−k

)(
N−j

k

)]
/
(

N
s

)
with 14 ≤ j ≤ 18,

pj,24 =

[
j

∑
k=s/2+1

(
j
k

)(
N−j
s−k

)]
/
(

N
s

)
with 14 ≤ j ≤ 18,

pj,24 = 1 with 19 ≤ j ≤ 24,

that is,

M6 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=1(

7
k )( 17

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0

2 ∑7
k=7(

7
k )( 17

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=2(

8
k )( 16

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0

2 ∑8
k=7(

8
k )( 16

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=3(

9
k )( 15

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0

2 ∑9
k=7(

9
k )( 15

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=4(

10
k )( 14

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0

2 ∑10
k=7(

10
k )( 14

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=5(

11
k )( 13

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0

2 ∑11
k=7(

11
k )( 13

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=6(

12
k )( 12

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0

2 ∑12
k=7(

12
k )( 12

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
2 ∑10

k=6(
14

12−k )( 10
k )

( 24
12 )

0 0 0 0 0 0 0 0 0 0 0
∑7

k=7(
14
k )( 10

12−k )
( 24

12 )

0 0 0 0 0 0 0 0 0 0 0 0
2 ∑9

k=6(
15

12−k )( 9
k )

( 24
12 )

0 0 0 0 0 0 0 0 0 0 0
∑8

k=7(
15
k )( 9

12−k )
( 24

12 )

0 0 0 0 0 0 0 0 0 0 0 0
2 ∑8

k=6(
16

12−k )( 8
k )

( 24
12 )

0 0 0 0 0 0 0 0 0 0 0
∑9

k=7(
16
k )( 8

12−k )
( 24

12 )

0 0 0 0 0 0 0 0 0 0 0 0
2 ∑7

k=6(
17

12−k )( 7
k )

( 24
12 )

0 0 0 0 0 0 0 0 0 0 0
∑10

k=7(
17
k )( 7

12−k )
( 24

12 )

0 0 0 0 0 0 0 0 0 0 0 0
2 ∑6

k=6(
18

12−k )( 6
k )

( 24
12 )

0 0 0 0 0 0 0 0 0 0 0
∑11

i=7(
18
k )( 6

12−k )
( 24

12 )
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

From Equation (2), the entries for the matrix M6 with a lobby of size N∗ = 6 are
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pj,0 = 1 with 0 ≤ j ≤ 6,

pj,0 =

[
s/2
∑

k=j−s/2

(
j
k

)(
N−N∗−j

j−s/2

)]
/
(

N−N∗
s−N∗

)
with 7 ≤ j ≤ 12,

pj,12 =

[
j−s/2−1

∑
k=0

(
j
k

)(
N−N∗−j
s−N∗−k

)]
/
(

N−N∗
s−N∗

)
with 7 ≤ j ≤ 12,

pj,12 = 1 with 13 ≤ j ≤ 18,
pj,24 = 1 with 19 ≤ j ≤ 24,

and one has

M6 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=1(

7
k )( 11

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0

∑0
k=0(

7
k )( 11

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=2(

8
k )( 10

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0

∑1
k=0(

8
k )( 10

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=3(

9
k )( 9

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0

∑2
k=0(

9
k )( 9

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=4(

10
k )( 8

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0

∑3
k=0(

10
k )( 8

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=5(

11
k )( 7

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0

∑4
k=0(

11
k )( 7

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0 0

∑6
k=6(

12
k )( 6

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0

∑5
k=0(

12
k )( 6

6−k )
( 18

6 )
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

Although it is possible to calculate the transition matrices for all social spaces, this
process is not straightforward and is prone to errors. Therefore, we do not formally derive
the transition matrices, but determine them through simulations.

As mentioned above in this Section, for each social space Sh, we compare the two
scenarios, one with and the other without a lobby. For each scenario, 1, 000, 000 simulations
are run to determine the transition matrix.

From the transition matrices, we compute the probabilities of converging to the
absorbing states as illustrated in Ref. [44]; those probabilities are graphically represented,
together with the average time of convergence to the absorbing states, in Figures 3–8.
For each social space Sh (h = 1, . . . , 6), Figures 3–8, left, represent the probabilities of
convergence to the respective absorbing states from any initial states, j = 0, . . . , 24. The
graphs in Figures 3–8, right, represent the mean time, tj, of convergence towards the
absorbing states, starting from any initial state j. Since we are considering discrete states,
the lines connecting the dots are for illustrative purposes only. As expected, when j ≥ N/2,
opinion X is no longer a minority opinion. In Appendix A, we provide the pseudocode for
the computation of the transition matrices Mh without a lobby and the transition matrices
Mh of the population with the lobby (the R code and the libraries to replicate our results
are available from the authors upon request). As j increases to values larger than 18, we
correspondingly reduce the number of the lobby members; for example, when j = 20, the
number of the lobby members are four, and, in the social space S2, they would only sit at
two tables instead of three.
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Figure 3. Social space S1: twelve tables with two seats each and the members of the lobby sitting
strategically, as shown in Figure 2a. The probability of convergence (a) to the unanimous opinion
X and the absorption time (b) to any unanimous opinion as functions of the initial number of
individuals with opinion X for cases with (red) and without (blue) a lobby.
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Figure 4. Social space S2: eight tables with three seats each and the members of the lobby sitting
strategically, as shown in Figure 2b. The probability of convergence (a) to the unanimous opinion
X and the absorption time (b) to any unanimous opinion as functions of the initial number of
individuals with opinion X for cases with (red) and without (blue) a lobby.
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Figure 5. Social space S3: six tables with four seats each and the members of the lobby sitting
strategically, as shown in Figure 2c. The probability of convergence (a) to the unanimous opinion
X and the absorption time (b) to any unanimous opinion as functions of the initial number of
individuals with opinion X for cases with (red) and without (blue) a lobby.
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Figure 6. Social space S4: four tables with six seats each and the members of the lobby sitting
strategically, as shown in Figure 2d. The probability of convergence (a) to the unanimous opinion
X and the absorption time (b) to any unanimous opinion as functions of the initial number of
individuals with opinion X for cases with (red) and without (blue) a lobby.
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Figure 7. Social space S5: three tables with eight seats each and the members of the lobby sitting
strategically, as shown in Figure 2e. The probability of convergence (a) to the unanimous opinion
X and the absorption time (b) to any unanimous opinion as functions of the initial number of
individuals with opinion X for cases with (red) and without (blue) a lobby.
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Figure 8. Social space S6: two tables with thwelve seats each and the members of the lobby sitting
strategically, as shown in Figure 2f. The probability of convergence (a) to the unanimous opinion
X and the absorption time (b) to any unanimous opinion as functions of the initial number of
individuals with opinion X for cases with (red) and without (blue) a lobby.

4. Results and Discussion

Formulas (1) and (2) are general and can be written for finite populations and any
social space; moreover, the simulation approach—which is used to avoid the tedious
calculation of all possible cases—can also be used in general.

The results show that, across all the social spaces considered, lobbies are able to
influence populations with increased sample sizes. This is true for all social spaces except
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for the simplest one, where there are no differences in dynamics between the situation with
and that without a lobby. Moreover, if one considers the time of convergence in each of
Figures 3–8, i.e., the time to converge to the opinion held by the lobby (“against opinion
X ”), the lobbies increase rather than significantly decrease the average number of steps to
convergence to an absorbing state, i.e., to a state that cannot be left once entered [51] (p. 35).
This means that even if strategic lobbies are able to influence a larger part of the population,
their presence can shorten the time to change the public opinion on a given issue. From
these two findings, one can conclude that the presence of lobbies can ensure influence on a
larger scale, but at the cost of time. In Figures 3–8, we summarize the dynamics with and
without lobbies for each of the social spaces considered.

In the social space S1, the results for convergence are identical for both models with
and without lobbies; however, the average convergence time decreases when there are
lobby members (Figure 3).

The social space S2 exhibits a new absorbing state that can be deduced from Figure 2b
when the initial state of the population has a lobby with three members. Two of these
members strategically sit at the same table, leaving the other member alone at a different
table. According to the table majority rule, the pair of lobbyists will persuade the third
person at the table in favor of opinion X , while the lone lobby member will be persuaded
in favor of opinion X , thus maintaining the size of the lobby as originally three members;
this is an impasse situation similar to that discussed in Ref. [44]. However, it must be
noted that, in this social space, the impasse can only occur when the lobby is active. In
Figure 4b, the mean time of convergence to this new absorbing state is not reported as it
is not a unanimous state. According to Galam’s definition (see [31] (p. 577) for details), a
killing point is the unstable fixed point, producing the flow and its direction, determined
by the stochastic dynamical system describing the time evolution of the hoax support. In
S2, one can see in Figure 4a that the state j = 12 is the killing point when there is no lobby;
in contrast, in this social space, when the lobby is present, there is no killing point and this
case suggests a bang-bang result [54]. The mean absorption time of unanimity is higher
around the killing point; the process is even slower when generated by the lobby, as shown
in Figure 4b.

The social space S3 (Figure 5) has a killing point at state j = 18, i.e., at the initial state
with eighteen individuals with opinion X against a lobby of six members. As for space S2,
the mean time of absorption to a unanimous opinion increases when the initial number
of individuals in favor of X is near the killing point. In contrast to space S2, however, the
process triggered by lobbyists near the killing point is faster than in the case without a
lobby. Only a further reduction in the size of the lobby leads to a slowdown in the process
of convergence to unanimity. This is because the lobbyists’ strategy favors the preservation
of their opinion over its diffusion in initial states that are smaller than the killing point. That
is, one has a type of echo chamber, defined as “environments in which the opinion, political
leaning, or belief of users about a topic gets reinforced due to repeated interactions with
peers or sources having similar tendencies and attitudes” [55]. Expectedly, these cases of
social influence generate opinion cascades [56] that reduce individual noise at the expense
of group noise [57].

In the social spaces S4, S5, and S6, the average absorption times in the case with a
lobby are uniformly higher than without; that is, the process of absorption is slower overall
regardless of the killing points (see Figures 6–8). In other words, except for the particular
case of the social space S1, the lobby generally makes a hoax X prevalent even in the cases
where it would be impossible; however, this process takes longer on average.

In all the social spaces that we analyzed, except S1, which is trivial, the killing point is
lower in the case without a lobby than in the case with a lobby. This means that with the
lobby, in order for the hoax X not to spread, many more people are needed who do not
believe it. This is not cost-less; we observe an increase in the mean time of absorption to a
unanimous opinion in almost every case. Without lobbying, if the number of individuals in
favor of the opinion X is greater than the number at the killing point, the entire population
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would also be in favor; with lobbying, however, the attractor changes and the population
would end up believing the opinionX but at a slower rate of convergence. This is always the
case, except in the social space S3, as we have already discussed just above. To summarize,
we have seen that the lobby increases the killing point and transforms the opinion dynamics
into a form of bang-bang outcome. In general, however, the lobby increases the mean time
to unanimity, as the strategic seating arrangement is primarily aimed at preserving the
lobbyists’ opinion rather than riskily spreading it. This becomes clearer when analyzing
some particular examples. For example, let us consider the social space S6 and compare
the transition probabilities to the states j = 0, j = 12 and j = 24 with a lobby and without
a lobby. One can see from Figure 9 that for 7 ≤ j ≤ 12, even if the lobby is not present,
a unanimous opinion in favor of the opinion X cannot be reached and, at the same time,
a unanimous opinion against X is more likely without a lobby. In these cases, the lobby
strategy is too conservative and slows down the achievement of its goal. If, on the other
hand, 14 ≤ j ≤ 18, the lobby is effective in avoiding reaching a unanimous opinion in favor
of opinion X .
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Figure 9. Transition probabilities to the states j = 0, j = 12 and j = 24 with (dashed lines) or
without (solid lines) lobby in the social space S6 versus the number of individuals who are in favor of
opinion X .

The same reasoning applies to the other social spaces, even if the number of states
with positive probabilities makes the analysis less immediate; see, Figure 10 for the social
space S5 as an example.
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Figure 10. Transition probabilities to the states j = 0, j = 12 and j = 24 with (dashed lines) or
without (solid lines) lobby in the social space S5 versus the number of individuals who are in favor of
opinion X .
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To avoid the slowing effect of the lobby that occurs in some social spaces, the strategic
behavior of the lobby should add what [58] calls the third dimension in negotiation—that is,
being able to determine the proper sequence of tables to be seated at, depending on the
state; see also [59] for features that help groups in generating knowledge.

Finally, as we have seen in some special cases, such as social space S2, the lobby can
generate some impasses that do not occur without lobbies.

5. Conclusions

In this paper, we addressed the influence of lobbies on opinion dynamics considering
a population of individuals in different social gatherings. In particular, we considered a
lobby that can interact in strategic positions. Extending a known sociophysics model of
opinion spreading [31], we introduced lobbies to understand when and how they can be
effective in different social spaces. In this case, opinion dynamics can also be analyzed as a
Markov chain. Since the calculation of transition probabilities can become tedious, these
were calculated using simulations. The results show that lobbies with the investigated
strategy are able to overturn the majority opinion, even if this requires a certain amount of
time to reach a consensus.

The limitations of the results that we obtained highlight the known impossibility
of a theory of social behavior to be simultaneously general, accurate and simple [60]; in
particular, in order to have a more accurate model of opinion diffusion in a group, agents
should be modeled as heterogeneous entities rather than atoms [32] (p. 29). However,
in view of the “quiet methodological revolution” discussed in Ref. [41], the sociophysics
perspective [32] should be considered as another possible way to overcome the problem of
replicability in psychology, as mentioned in the Introduction.

The model and the analysis of the influence of lobbies can be extended in several
ways. First, we have looked at a particular strategy of a lobby and a particular decision
rule (i.e., the local majority). Future research would need to examine alternative strategies
and decision rules to better understand how opinions can spread in social spaces. Second,
we considered different twenty-four -individual social spaces consisting of separate tables;
these are special types of networks in which each component is a clique. In future research,
we plan to consider more general social networks similar to what was studied in Ref. [61].
In particular, it is interesting to investigate whether the influence of lobbies remains the
same and how the time of convergence to unanimity is affected by their presence.
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Appendix A

The pseudocode to compute the transition matrices Mh without a lobby is reported in
Algorithm A1 and the pseudocode to compute the transition matrices Mh of the population
with the lobby is reported in Algorithm A2, for each social space Sh.

The parameters that we considered for the simulations in Section 3.3 and the results
discussed in Section 4 are the following:

• NumAgents := N = 24;
• LobbySize := N∗ = 6;
• NumberSimulations := 1,000,000.
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Algorithm A1 Compute Transition Frequencies with No Lobby

1: procedure TRANSITION
2: M← 0
3: for InitialState:=0 to NumAgents do
4: repeat
5: randomly choose InitialState agents
6: set their opinion ‘in favor of X ’
7: set remaining agents opinion to ’against X ’
8: agents take seats
9: agents discuss according to the local majority rule

10: compute new state
11: update M
12: until NumberSimulations

Algorithm A2 Compute Transition Frequencies with Lobby

1: procedure TRANSITIONLOBBY
2: M← 0
3: for InitialState:=0 to NumAgents do
4: repeat
5: if InitialState < NumAgents − LobbySize then
6: set lobby opinions to ’against X ’
7: randomly choose InitialState − LobbySize agents
8: set their opinion ‘in favor of X ’
9: set remaining agents opinion to ’against X ’

10: else
11: set first NumAgents − InitialState lobby opinions to ’against X ’
12: set remaining lobby opinions to ’in favor of X ’
13: set remaining opinions to ’in favor of X ’
14: lobby agents take seats
15: other agents take seats
16: all agents discuss according to the local majority rule
17: compute new state
18: update M
19: until NumberSimulations
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