IoT @@

Article
A Lightweight Slice-Based Quality of Service Manager
for IoT

1,2,%

Antonio Oliveira-Jr , Kleber Cardoso 2{7, Filipe Sousa 1’ and Waldir Moreira !

1 Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal; filipe.sousa@fraunhofer.pt (E.S.);
waldirjunior@fraunhofer.pt (W.M.)

2 Institute of Informatics (INF)—Federal University of Goids (UFG), Goiania 74690-900, Brazil;
kleber@ufg.br (K.C.)

* Correspondence: antonio.junior@fraunhofer.pt

check for
Received: 15 June 2020; Accepted: 31 July 2020; Published: 4 August 2020 updates

Abstract: Industry 4.0 and digital farming rely on modern communication and computation technologies
such as the Internet of Things (IoT) to provide smart manufacturing and farming systems. Having in
mind a scenario with a high number of heterogeneous connected devices, with varying technologies and
characteristics, the deployment of Industry 4.0 and digital farming solutions faces innovative challenges
in different domains (e.g., communications, security, quality of service). Concepts such as network
slicing and Software-Defined Networking (SDN) provide the means for faster, simpler, scalable and
flexible solutions in order to serve a wide range of applications with different Quality-of-Service (QoS)
requirements. Hence, this paper proposes a lightweight slice-based QoS manager for non-3GPP IoT
focusing on different use cases and their varying requirements and characteristics. Our focus in this work
is on non-3GPP IoT unlicensed wireless technologies and not specifically the end-to-end network slice
perspective as described in 5G standards. We implemented and evaluated different QoS models in distinct
scenarios in a real experimental environment in order to illustrate the potential of the proposed solution.

Keywords: Internet of Things; SDN; QoS; Industry 4.0; digital farming

1. Introduction

IoT has been contributing to the digital era of human society [1], and Industry 4.0 [2] and digital
farming [3] efforts consider IoT as a solution that enables a more natural way for network connections
with flexibility. Still, IoT standardisation has been considered one of the main challenges to their
deployment [4-6]. As the implementation of those technologies exceeds the boundaries of the conventional
networking solutions, concepts such as network slicing and SDN allow accessing the resources of such
conventional networks considering today’s networking service demands [7] of Industry 4.0 and digital
farming deployments.

Network slicing [8-10] is a virtualisation capability that allows multiple logical networks to operate on
top of a common shared physical infrastructure. Thus, the solution enables turning traditional networking
infrastructures into scalable and flexible ones, providing each device with the choice of running desired
features on the slice that better fits its needs. Thus, our work follows the concept of network slicing (as a
virtual network partition, thus being lightweight) in order to propose a solution over non-3GPP unlicensed
wireless technologies to provide QoS support for IoT-based use cases. It is important to mention that we
are not considering, in this paper, the end-to-end network slicing perspective as described in 5G standards.

IoT 2020, 1, 49-75; d0i:10.3390/i0t1010004 www.mdpi.com/journal/iot

http://www.mdpi.com/journal/iot
http://www.mdpi.com
https://orcid.org/0000-0003-3595-3525
https://orcid.org/0000-0001-5152-5323
https://orcid.org/0000-0002-0510-1893
https://orcid.org/0000-0002-4310-2379
http://dx.doi.org/10.3390/iot1010004
http://www.mdpi.com/journal/iot
https://www.mdpi.com/2624-831X/1/1/4?type=check_update&version=2

IoT 2020, 1 50

The 5G 3GPP standard [11] does not support the non-3GPP IoT wireless technologies such as LoRa [12] in
which we are interested.

Among the multitude of existing use cases, with each use case having specific characteristics and
requirements, different network capabilities need to be defined according to the context of the applications.
Such characteristics come with the need to be the most adaptable as possible and providing support to
efficient performance requirements [13]. Within this context, SDN comes as a flexible solution to enhance
IoT in order to provide support for applications in the industrial and farming domains, meeting their QoS
requirements [14].

SDN's flexible programmability combined with network slicing can quickly provide those applications
with isolated network connectivity environments, allowing them to even adapt to their devices’
heterogeneity when it is required to do so. Hence, this paper introduces a lightweight slice-based QoS
manager to support non-3GPP IoT communications. The main goal of this work is to develop a solution
considering multiple slices for multi-purpose scenarios enabling digital farming and Industry 4.0 use cases
and matching their QoS requirements.

To validate our manager, we integrated it, as a component, in the SOFTware-defined gateWAY and
fog computing for Internet of Things (SOFTWAY4IoT) solution [15]. Our proof of concept is tested in a real
experimental setup considering the real IoT use cases with the WiFi, BLE and LoRa wireless technologies.

Our main contributions are as follows:

* Aslice-based QoS management solution to allow easy integration with other SDN-based solutions
(e.g., SOFTWAY4IoT) and that implements the desired QoS for each use case, considering a lightweight
concept of network slicing (as a virtual network partition) to allow better provision.

* Implementation and validation of different QoS models (i.e., best effort, traffic policing,
IntServand DiffServ).

¢ A comprehensive description of the implementation and tools used in the proposed solution, as well
as its integration into the SOFTWAY4IoT deployment.

The remainder of this paper is structured as follows. Section 2 provides a brief overview of the related
work available in the literature. Section 3 describes SOFTWAY4IoT, while Section 4 describes in detail our
proposed slice-based QoS manager for IoT, as well as the solution implementation. Section 5 discusses
the validation, evaluation and performance analysis results. Finally, Section 6 presents conclusions and
future work.

2. Related Work

Focusing on the specific QoS proposals using the SDN and OvS capabilities, a recent work [16]
proposed a QoS framework for network slicing in 5G networks using SDN, NFV and OvS. The experimental
setup includes well-known tools such as ONOSand Mininet. However, it is not feasible for the IoT domain
due to complexity.

Alipio et al. [17] proposed the implementation of traffic policing based on priority-based packet
discarding using OpenFlow 1.0. Additionally, this work chose to use a set of Raspberry Pis in order to
create an SDN switch considering the Open vSwitch (OvS) capabilities for testing purposes. Moreover,
our work focuses on IoT considering a well-known lightweight Ryu controller instead of POXand applying
other QoS models, not only priority queuing.

Furthermore, Durner et al. [18] presented dynamic QoS mechanisms for flows in an OpenFlow-based
network, focusing their results on prioritisation and bandwidth guarantees and working for both classless
and classful queueing disciplines, not considering Differentiated Services Code Point (DSCP) traffic
marking. Durner realised that the use of OpenFlow on different network switches creates a variety of

IoT 2020, 1 51

testing results, which must be considered when implementing QoS concepts in the network by SDN
application developers.

W. Hsu et al. [19] went into detail on a proposed architecture for QoS and Quality of Experience
(QoE) mapping and application adjustment in the SDN context, taking advantage of the Ryu controller
and OvS-based OpenFlow switches to do so. This work’s objective was to implement and design an
application capable of perceiving the users” QoE in order to redirect that information for the Internet
Service Provider (ISP). With that valuable information, it is possible to adjust the network rules, providing a
higher overall QoS. However, the only considered rate-limiting approach is the OpenFlow Meter Table [20],
discarding OvS capabilities in the QoS rules” implementation.

Adedayo and Twala [21] addressed both major QoS models, not taking into consideration the IoT
real world in the testing methodology. This work used the Ryu controller Representational State Transfer
(REST) Application Programming Interface (API) to be able to apply QoS rules in the OpenFlow OvS-based
switches. Additionally, the majority of tests use Mininet [22] in order to emulate the virtualised network,
not reviewing the impact multiple clients might have on the tested network. This work did not address
the concept of network slicing.

Regarding network slicing applied in the IoT domain, the IoT slicing method proposed by
Casado-Vara et al. [23] is a technique for processing heterogeneous temperature data collected by an
IoT network in a smart building. The solution combines complex networks and clusters to reduce
algorithm input errors and improve the monitoring and control. This work differs from ours as IoT slicing
is not the network slicing concept that is applicable to SDN as in our proposal.

An approach for network slicing provisioning for IoT based on flyweight Network Functions (fNF)
was proposed by Ouedraogo et al. [24] in order to support QoS requirements to extend 5G networks.
fNFs are network functions whose deployment incurs no virtualization overhead. Our work is quite close
to their since they claimed an IoT 14.0 use case using the network slice. However, the work resorted to {NF
and use cases considering the 5G concept offering no implementation and real-world evaluation.

An et al. [14] proposed a slice management solution considering QoS with a focus on reducing
the wireless interference among slices. The approach considers routing based on the prioritization of
interference and admission control. Still, the focus of this work was not IoT, and the validations were
performed over NS2 simulations.

Xiao et al. [25] proposed an inter-operator network slice framework that is able to coordinate and
access spectrum resources in both licensed and unlicensed bands. The evaluation was carried out using the
LTE and WiFi networks. While our solution focuses on non-3GPP unlicensed communication, it overlooks
the QoS requirements of IoT applications.

A network slicing solution [26] for enabling the coexistence of enhanced Mobile Broadband (eMBB)
and IoT sharing the RANis very interesting in the 5G domain. They validated the solution in a 5G prototype
using the Open Air Interface (OAI) and FlexRAN SDN controller. However, in our work, we focus on
non-3GPP unlicensed wireless communication technologies for IoT.

Wu et al. [27] demonstrated network slicing as an enabler for Industrial IoT (IIoT) for QoS
requirements consisting of multiple sensor devices with WiFi/BLE communication modules. This work
relates to ours regarding the implementations and tools used (Ryu controller, OvS). However, our proposed
slice-based QoS manager is implemented in a full IoT software-defined and virtualised IoT gateway
employing container concepts for edge computing.

Network slicing has also been applied in LoRa networks [28,29] to provide specific QoS guarantees.
A dynamic and adaptive inter-slicing resource reservation was proposed and evaluated in an NS3
simulation environment. However, this work did not consider the real SDN-based network for validation
as done in our proposed solution.

IoT 2020, 1 52

Although the purpose of LoRaWAN networks is directed towards IoT applications, the means to carry
out the integration procedures with 5G systems are not yet established as reference and technical standards
in 3GPP. Hence, Navarro-Ortiz et al. [30] presented a model for integrating LoRaWAN networks with LTE
applied to the Evolved Packet Core (EPC) network. The approach does not need to change the structure
of the core of the pre-existing network, and there is no need for protocols or signalling commands other
than those already established. The LoRaWAN gateway acts as the User Equipment (UE). Four different
approaches for integrating into the 4G structure were discussed [31]. The integration methods covered
were (i) integration via the 3GPP access network, (ii) non-trusted access by non-3GPP, (iii) encapsulating
components of the LoRaWAN structure as part of the eNodeB, and (iv) virtualizing components of the
LoRaWAN network architecture as part of the core network LTE. However, those works were focused on
the integration of LoRaWAN with LTE without QoS requirements.

Our proposal differs from the aforementioned works as it focuses on the provision of specific QoS
parameters. While we identified a few efforts in this regard, most of them were for specific application
scenarios, with a strong focus on the IoT within the 5G domain. On the other hand, we are looking at
non-3GPP IoT solutions over unlicensed band wireless technologies and how to provide slice-based QoS
for Industry 4.0 and digital farming deployments considering a lightweight concept of network slicing.

3. SOFTWAY4loT

This section briefly describes SOFTWAY4IoT [32-35], a project funded by the National Network for
Higher Education, Research and Innovation (RNP, Brazil). It is an IoT communication solution developed,
implemented and deployed as a pilot in a smart campus at Federal University of Goids (UFG, Brazil).
The solution addresses four main problems: (i) provide support for multiple wireless technologies for
IoT; (ii) minimise the impact of choosing a wireless technology for IoT not yet consolidated; (iii) mitigate
potential risks related to the network security of the connected devices; and (iv) support connectivity of the
devices to the infrastructure for data collection and processing, typically a cloud computing infrastructure.

The solution chooses to interact with IoT devices by means of the cloud and fog/edge computing,
doing so by creating virtual network slices that accommodate a certain service or device in compliance with
its resources. Fog computing can be described as a decentralised computation process where its memory
and processing power reside between the data source and the cloud. It is considered to be a powerful
method because it distributes its computational effort through the network edge. Due to the solution
architecture, the application is given the power to choose from where to consume the produced data. It can
be available from either a (public or restricted) cloud or a fog infrastructure. Figure 1 summarizes the
SOFTWAY4IoT concept.

Because conventional networks do not take advantage of SDR, each considered wireless technology
would need a dedicated gateway or physical interface in order to be able to perform communication.
As SDR allows for multiple technologies to operate over the same gateway and even adds/removes these
possibilities by means of software only, the process of handling different wireless technologies is then
considered to be simplified, as shown in Figure 2.

IoT 2020, 1

TR —A—
™ r's
EH O
SEET .
" » s =
—~ --------_-_‘-—"-—:- ----------------------- o A m-m-- () e e]
: » » ¥ (N '
1
FCMan ' : : '
: 1 1
] 1
> : b 3 \ 1 1
------------------------------------ L L LS E L LR R Ll 1
© . ! ! \ 0 !
2 | nsman | A \ 0 !
D < sMan || WebGM |
© : 4 13 '
o B e e ;
h | & h
vixi | I 'y !
ViMan i 'y '
| | ! :
b J X -
Slice1 ! Slice 2 Slice3 Slice 4 7_.-! Slice5 Slice 6 |
v X L ." I
r v
— o P
— — — L o o~
i = = = = 2
o i
o Fire Energy Traffic -
£ Detection Management Management Security Drone e-Health
T
.—

d ¢ § w X+

Figure 1. The SOFTware-defined gateWAY and fog computing for Internet of Things (SOFTWAY4IoT)
interaction with different devices. FCMan, Fog Computing Manager; SMan, Slice Manager; NSMan,
Network Security Manager; VIX, Virtual Air Interface of Technology X; VIMan, Virtual Interface Manager;
WebGM, Web-based Gateway Manager.

SOFTWAY4loT

J
e

Figure 2. SOFTWAY4IoT dealing with multiple wireless technologies.

IoT 2020, 1 54

3.1. Architecture

The architecture of SOFTWAY4loT is composed of the following modules, as shown in
Figure 3: (i) Web-based Gateway Manager (WebGM), which is a web management interface that directly
connects all modules; (ii) Fog Computing Manager (FCMan), which allows virtualised computational
resource management for services and/or applications instantiated in a Virtual Machine (VM) and in
isolated Docker [36] containers; (iii) Software-Defined Networking (SDN), which is the composed by
the Slice Manager (SMan) and Network Security Manager (NSMan) using the OpenFlow /OvS as its
Southbound Interface and Ryu [37] as the controller; and (iv) Software-Defined Wireless Interfacing
(SDWI), responsible for handling the transmission and reception of the several considered wireless
technologies such as LoRa, ZigBee, WiFi, and BLE.

Fog services Fog Apps

User' User
App1 || App2

‘DHCP‘ NAT‘ e

I I WebGM

Figure 3. SOFTWAY4IoT component architecture. SDWI, Software-Defined Wireless Interfacing.

* WebGM: The web interface is directly connected to all modules. It provides the network administrator
with the ability to perform careful management of the tool functionalities and components; it can
be seen as a good choice to accommodate the third OpenFlow downside. The used programming
languages for this component development were Flask [38] (backend), PostgreSQL [39] (database),
Python [40], html5 [41], JavaScript [42] and Angular]S [43] (front-end).

e FCMan: It allows for the virtualised computational resource management, allowing both users and
the infrastructure itself to run and isolate (if needed) several services or applications. These users and
infrastructure services are all instantiated in a VM and in isolated Docker [36] containers. The software
behind the FCMan module mainly relies on Python, Flask and the REST APL

¢ SDN: The module’s main concerns are related to the network components’ configuration, representing
the Control Layer. It is split into two major components, where SMan is mainly responsible for the slice
performance, isolating each IoT device by considering its general use case characteristics. On the other
hand, the NSMan addresses the basic network security needs such as NAT, firewall and intrusion
detection. It considers OpenFlow as its Southbound Interface, and its chosen controller solution is

IoT 2020, 1 55

Ryu [37], mainly due to the OvS [44] (a proposed virtual switch) and OpenFlow compatibility issues.
The module development programming language is Python, and it takes advantage of the REST APL

e SDWI: It resides on the bottom of the architecture and is responsible for handling the transmission
and reception of the several considered wireless technologies’ signals. It takes advantage of SDR, and
similar to the previous module, it can be divided into the VIX (Virtual Air Interface of Technology X)
components. The VIX responsibilities reside in performing the communication regarding a certain
technology and assuring that its modulation and codification processes are correctly performed.
Due to the modular development approach of the tool, each new VIX component can be inserted
and implemented in the gateway without the need for performing any changes in the remaining
modules. Regarding VIMan (Virtual Interface Manager), its main duty is to manage the physical layer
of the gateway taking care of the actual signal transmission and reception in each VIX component’s
respective frequency. It can be seen as a hypervisor of the SDR physical interface, implementing a
transmission module and a multiple frequency band reception module. Because VIMan has the ability
of interface abstracting, the VIX components only have the need to interact with a virtual interface
and never a physical one. This module was developed under the GNURadio [45] development kit,
and its software relies on C++ and Python.

4. Our Proposed Slice-Based QoS Manager for IoT

Our proposed lightweight slice-based QoS manager was implemented as a solution to be integrated in
SOFTWAY4IoT. Our solution is lightweight since it is focused on non-3GPP IoT environments considering
simpler SDN implementations besides the complete framework such as MANO, OpenDayLight or
OpenStack. Hence, this section provides a detailed setup of the proposed solution to achieve QoS
in slices for Industry 4.0 and digital farming deployments.

The implementation is split among three machines: Host; VM-Application and VM-Manager.
The VM-Application can be described as the machine that stands between the cloud, services and tenant
applications, being responsible for high-level tasks. It represents the FCMan module and, consequently, the
Application Layer. VM-Manager’s primary purpose is to run the SDN module, including the lightweight
Ryu controller, with the additional task of hosting WebGM and all its administration capabilities, including
the services that run on other machines. Thus, from the Network Operating System (NOS) perspective,
the machine can be seen as the controller APIL. Both VMs run on the Host in a virtualisation environment
with the Xen hypervisor [46], and all their components run inside Docker containers, guaranteeing the
previously mentioned isolation of services and applications. In contrast with the VM-Application, the Host
has the responsibility of performing the lower-level services and therefore represents the Data Plane.
The SDWI service runs on the Host, and it communicates with the VMs employing OvS, which takes
advantage of OpenFlow to update flow table entries in switches as the considered standard solution for
the Southbound Interface. A schematic of the implemented setup and how it fits in the NOS architecture is
depicted in Figure 4.

IoT 2020, 1 56

.~ VM-Application \

Application Layer

| FCMan Module |

/ Northbound Interface /

VM-Mﬂnager

Controller

‘ SDN Module ‘ WebGM Module

- -

M - - ’
s - H ---------- ~
. Host :

1

I / Southbound Interface / I
1 1
I I :
: Data Plane 1
| 1
' 1
1 SDWI Module !
| 1
' 1
\ 1

~ F

Figure 4. SOFTWAY4IoT implementation and its relation to the SDN architecture.

4.1. VM-Application

Since the VM is intended to represent the application layer, it has the main role of running applications
with the purpose of dealing with the information coming from the bottom of the architecture stack
(Data Plane). If it chooses to process information itself, then data are processed between the cloud and the
source device, and therefore, fog computing is occurring. On the other hand, applications can choose to
strictly redirect that information to the cloud, where it would later be computed and consequently fog
computing takes place.

The VM-Application has two physical interfaces from its perspective, which represent OvS bridges,
which are in reality virtual ones. As a matter of convention, we call them eth0and eth1. Interface eth0 has the
main role of providing applications connectivity to the controller and consequently any device available in
the Data Plane. On the other hand, ethl is the interface that connects to the cloud, being responsible for
passing information if any application chooses to process information by means of cloud computing.

All applications run inside separate Docker containers, which are automatically created when the
order is given by WebGM. This guarantees information isolation and the ability to provide each application
different connectivity environments if needed. One of the reasons Docker containers and services are so
powerful is that you can connect them together or connect them to non-Docker workloads. The deployed
applications do not require being aware that they are running on Docker, or whether their peers are also
Docker workloads or not, managing them independently of the platform they choose to use [47].

In order to facilitate information exchanging between containers and the VM-Application,
SOFTWAY4IoT uses OvS (Northbound Interface), allowing the use of multiple VLANs on a single
bridge. Of course, this results in a more complex and virtual-oriented system, but also allows for an
incredibly adaptable and scalable system. Hence, each new slice is represented by a VLAN in a newly

IoT 2020, 1 57

created OvS switch, and both “physical” interfaces are bridged by br-int (eth0) and br-ext (ethl). We must
remind ourselves that each slice can have more than one running application, whose connectivity is
handled by its OvS bridge with a newly running port. Figure 5 depicts the VM-Application system and
networking scheme.

VM-Application

iy N iy o
Container Container Container Container

Physical Interface in the VM
perspective, but virtual in reality.

Appl App2 App3 Appé ‘

Slicel — Slice2 —— SliceN Virtual Interface.
OvS

br-ext — CpenvSwich | prjnt

Northbound
Interface

ethl eth0

C’/\) VM-Manager

Figure 5. VM-Application system architecture.

4.2. VM-Manager

The VM-Manager plays the role of the core of the considered SDN system and allows for the
administration features to take place. It is essentially divided into the WebGM and SDN modules, which
are segmented into several services. All components are implemented on Docker containers. WebGM is
the web interface that enables any network administrator to manage all gateway functions. Its services
are WebGM-Frontend, WebGM-Backend, and a database. WebGM-Frontend hosts the actual web server,
which is used as a presentation layer and interacts directly with the administrator. WebGM-Backend deals
with the required APIs that allow it to perform any kind of actions at a SDN level, storing the necessary
information on the PostgreSQL database.

As mentioned, the SDN module has the duty to run the lightweight Ryu controller. SMan and NSMan
run a container completely dedicated to be an API to FCMan. As a matter of fact, the SDN module was
modified in order to support the Ryu QoS capabilities, which take advantage of a REST API and allow
rules’ insertion in the network environment.

Because the machine was not in need of a scalable private network, it uses a Linux native bridge
and virtual interfaces in order to access each container. Similarly to the VM-Application, it has Debian as
the operating system, but only uses one physical interface from the machine perspective. The interface
is called eth0 and provides the connection to both the VM-Application and the host machine. Figure 6
provides an insight into the VM-Manager architecture.

IoT 2020, 1 58

VM-Manager

Docker Cluster

H Physical Interface in the VM
L perspective, but virtual in reality.

WehGM Module

SDN Virtual Interface.
FCMan Frontend | | Backend | | Database
API H
veth2
[

SDN Module

Linux native bridge

veth3 vethd

— I

docker0

eth0

‘
Northbound Southbound
Interface Interface

Figure 6. VM-Manager system architecture.

4.3. Host

The Host is running Xen hypervisor, which is responsible for the execution and management of the
previous virtual machines. In order for the inter-machine communication to take place, it takes advantage
of OvS and consequently OpenFlow, which functions as the system Southbound Interface. In addition
to that, it is running a modified SDWI module and tries to make the best of virtualisation to perform
its actions.

Figure 7 provides a visual clarification of the Host system. Regarding its networking architecture,
it has two physical interfaces. The Ethernet enolis responsible for providing Internet access, both to
the host machine and the VM-Application through the OvS system. Besides that, the wireless interface
(that supports both WiFi and BLE) is intended to enable gateway connectivity to devices that wish
to communicate via those technologies. In order for the VMs to be reachable, OvS uses its bridging
capabilities, enol now being represented by br0, where wip4s0and the sdwi module are bridged by br1,
accessing both systems through OvS virtual interfaces.

In addition, as previously stated, the Host runs the SDWI module. As we do not use SDR in this
work, the SDWI module is divided in two services VI-BLE and VI-LoRa in order to represent our virtual
interfaces of wireless technologies.

IoT 2020, 1 59

@ Host

. Xen Hypervisor
VM-Application VM-Manager

@ @ Physical Interface in the VM
perspective, but virtual in reality.

ethl — ethO eth0

_| \—‘ ‘ Virtual Interface.
[| 1

vif2.0

viflLl —— vifl.0

Physical Interface.
OvS

Open vSwitch

brl

iSDWI Modulei

VI-BLE VI-LoRa
- E
enol Wip4s0 wipdso lora
S S O
= = =
Ty @

S
LoRa

=

Figure 7. Host system architecture.

4.4. Data Plane Networking

The goal of this work is to support WiFi, BLE and LoRa wireless technologies for IoT. In order to do
so, the Gateway requires handling the reception of their signals, interpreting them and redirecting to the
above architecture layers. Additionally, it is necessary to consider that the raw BLE and LoRa technologies
may signify problems in the information exchanging process. Those problems can be solved by means of a
renovated SDWI module, and only the LoRa physical interface is left for the gateway to be able to deal
with the necessary radio services.

4.4.1. LoRa Physical Interface

In this work, the radio communication system components are not dealt with through software
implementations. As seen in the Host system architecture (Figure 7), it is clear that the machine wireless
interface supports BLE and can be used to fetch data from LoRa technology end devices. On the other hand,
LoRa still needs a physical interface ready to receive information that will be provided by the technology
devices. For that reason, an Arduino Uno [48] device along with a Dragino LoRa Shield [49] were used as
the information transceiver, redirecting to the SDWI module through its serial port. In brief, the shield was
chosen due to its configuration flexibility, Arduino compatibility and low power consumption, representing
a good choice for the technology access point.

It was necessary to use RH_RF95 [50], a driver that enables the reception of datagrams via a LoRa
capable radio transceiver, which is also capable of configuring its signal power and operating frequency.

IoT 2020, 1 60

4.4.2. VI-BLE and VI-LoRa in the SDWI Module

It is important to notice that SOFTWAY4IoT uses IP when it comes to the Network Layer of the
OSI Model. Therefore, having in mind the BLE and LoRa protocol stack lacking the IP, those technology
devices would not be able to properly communicate with the gateway. Hence, the new version of the
SDWI module is required to perform the received packets’ IP encapsulation and their redirection to the
assigned OvS bridge. For that reason, two new components are created, VI-BLE and VI-LoRa.

All BLE devices use the Generic Attribute Profile (GATT), which can be translated into APIs offered
by operating systems that support BLE technology likely being based on its concepts [51]. GATT is built
on top of the Attribute Protocol (ATT) and establishes common operations and a framework for the data
transported and stored by a generic data protocol [52]. In order to better understand how VI-BLE works,
it is necessary to inspect the profile terminology, which works around the server/client relationship and
has essentially five important concepts: Client; Server; Profile; Services; Characteristics.

Because BLE focuses on low power consumption, their devices are not willing to send information
by themselves and need to be requested to do so. Hence, the GATT client (VI-BLE on the Host) has
the responsibility to start a transaction on the GATT server (a given peripheral device), which suggests
a connection interval that the client will respect in order to inspect if any new data are available.

VI-BLE takes advantage of GATT and one of its Python modules [53] in order to fetch information
from the intended BLE devices, using the Host Bluetooth adapter to do so. Because it might be interesting
to filter the devices VI-BLE wants to connect to, a JSON file is kept containing a list of MAC addresses.
Additionally, that file has a related IP address to each assigned device, which is used to create a Linux
virtual interface and consequently send the fetched information to the Gateway upper layers by means
of MQTT.

The used LoRa network architecture is deployed in a star topology in which nodes, gateway, network
servers, and application servers are placed. A node collects sensor records and sends them to a gateway by
using single-hop wireless communication with LoRa modulation. The gateway is connected to a central
network server and acts as a bridge between the node and the network server, converting radio frequency
signals into IP packets. The network server determines which data belong to which node and removes
duplicated data, redirecting them to the Application Layer. Hence, the applications that reside on the top
of the SDN architecture are used to collect and analyse data from nodes [54].

As might be noticed, in this work solution context, the LoRa network Application Server is represented
by the running applications on the corresponding VM. Additionally, the component VI-LoRa joins forces
with Arduino LoRa Shield in order to perform not only data interpretation, but also packet IP conversion.
Because of that, it is responsible for functioning as both the Network Server and Gateway in the technology
network architecture. The nodes are the end devices whose information is fetched from the sensors.
The LoRa network architecture and its relation with SOFTWAY4IoT can be seen in Figure 8.

The utilised Arduino LoRa Shield device is able to interpret data by itself, and contrary to BLE devices,
LoRa nodes do not need to be stimulated in order to send the fetched sensors data. Hence, when a node
connects to SOFTWAY4IoT, both IP and MAC addresses are generated and kept in a small database,
which resides inside the SDWI module. After receiving the sensor’s information, under the same approach
of VI-BLE, VI-LoRa uses MQTT in order to exchange data with applications.

IoT 2020, 1 61

VM-Application

v]
. ' LoRa
H Applications ! Application Server
1 I
i
! VM-Manager h
1

! Host H

[oo LoRa

. b Network Server
Vo VI-LoRa [

[P

Vo P

---------- ﬂ---------’ LoRa
: Gateway
[=
LoRa
o’ =
p
Node 1 Node 3 LoRa
Nodes
Node 2

Figure 8. LoRa network architecture and its relation with SOFTWAY4IoT.

4.5. Network Architecture Overview

It is clear that most networking on the solution VMs take advantage of the OpenFlow protocol
in order to properly function. Additionally, it might be interesting to understand which protocols the
implementation takes advantage of to communicate. Figure 9 provides an overview of the solution
network architecture and the used protocols on each link.

Hence, the Host is responsible for dealing with the Data Plane related tasks of the system architecture.
If devices choose to use WiFi in order to access the gateway, traffic enters directly to the system Southbound
Interface. On the other hand, in the case of BLE and LoRa devices, data firstly go through the SDWI
module in order to be encapsulated. All those communication processes take advantage of the OpenFlow
and MQTT protocols.

The VM-Manager is responsible for running the administration features by means of Docker
containers. It provides lodging for the SDN module, which includes the lightweight Ryu controller
and FCMan API. Additionally, a web interface with the purpose of facilitating the network administrator
actions is hosted on the machine. Furthermore, this important component can communicate with
the VM-Application components through the system Northbound Interface. The VM-Application is
responsible for dealing with the slice related networking, assigning each one to a newly created OvS
switch. Additionally, it has the task of running all slice applications on separate Docker containers.
All those actions are orchestrated and supervised by the VM-Manager, where the controller resides.

IoT 2020, 1

Appl App2 App3 App4
Container Container Container Container
[| |
t f f
Slicel — Slice2 —— SliceN

I@vSI

br-ext |—Oeenvswich __ print

Northbound

Interface

eth0

VM-Manager

Docker Cluster

SDN Module i WebGM Module

SDN [

% FCMan Tomend Backend | | Database | |
; API |

=G .

i vetho vethl | veth2 veth3 vethd.

L I 141 I I

docker0

S

eth0

Physical Interface in the VM

VifL1 VifLO vif2.0
Ovs
D Open vSwitch ()
Southbound
Interface.]
1
I
| SDWI Module
VI-BLE VI-LoRa
ble0 | | blel (. bleN lora0 | | loral () loraN
I I
el Wip4s0 Wip4s0 .
& &
s v O
N—r
LoRa

Virtual Interface.

perspective, but virtual in reality.

MQTT

I Openflow

Linux native bridge. Physical Interface.

Figure 9. Overall network architecture.

4.6. Slice-Based QoS Manager Solution

A functional SDN gateway is running and capable of fetching data from all proposed wireless
technologies devices. Additionally, those devices can be assigned to different network slices (as virtual
network partitions) if needed. However, all of them are being given the same connectivity conditions,
which might not be the ideal scenario if their production environment is not the same. Hence, the solution

62

IoT 2020, 1 63

is in need of a component that would be capable of providing each virtual network partition different QoS
levels in order to better fit its use case application. Figure 10 represents our proposed slice-based QoS
manager solution placement. The solution developed can provide each slice (virtual network partitions)
with different QoS levels in order to better fit the application requirements. The Northbound API can
program the Data Plane to perform QoS, and because of that, the VM-Application is the machine where
the slice-based QoS manager solution takes place.

VM-Application
i " ." i Physical Interface in the VM
Appl App2 App3 App4 perspective, but virtual in reality.
Container Container Container Container
v -"-'I- ----- -.-.---.I ----- R P R - Virtual Interface.
| | |
— Slicel — Slice2 — SliceN ——

| QoS traffic shaping appliance.

—
§ '@\/S|

br-ext Open vBwitch br-int
QoS traffic policing appliance.
QoS |
Manager
L e el e T B
ethl ethO

Figure 10. QoS solution placement.

The current solution has several lightweight SDN related running components, which are capable of
setting QoS levels in which we have modified the original SDN module of SOFTWAY4IoT. The network
administrator is now able to perform REST API requests in order to install QoS rules. It must be noted that
despite all those requests, rules are in reality imposed by OvS and OpenFlow. Hence, the Ryu REST API
enables the user to perform requests in order to enable a more straightforward QoS implementation at an
OvS and OpenFlow level. However, as the SDN core resides on the controller, the administrator can apply
QoS on OvS switches that are connected to the Ryu controller.

Taking a closer look at the VM-Application architecture and how it relates to OvS, all information
that comes from the bottom layers passes through the VM eth0 interface and consequently br-int as well.
Each flow is then divided on br-int, taking the direction of the bridge that belongs to the destination
slice. On that bridge, several ports are placed where they are meant to provide a connection to their
application containers.

On the other side, it is crucial to understand that policing can be applied on traffic that is entering a
given OvS switch. Additionally, it should be noted that br-int is connected to any container bridge through
a patch port. OvS documentation claims that bridges that are connected through patch ports behave like

IoT 2020, 1 64

a single one, which translates in the Northbound Interface to being represented by a switch in the QoS
manager perspective.

It is essential to mention that it could be overcome if it was chosen to implement those rules utilising
the Linux Traffic Control (TC) tool [55]. However, as the OvS itself does not take advantage of TC in order
to perform its QoS implementations, the implementation of those features that are not currently supported
by OvS is not in the scope of our work.

With that in mind, considering the current SOFTWAY4IoT implementation, policing is applied to the
port that is meant to provide a connection to the lower layers of the SOFTWAY4IoT architecture (br-int of
VM-Application). Consequently, this kind of traffic limitation affects slices from a single-level perspective,
and their traffic splits in order to respect those limits. Nonetheless, traffic shaping QoS rules are going to be
applied in ports that allow traffic to egress the Northbound API environment, making sure our developed
solution can be actuated in both an application and slice in an independent way.

The next subsection explains in detail how our slice-based QoS manager solution can apply QoS rules.
While Ryu provides a built-in REST API that enables QoS rules’ application, those are implemented by OvS
and OpenFlow features. Because of that, despite having different roles, it might be interesting to explain
how those tools are put together in order to implement the major QoS models’ characteristics. Additionally,
each tool is inspected with the purpose of elaborating how its QoS implementation architecture can be
related to our solution.

4.6.1. Open vSwitch Role

There are mainly two ways of providing QoS with OvS. For traffic that ingresses into a switch, OvS can
perform policing [20], which is the action of dropping packets whenever the allocated network resources
have been exceeded. When traffic is egressing from a switch, OvS supports traffic shaping. Unlike policing,
shaping slows down the packet transmission or reception instead of dropping the packet, inserting it in
queues, waiting to be dispatched. It is essential to mention that OvS does not implement QoS by itself,
taking advantage of Linux QoS features previously built in its kernel.

4.6.2. Linux Traffic Control

Linux TC is a handy utility that has a wide range of applicability and is available in standard Linux
distributions. The technology has traffic control related features [55], which rely on shaping, scheduling,
policing and dropping. The Qdiscs Linux TC implementation is the basis of traffic control. There are
several types of both classless and classful Qdiscs. On the classless side, we have First In-First Out (FIFO),
Random Early Detection (RED), Stochastic Fair Queuing (SFQ) and Token Bucket Filter (TBF). Classful
Qdiscs are Class-Based Queuing (CBQ), Hierarchical Token Bucket (HTB) and Priority Queuing (PRIO).

In our solution, we considered the HTB, which has shaping capabilities based on TBF and has the
ability of classes prioritisation. TBS is the right choice when it comes to limiting traffic to a configured
maximum rate, dealing exceptionally well with significant amounts of bandwidth. HTB works by
implementing a well-composed link sharing hierarchy of classes with an emphasis on conforming to
existing practices. It facilitates guaranteeing bandwidth to classes, while also allowing the specification of
upper limits to inter-class sharing.

4.6.3. OpenFlow Role

OpenFlow contains interesting features that can prove to be essential for the slice-based QoS
manager’s successful functioning. The slice-based QoS manager takes advantage of the protocol and
inherently contains three main components: flow tables; group table; openflow channel. Flow tables and
the group table are usually put together and allow inspection and forward packets to a given port. On the

IoT 2020, 1 65

other hand, the OpenFlow channel is used by Ryu in order to apply any rules using the OpenFlow protocol.
In light of this, the controller can choose to insert, update and remove flow entries from flow tables, in a
reactive (based on receiving packets) or proactive way. Hence, flow entries are put together in order to
form a flow table, which consists of several characteristics.

Figure 11 illustrates how packets are handled at the OpenFlow protocol level in our solution.
The flowchart represents the role of OpenFlow in our slice-based QoS manager solution. Due to its
matching capabilities, it is possible to distinguish packets based on its headers and its ingress port. It is
essential in flows’ identification, where the IntServ model is applied. Additionally, because in order to
perform traffic classification, DiffServ uses a six bit DSCP within the differentiated services octet, services’
differentiation is also possible. Furthermore, based on the performed matching, packets can be redirected
to any OvS created queue and obey distinct queue characteristics.

Increment
counters and
execute
instructions

Packet input
Initial table

Matching any
ollowing table?

Actions
execution

Miss-flow table Yos

contains entry?

Packet drop

Figure 11. OvS packet flowchart for our slice-based QoS manager.

Hence, because the module takes advantage of OvS and OpenFlow, it is able to implement the
major QoS models, which can be calibrated in order to attend to several scenarios. In order to aid the
understanding of what both technologies are able to do when they join forces, an example configuration
can be found in Figure 12.

Queue A

‘ Rate max-limit: 15 Mbit/s ‘

‘ Parent: Local interface ‘

7

Queue B
| Rate max-limit: 10 Mbit's |

Queue C
‘ Rate max-limit: 12 Mbit/s |

| Parent: Queue A | ‘ Parent: Queue A |

"4

| Rate max-limit: 8 Mbit/s | ‘ Rate max-limit: 4 Mbit/s ‘

| Parent: Queue C | ‘ Parent: Queue C ‘

‘ Queue D Queue D

\ v

" Flowz

Figure 12. Hierarchical Token Bucket (HTB) configuration example.

IoT 2020, 1 66

4.6.4. Per-Interface Policing

We developed and implemented our slice-based QoS solution using traffic policing on the ingressing
ports of a switch. Rules are set up to limit the transmission rate on a given interface by setting the
ingress policing rate and ingress policing burst. This is a form of QoS that drops packets received over
the configured maximum bandwidth. The implementation of policing is usually less accurate and less
effective than egress QoS. For its functioning, it uses a token bucket approach, where the size of the bucket
corresponds to ingress policing burst. Initially, the bucket is set as full. When a packet is received, its size
is converted to tokens and compared to the number of tokens currently in the bucket. In the eventuality of
the required number of tokens being available, they are removed, and the packet is forwarded. Otherwise,
the packet is dropped. On the other hand, when the bucket is not full, it is refilled with tokens at the
previously configured maximum rate.

4.6.5. Per-Flow QoS: IntServ

Our per-flow slice-based QoS implementation adds queue settings and rules to reserve network
bandwidth, taking advantage of egress traffic shaping to do so. Hence, the target interface is not only
limited to a specific bandwidth, but instead, distinct known applications or services can be assigned a bit
rate using IntServ classification [21]. Traffic shaping is configured using the QoS and queue OvS tables
and uses OpenFlow in order to identify and separate services in the solution SDN environment.

4.6.6. DiffServ QoS

While per-flow QoS can have a good behaviour as communication flows increase, the flow entries’
number, which is set for each OvS switch, also grows. Hence, the per-flow QoS is considered not to be
scalable. Contrarily, the DiffServ slice-based QoS implementation divides flows into the several QoS
classes at the domain entrance (br-int) and applies DSCP marking, matching them with the associated
queues in each slice’s OvS switch. Therefore, packets will be forwarded according to the first six bits of the
Type of Service (ToS) field in its IP header.

5. Validation, Evaluation and Obtained Results

In order to automate the execution of administration features that WebGM provides, a Python script
was developed whose purpose is to take advantage of both modules, FCMan and SDN REST API. By doing
so, it is possible to create slices, run containers and register the required IoT devices in an automated
fashion every time a test is performed. All clients ran in the Host machine. Because end devices (things)
must be somehow represented, several SDWI-like Linux virtual interfaces were created with a given IP
and random MAC addresses. As a result of that, having in mind IoT characteristics, all the tests realised
can be related to the implemented solution scalability potentialities.

With virtual end devices, it is now possible to test its connectivity by binding the process to the
intended network interface. However, in order to better analyse the solution performance, the injection of
stress through traffic generation is needed. Iperf3 [56] was used to perform active measurements of the
maximum achievable bandwidth. Due to Iperf3’s lack of support for fetching the server statistics output,
its source code was modified and already submitted via pull request to the GitHub official repository [57].

On top of the gateway network architecture, each client requires an Iperf3 server waiting to be
connected and ready to report its statistics results. Hence, the VM-Application Docker containers were
running in order to accommodate them, resulting in traffic flowing through all the SDN architecture layers.
Each server was accessible through the same IP address, but different ports.

IoT 2020, 1 67

5.1. Best Effort

Firstly, it is important to understand the natural characteristics of the default (best effort)
implementation. Hence, it is pertinent to test its functionalities without taking advantage of the slice-based
QoS manager. The main purpose is to find what are the implemented solution limitations, showing
potential drawbacks that some processing environments and network characteristics may provoke.

Hence, one interesting result would be to find what is the maximum achievable bandwidth that the
default version of our implementation can handle. The test was performed for two scenarios, using the
TCP and UDP transport layer protocols. Only one Iperf3 client was used in each case, which gradually
increased the connection requested bandwidth. The test result is depicted in Figure 13.

w TCP == UDP

000
'\.I'\.I\.I

100
100

Provided Bandwidth (Mbit/s)

1 10 100 1000 E¥sTsTaTs
U WU ULy

'\.II\.I '\.I \.I
Asked Bandwidth (Mbit/s)

Figure 13. Maximum achievable bit rate when utilising TCP and UDP protocols.

As can be seen by the above chart, despite one noticeable peak of 4.6 Gbit/s, TCP stabilised roughly
at 1 Gbit/s, while UDP found a balance at approximately 3 Gbit/s. The observed chart reports that TCP
has a stabilised best effort bitrate smaller than UDP. The proposed solution addresses two scenarios where
several end devices are allowed to exist and that may serve a wide range of applications. Hence, it showed

how both protocols behave when traffic provided by different devices is simultaneously flowing through
the solution.

5.1.1. Multiple Clients

The solution is intended to deal with several client connections. Hence, it is important to analyse
the resultant impact of growing devices in the gateway networking environment. In order to do so,
the same protocol comparison was made where each client was imposing a bit rate of 1 Mbit/s. It should
be mentioned that only one slice was considered, and the tests below were not performed simultaneously.
Figure 14 shows the total bit rate of the TCP and UDP protocols resulting from a growing client number.

IoT 2020, 1 68

== TCF == UDP Requested bits/s

100

-l

(%3]

50

Total Bandwidth (Mbit/s)

ra
o

0

20 40 60 80 100

Clients Mumber

Figure 14. Total bit rate of the TCP and UDP protocols resulting from a growing client number.

TCP clients suffer and cannot keep up with the requested bandwidth, which at roughly 70 clients,
begins to deteriorate. Understanding the performance of the system resources is important and might
reveal some limitations of an SDN implementation. Hence, usually, software performance is directly
limited by hardware, and the Iperf3 CPU utilisation reports should be taken into account.

Despite not being a surprise, it is clear that the CPU usage is damaging the TCP scenario performance
as shown in Figure 15. As was anticipated, the bit rate degradation starts when the machine enters full
processing power, causing the total clients’ bandwidth not to go further than 75 Mbit/s. Natural intuition
would blame the protocol characteristics, which contrary to UDDP, is connection oriented and focuses
on reliability.

= TCP == LDP

100 —_ —

~

(%]

CPU utilisation (%)

[l
(%3]

0

20 40 &0 80 100

Clients Mumber

Figure 15. CPU utilisation when gradually increasing clients in the TCP and UDP protocols.

IoT 2020, 1 69

5.1.2. Multiple Slices

Since our goal is to address multiple use cases, it is relevant to test two simultaneously running
slices in a best effort approach. The testing scenario addresses both network segments with 50 clients
each, which are instructed to inject 1 Mbit/s per interface with Iperf3 default packet sizes in the gateway.
The test also considers the previously mentioned protocols where Slice A and Slice B are using TCP and
UDP, respectively, to illustrate better and differentiate each slice. Figure 16 shows a comparison of both
slices” achieved bandwidth.

— == SliceB Requested bits/s

Slice A

/ SliceB
Slice A

Total Bandwidth (Mbit/s)
r

Clients Number

Figure 16. Comparison of two slices’ total bandwidth.

As expected, the implemented solution can handle several end devices, even if their destination slices
happen to be different. Because this work’s proposed solution addresses two use cases, the evaluation
considered two slices as well. Despite the commitment to perform exhaustive tests, it is crucial to
understand that the main objective is to find the QoS implementation that would better fit the Industry 4.0
and digital farming environments.

5.2. Traffic Policing

Policing can be implemented on interface eth1 of the VM-Application, mainly because it represents the
interface that deals with traffic flows entering the system from the outside. On the other hand, each created
slice port represents the way out of the whole OvS system, which enables its usage for outgoing traffic
shaping. Because of that, traffic policing is inevitably applied to all the gateway created slices, affecting
them in a single-level fashion. Contrarily, shaping is applied to each slice independently, where rules
are set and are inherent to one single virtualised network segment. Hence, it is important to mention
that besides the default flow entries applied by the Ryu controller, no flows entries are applied by our
proposed slice-based QoS manager. The evaluation is intended to illustrate that it affects all slices when
the solution is taking advantage of it. In light of this, the clients’ number was gradually increased in
two simultaneously running slices whose combined bit rate was limited by 50 Mbit/s. All clients were
attempting to poke the server with 1 Mbit/s, using TCP. Additionally, the defined policing burst value
was set as 10 Mbit/s. The slices’ aggregated bandwidth is observable in Figure 17.

IoT 2020, 1 70

== Slice1 == Slice2 Requested per Slice

Slice 2

_‘M

«

/ Slicé 1

Total Bandwidth (Mbit/s)

Clients Number

Figure 17. Two slices’ policing implementation total bandwidth.

As can be seen, both slices are being affected when their bit rates reach 25 Mbit/s. This can be
explained by their aggregated bandwidth of 50 Mbit/s at a time, which is the rate limit that the traffic
policing implementation imposed. The OvS documentation states that defining a burst size to be a sizeable
fraction of the policing maximum limit rate enables the flow to more easily achieve the full rate. However,
if the defined burst size is set to be a significant value, the client can notice an average rate slightly higher
than the specified maximum one [20]. Hence, because the test defined burst value is around 20% of the
maximum rate limit, the slices” aggregated bandwidth is moderately overcoming it.

5.3. Per-Flow QoS: IntServ

The slice-based QoS policing is actuated at an interface level, dropping excess traffic that crosses into
it and not taking advantage of QoS queues to do so. On the other hand, traffic shaping is applied on an
OvS port, allowing multiple queues’ creation and flow control on its OvS switch side. Hence, it enables
the use of a set of IntServ rules in our proposed solution.

As our goal is to address two use cases, it is vital to guarantee the stability of the implemented
scenarios having two network slices in mind. Hence, all clients are required to possess an IntServ
classification (flow entry) that would forward them based on their destination IP port. This feature results
in additional traffic in the OpenFlow switch table. The details of the implemented slice-based QoS queues
are shown in Table 1.

Table 1. Two slices” IntServimplementation details.

SliceID Queue ID (Name) Defined Maximum Bandwidth OpenFlow Match: Destination Port

1 1(A) 20 Mbit/s Odd
1 2 (B) 10 Mbit/s Even
2 1(A) 15 Mbit/s Odd
2 2 (B) 5 Mbit/s Even

IoT 2020, 1 71

The comparison of both slices” achieved bandwidth is depicted in Figure 18, showing the efficiency
of our solution. Clients were behaving in the same way as in the traffic policing evaluation, using TCP
and injecting 1 Mbit/s each. With that in mind, Slice 1 (ID = 1) is expected not to go beyond 30 Mbit/s
(ID 1 = 20 Mbit/s and ID 2 = 10 Mbit/s), while Slice 2 (ID = 2) should stabilise around 20 Mbit/s
(ID1=15Mbit/s and ID 2 = 5 Mbit/s).

Slice 2 Total Requested per Slice

Slice 1

N

Total Bandwidth (Mbit/s)

Slice 2

Clients Number

Figure 18. Two slices’ IntServ: total achieved bandwidth comparison.

5.4. DiffServ QoS

Contrary to IntServ, DiffServ seeks to use methods in order to categorise traffic into distinct classes.
The solution Northbound core OvS switch is not able to apply the tool QoS rules, which forces them to
be implemented in each slice switch port instead and creating the so-called DiffServ domains. However,
OpenFlow related parameters can still be applied in br-int, which allows our slice-based QoS manager
to take advantage of it in order to mark DSCP values. Moreover, since IP headers contain the DSCP bit
field, which is positioned in the ToS octet, it is possible to define OpenFlow rules that mark and redirect
traffic flows based on their packet’s DSCP value. Hence, the services’ differentiation also allows OvS to
define traffic prioritisation within a given slice, which causes important queues to receive all the excess
bandwidth that they can use before less prioritised queues receive any.

Our proposed slice-based QoS manager provides an OvS and OpenFlow level API to allow
classification and to differentiate services within each slice domain. Therefore, in the case of prioritisation
requirements, the relation between them and DSCP values has to be set by the gateway administrator.
We followed the commonly utilised DSCP values’ list, which is described by RFC 2475. DiffServ analyses
the pre-defined traffic classes on each domain node. Thus, our model can differentiate flows based on
matching parameters. The defined queue rules are shown in Table 2.

Therefore, our solution in the core switch classified traffic, applying a DSCP value based on a match of
the packet transport layer protocol. Traffic that took advantage of TCP was marked with 10, while in traffic
that was using UDP, a value of 18 was applied instead. Additionally, each slice switch had QoS OvS rules,
specifying the queue rules to where traffic should be redirected based on OpenFlow entries that would
match the known DSCP values. This means that after the core switch, the following path OvS elements

IoT 2020, 1 72

did not have to deal with flows any longer, merely inspecting the packets ToS octet in order to apply
QoS. The total achieved bandwidth in each slice condition is illustrated in Figure 19, which represents the
efficiency of our solution.

Table 2. Two slices’ DiffServimplementation details.

Slice ID Queue ID (Name) Defined Maximum Bandwidth Match: DSCP Value (Decimal)

1 1(A) 15 Mbit/s 10
1 2 (B) 5 Mbit/s 18
2 1(A) 20 Mbit/s 10
2 2 (B) 10 Mbit/s 18
w= Slice1 == Slice?2 Total Requested per Slice == Slice 1 limit == Slice 2 limit
50
40
@ Slice 1 limit
= e
g 30 3
g Slice 2 limit —
3 2 - Slice 2
@
s
o
Lo) -

Clients Number

Figure 19. Two slices” DSCP marking: total achieved bandwidth in each slice.

6. Conclusions

In this paper, we proposed, implemented and evaluated a lightweight slice-based QoS manager for
non-3GPP IoT scenarios, having in mind the Industry 4.0 and digital farming use cases with specific QoS
requirements. Our solution was implemented as a component in SOFTWAY4IoT considering the best
effort, traffic policing, IntServ and DiffServ QoS models. The validation and evaluation were carried out in
a real experimental environment. The results obtained showed that our solution has great potential for
IoT deployments, which can provide the desired bandwidth for each slice (as virtual network partitions)
according to the QoS requirements defined for each use case.

Our solution, as a proof of concept, is feasible, and we can go further mainly in the evolution of the
solution, as well as the development of an API to automate the process.

As future work, besides the evolution of the slice-based QoS management, we are looking to deploy it
as a pilot on a new version of the SOFTWAY4IoT, considering multiple gateways, centralised management
and orchestration. We are working on the integration of IoT non-3GPP network access to the 5G core by
SOFTWAY4IoT. We also intend to evaluate our solution regarding other performance metrics as well.

IoT 2020, 1 73

Author Contributions: Conceptualisation, A.O.-]. and K.C.; methodology, A.O.-]., K.C., ES. and W.M.; software,
A.O.]. and K.C,; validation, A.O.-]., K.C., ES. and W.M,; investigation, A.O.-]., K.C., ES. and W.M,; resources, E.S.
and W.M.; writing—original draft preparation, A.O.-].; writing—review and editing, A.O.-J., K.C., ES. and WM,;
supervision and project administration, K.C. and A.O.-J.; funding acquisition, ES. and K.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partially funded by Fundagédo para a Ciéncia e a Tecnologia (FCT) under Portugal 2020,
the European Regional Development Fund (ERDF) and Rede Nacional de Ensino e Pesquisa (RNP), Brazil.

Acknowledgments: We would like to thank Francisco Fraga for his valuable contributions to this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chaouchi, H.; Bourgeau, T. Internet of Things: Building the New Digital Society. IoT 2020, 1, 1-4. [CrossRef]
Romeo, L.; Petitti, A.; Marani, R.; Milella, A. Internet of Robotic Things in Smart Domains: Applications and
Challenges. Sensors 2020, 20, 3355. [CrossRef] [PubMed]

3. Spachos, P. Towards a Low-Cost Precision Viticulture System Using Internet of Things Devices. IoT 2020, 1, 5-20.
[CrossRef]

4. Oliveira-Jr, A.; Resende, C.; Pereira, A.; Madureira, P.; Gongalves, J.; Moutinho, R.; Soares, F.; Moreira, W.
IoT Sensing Platform as a Driver for Digital Farming in Rural Africa. Sensors 2020, 20, 3511. [CrossRef] [PubMed]

5. Xu, L.D.; He, W,; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233-2243.
[CrossRef]

6. Junior, S.; Riker, A,; Silvestre, B.; Moreira, W.; Oliveira-Jr, A.; Borges, V. DYNASTI—Dynamic Multiple RPL
Instances for Multiple IoT Applications in Smart City. Sensors 2020, 20, 3130. [CrossRef] [PubMed]

7. Wan,],; Tang, S.; Shu, Z.; Li, D.; Wang, S.; Imran, M.; Vasilakos, A.V. Software-Defined Industrial Internet of
Things in the Context of Industry 4.0. IEEE Sens.]. 2016, 16, 7373-7380. [CrossRef]

8. Foukas, X.; Patounas, G.; Elmokashfi, A.; Marina, M.K. Network Slicing in 5G: Survey and Challenges.
IEEE Commun. Mag. 2017, 55, 94-100. [CrossRef]

9. Afolabi, I; Taleb, T.; Samdanis, K.; Ksentini, A.; Flinck, H. Network Slicing and Softwarization: A Survey on
Principles, Enabling Technologies, and Solutions. IEEE Commun. Surv. Tutor. 2018, 20, 2429-2453. [CrossRef]

10. Bizanis, N.; Kuipers, F.A. SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access
2016, 4, 5591-5606. [CrossRef]

11. 3GPP. 3rd Generation Partnership Project (3GPP). Available online: https:/ /www.3gpp.org/ (accessed on 10
June 2020).

12. Institute, G.E.T.S. 5G; Access to the 3GPP 5G Core Network (5GCN) via non-3GPP Access Networks (3GPP TS 24.502
Version 15.4.0 Release 15); European Telecommunications Standards Institute: Sophia Antipolis, France, 2019.
Available online: https://www.etsi.org/ (accessed on 2 July 2020).

13. Hammi, B.; Khatoun, R.; Zeadally, S.; Fayad, A.; Khoukhi, L. IoT technologies for smart cities. IET Netw.
2018, 7, 1-13. [CrossRef]

14. An,N.; Kim, Y;; Park, J.; Kwon, D.H.; Lim, H. Slice Management for Quality of Service Differentiation in Wireless
Network Slicing. Sensors 2019, 19, 2745. [CrossRef] [PubMed]

15. SOFTware defined gateWAY and fog computing for Internet of Things (SOFTWAY4IoT). Available online:
https:/ /softway4iot.labora.inf.ufg.br/ (accessed on 10 June 2020).

16. Shu, Z.; Taleb, T. A Novel QoS Framework for Network Slicing in 5G and Beyond Networks Based on SDN and
NFV. IEEE Netw. 2020, 34, 256-263. [CrossRef]

17. Alipio, M.I; Udarbe, G.M.; Medina, N.R.B.; Balba, M.N.Q. Demonstration of Quality of Service mechanism in
an OpenFlow testbed. In Proceedings of the 2016 IEEE Advanced Information Management, Communicates,
Electronic and Automation Control Conference (IMCEC), Xi“an, China, 3-5 October 2016; pp. 443-447. [CrossRef]

http://dx.doi.org/10.3390/iot1010001
http://dx.doi.org/10.3390/s20123355
http://www.ncbi.nlm.nih.gov/pubmed/32545700
http://dx.doi.org/10.3390/iot1010002
http://dx.doi.org/10.3390/s20123511
http://www.ncbi.nlm.nih.gov/pubmed/32575891
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.3390/s20113130
http://www.ncbi.nlm.nih.gov/pubmed/32492935
http://dx.doi.org/10.1109/JSEN.2016.2565621
http://dx.doi.org/10.1109/MCOM.2017.1600951
http://dx.doi.org/10.1109/COMST.2018.2815638
http://dx.doi.org/10.1109/ACCESS.2016.2607786
https://www.3gpp.org/
https://www.etsi.org/
http://dx.doi.org/10.1049/iet-net.2017.0163
http://dx.doi.org/10.3390/s19122745
http://www.ncbi.nlm.nih.gov/pubmed/31248088
https://softway4iot.labora.inf.ufg.br/
http://dx.doi.org/10.1109/MNET.001.1900423
http://dx.doi.org/10.1109/IMCEC.2016.7867251

IoT 2020, 1 74

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Durner, R;; Blenk, A.; Kellerer, W. Performance study of dynamic QoS management for OpenFlow-enabled
SDN switches. In Proceedings of the 2015 IEEE 23rd International Symposium on Quality of Service (IWQoS),
Portland, OR, USA, 15-16 June 2015; pp. 177-182. [CrossRef]

Hsu, W.; Wang, X.; Yeh, S.; Huang, P. The implementation of a QoS/QoE mapping and adjusting application
in software-defined networks. In Proceedings of the 2016 2nd International Conference on Intelligent Green
Building and Smart Grid, Prague, Czech Republic, 27-29 June 2016; pp. 1-4. [CrossRef]

Open-vSwitch. Quality of Service (QoS)—Open vSwitch Documentation. Availabel online: http://docs.
openvswitch.org/en/latest/ (accessed on 10 February 2019).

Adedayo, A.O., T.B. QoS functionality in software defined network. J. Netw. Syst. Manag. 2017, 25, 321-374.
[CrossRef]

Mininet. Rapid Prototyping for Software Defined Networks. Availabel online: https://github.com/mininet/
mininet (accessed on 15 May 2019).

Casado-Vara, R.; del Rey, A.M.; Affes, S.; Prieto, J.; Corchado,].M. IoT network slicing on virtual layers
of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst.
2020, 102, 965-977. [CrossRef]

Ouedraogo, C.A.; Medjiah, S.; Chassot, C.; Aguilar, J. Flyweight Network Functions for Network Slicing in
IoT. In Proceedings of the 2018 International Conference on Smart Communications in Network Technologies
(SaCoNeT), El Oued, Algeria, 27-31 October 2018; pp. 31-36.

Xiao, Y.; Hirzallah, M.; Krunz, M. Distributed Resource Allocation for Network Slicing Over Licensed and
Unlicensed Bands. IEEE |. Sel. Areas Commun. 2018, 36, 2260-2274. [CrossRef]

Costanzo, S.; Fajjari, L; Aitsaadi, N.; Langar, R. Dynamic Network Slicing for 5G IoT and eMBB services: A New
Design with Prototype and Implementation Results. In Proceedings of the 2018 3rd Cloudification of the Internet
of Things (CIoT), Paris, France, 2—4 July 2018; pp. 1-7.

Wu, H.; Tsokalo, I.A.; Kuss, D.; Salah, H.; Pingel, L.; Fitzek, FH. Demonstration of Network Slicing for Flexible
Conditional Monitoring in Industrial IoT Networks. In Proceedings of the 2019 16th IEEE Annual Consumer
Communications Networking Conference (CCNC), Las Vegas, NV, USA, 11-14 January 2019; pp. 1-2.
Dawaliby, S.; Bradai, A.; Pousset, Y. Adaptive dynamic network slicing in LoRa networks. Future Gener.
Comput. Syst. 2019, 98, 697-707. doi:10.1016/j.future.2019.01.042. [CrossRef]

Dawaliby, S.; Bradai, A.; Pousset, Y. Network Slicing Optimization in Large Scale LoRa Wide Area Networks.
In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft), Paris, France, 24-28 June 2019;
pp- 72-77.

Navarro-Ortiz, J.; Sendra, S.; Ameigeiras, P.; Lopez-Soler,].M. Integration of LoRaWAN and 4G/5G for the
Industrial Internet of Things. IEEE Commun. Mag. 2018, 56, 60-67. [CrossRef]

Yasmin, R.; Petdjdjarvi, J.; Mikhaylov, K.; Pouttu, A. On the integration of LoRaWAN with the 5G test network.
In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), Montreal, QC, Canada, 8-13 October 2017; pp. 1-6.

Oliveira-Jr, A.; Cardoso, K.; Correa, S. SOFTWAY4IoT: SOFTware-defined gateWAY and fog computing for IoT
(Internet of Things). Workshop RNP-Programa de Internet Avangada, Presentation. 2018. Available online:
https:/ /bit.ly /37VuTOR (accessed on 5 July 2020).

Oliveira-Jr, A.; Cardoso, K.; Correa, S. SOFTWAY4IoT: SOFTware-Defined gateWAY and Fog Computing for
IoT (Internet of Things). Workshop RNP-Programa de Internet Avancada, White paper. 2018. Available online:
https:/ /bit.ly /30RFua9 (accessed on 05 July 2020).

Junior, D.E; Cabral,].P.; Macedo, C.; dos Santos Filho, T.; Cardoso, K.; Oliveira-Jr, A. Implantacao e Avaliagao
de um Protétipo para Filas Inteligentes utilizando um Dispositivo IoT WiFi e um Gateway IoT Definido por
Software. In Anais da VII Escola Regional de Informdtica de Goids; SBC: Porto Alegre, Brasil, 2019; pp. 413-426.
Janior, D.F,; Cabral, J.P.; Macedo, C.; dos Santos Filho, T.; Correa, S.L.; Moreira, W.; Cardoso, K.; Oliveira-Jr, A.
Implantacao de multiplos gateways IoT definido por software e virtualizado para campus inteligente. Revista de
Sistemas de Informagao da FSMA 2020, 25,2-18.

Docker. Enterprise Container Platform. Available online: https://Docker.com/(accessed on 25 February 2019).

http://dx.doi.org/10.1109/IWQoS.2015.7404730
http://dx.doi.org/10.1109/IGBSG.2016.7539431
http://docs.openvswitch.org/en/latest/
http://docs.openvswitch.org/en/latest/
http://dx.doi.org/10.1007/s10922-016-9393-9
https://github.com/mininet/mininet
https://github.com/mininet/mininet
http://dx.doi.org/10.1016/j.future.2019.09.042
http://dx.doi.org/10.1109/JSAC.2018.2869964
https://doi.org/https://doi.org/10.1016/j.future.2019.01.042
http://dx.doi.org/10.1016/j.future.2019.01.042
http://dx.doi.org/10.1109/MCOM.2018.1700625
https://bit.ly/37VuT0R
https://bit.ly/30RFua9
https://Docker.com/

IoT 2020, 1 75

37.

38.
39.

40.
41.

42.
43.
44.

45.

46.
47.

48.
49.

50.

51.

52.

53.

54.

55.
56.

57.

Ryu-SDN-Framework. Component-Based SDN Framework. Available online: https://osrg.github.io/ryu/
(accessed on 26 February 2019).

Flask v1.0. Available online: http:/ /flask.pocoo.org/docs/1.0/ (accessed on 10 March 2019).

PostgreSQL: The World’s Most Advanced Open Source Relational Database v11.2. Available online: https:
/ /www.postgresql.org/files/documentation/pdf/11/postgresql-11-A4.pdf (accessed on 15 March 2019).
Python. 2019. Available online: https:/ /www.python.org/doc/ (accessed on 8 March 2019).

HTMLS. Available online: https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
(accessed on 10 April 2019).

JavaScript.com is a Resource for the JavaScript Community. 2019 Available online: https://www.javascript.com/
about (accessed on 10 April 2019).

Angular]S. 2019. Available online: https://docs.angularjs.org/guide (accessed on 12 April 2019).

Open vSwitch (OvS). 2019. Available online: https://docs.openvswitch.org/en/latest/ (accessed on 10 April 2019).
GNU Radio—The Free And Open Source Radio Ecosystem. 2019. Available online: https://www.gnuradio.org/
docs/ (accessed on 15 April 2019).

Xen. Open Source Hypervisor. Available online: https://xenproject.org/ (accessed on 20 May 2019).

Docker Networking Overview. 2019. Available online: https://docs.Docker.com/network/ (accessed on
10 May 2019).

Arduino Uno Rev3. 2019. Available online: https:/ /store.arduino.cc/arduino-uno-rev3 (accessed on 25 May 2019).
LoRa Shield for Arduino. 2019. Available online: http://www.dragino.com/products/module/item/102-lora-
shield.html (accessed on 25 May 2019).

RH-RF95—LoRa RadioHead Library. 2019. Available online: https://github.com/kenbiba/RH-RF95 (accessed on
10 April 2019).

Chandan, A.R.; Khairnar, V.D. Bluetooth Low Energy (BLE) Crackdown Using IoT. In Proceedings of the
2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India,
11-12 July 2018; pp. 1436-1441. [CrossRef]

GATT Specifications | Bluetooth Technology Website. 2019. Available online: https://www.bluetooth.com/
specifications/gatt/ (accessed on 18 April 2019).

Bluetooth GATT SDK for Python. 2019. Available online: https://github.com/getsenic/gatt-python (accessed on
5 May 2019).

Kim, D.H,; Lee, EK.; Kim, J. Experiencing LoRa Network Establishment on a Smart Energy Campus Testbed.
Sustainability 2019, 11, 1917. [CrossRef]

Linux-TC. te(8)-Linux Man Page. Available online: https:/ /linux.die.net/man/8/tc (accessed on 10 March 2019).
iperf3. A TCP, UDP, and SCTP Network Bandwidth Measurement Tool. Available online: https://github.com/
esnet/iperf (accessed on 12 May 2019).

Fraga, F. iperf3-python Module. 2020. Available online: https://github.com/thiezn/iperf3-python/pull/48
(accessed on 10 November 2019).

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
@ distributed under the terms and conditions of the Creative Commons Attribution (CC BY)

license (http:/ /creativecommons.org/licenses/by/4.0/).

https://osrg.github.io/ryu/
http://flask.pocoo.org/docs/1.0/
https://www.postgresql.org/files/documentation/pdf/11/postgresql-11-A4.pdf
https://www.postgresql.org/files/documentation/pdf/11/postgresql-11-A4.pdf
https://www.python.org/doc/
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
JavaScript.com
https://www.javascript.com/about
https://www.javascript.com/about
https://docs.angularjs.org/guide
https://docs.openvswitch.org/en/latest/
https://www.gnuradio.org/docs/
https://www.gnuradio.org/docs/
https://xenproject.org/
https://docs.Docker.com/network/
https://store.arduino.cc/arduino-uno-rev3
http://www.dragino.com/products/module/item/102-lora-shield.html
http://www.dragino.com/products/module/item/102-lora-shield.html
https://github.com/kenbiba/RH-RF95
http://dx.doi.org/10.1109/ICIRCA.2018.8597189
https://www.bluetooth.com/specifications/gatt/
https://www.bluetooth.com/specifications/gatt/
https://github.com/getsenic/gatt-python
http://dx.doi.org/10.3390/su11071917
https://linux.die.net/man/8/tc
https://github.com/esnet/iperf
https://github.com/esnet/iperf
https://github.com/thiezn/iperf3-python/pull/48
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	SOFTWAY4IoT
	Architecture

	Our Proposed Slice-Based QoS Manager for IoT
	VM-Application
	VM-Manager
	Host
	Data Plane Networking
	LoRa Physical Interface
	VI-BLE and VI-LoRa in the SDWI Module

	Network Architecture Overview
	Slice-Based QoS Manager Solution
	Open vSwitch Role
	Linux Traffic Control
	OpenFlow Role
	Per-Interface Policing
	Per-Flow QoS: IntServ
	DiffServ QoS

	Validation, Evaluation and Obtained Results
	Best Effort
	Multiple Clients
	Multiple Slices

	Traffic Policing
	Per-Flow QoS: IntServ
	DiffServ QoS

	Conclusions
	References

