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Abstract: Edge data analytics refers to processing near data sources at the edge of the network to
reduce delays in data transmission and, consequently, enable real-time interactions. However, data
analytics at the edge introduces numerous security risks that can impact the data being processed.
Thus, safeguarding sensitive data from being exposed to illegitimate users is crucial to avoiding
uncertainties and maintaining the overall quality of the service offered. Most existing edge security
models have considered attacks during data analysis as an afterthought. In this paper, an overview
of edge data analytics in healthcare, traffic management, and smart city use cases is provided,
including the possible attacks and their impacts on edge data analytics. Further, existing models are
investigated to understand how these attacks are handled and research gaps are identified. Finally,
research directions to enhance data analytics at the edge are presented.
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1. Introduction

Edge computing is a distributed systems paradigm that aims to offload selected
services of applications from the cloud and bring them closer to the end-user. It is a generic
term that captures associated paradigms, such as fog computing, mist computing, mobile
edge computing, and cloudlet computing. Services are hosted at the edge of the network on
nodes, such as routers, gateways, and micro-data centers. Data generated from end-users
or sensors on Internet of Things (IoT) devices or sensors are analyzed and processed on the
edge, which is nearer to the data source. Although edge nodes may be resource-limited
when compared to the cloud, data analytics on the edge offers three benefits: (i) better
responsiveness by reducing round-trip communication latency, (ii) a higher degree of data
privacy, and (iii) minimizing the ingress bandwidth demand to the cloud [1].

Security is of paramount importance when using edge nodes for data processing since
a large attack surface is exposed. User-generated or sensor data that are transferred to edge
nodes must be protected for confidentiality and integrity, even if an edge node is attacked [2].
Data must be protected even when attacks, such as Man-In-The-Middle (MITM), Denial
of Service (DoS), eavesdropping, and others (to be discussed later), are underway. Many
attacks while performing data analytics have been previously understood in the context
of the cloud and are inherited by the edge (for example, Man-In-The-Middle (MITM),
Denial of Service (DoS), or eavesdropping). Recent security breaches or incidents in edge
computing serve to highlight the severity of security risks in this domain. For example, in
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2020, a vulnerability known as “Ripple20” was discovered, affecting millions of IoT devices
across various industries, including edge computing devices. This vulnerability allowed
attackers to remotely execute malicious code, potentially leading to data breaches or system
compromise [3]. Another notable incident involved the exploitation of a vulnerability in the
“Treck” TCP/IP stack, affecting numerous IoT and edge devices. This vulnerability, dubbed
“AMNESIA:33,” enabled attackers to execute remote code execution, DoS attacks, and other
malicious activities [4]. These incidents underscore the importance of addressing security
vulnerabilities in edge computing environments to mitigate the risk of data breaches,
system compromise, and other cyber threats.

This article is concerned with security threats in the context of edge data analytics.
There are two main reasons why security threats in edge data analytics need to be con-
sidered. Firstly, in edge computing, when ubiquitous devices outsource their data for
processing to edge servers, vulnerabilities can be exploited for malicious activities on the
data. This may be accentuated when there is a lack of data storage auditing services [5].
Therefore, data integrity and data authorization will be affected. Secondly, bandwidth and
computation-intensive applications, such as augmented reality and video analytics (for
example, cognitive wearable assistance [6]), will process sensitive data at the edge. These
applications can emerge in the real world only if security threats arising from data analytics
at the edge can be mitigated.

Numerous articles have examined security threats in the context of edge computing.
They are summarized in Table 1. Twenty-six research articles are presented in the table,
and whether they consider threats in edge data analytics, the impact of threats on edge
nodes, and if they analyze edge threat models are highlighted. It is noted that most papers
explore security in the general sense, but do not focus on edge data analytics. Security
issues at the architectural, storage, and communication levels have been presented [7–9].
Fewer research articles examine security for data analytics at the edge. Examples include
considering the computational complexities of existing security models and the security
requirements for secure data analytics [10]. The threats related to data storage in a transient
environment have been considered [11]. There is a partial consideration of threats during
data analytics in the literature [12–17]. Similarly, the impact of the threats on edge nodes is
partially considered [18,19]. This article more comprehensively examines the threats and
the impact of threats and analyzes threat models relevant to edge data analytics.

The review method for preparing this article was based on an approach presented in the
literature [20]. It included defining the objective of the review and the research questions.

The objectives of this review are to:
O1. Highlight the edge data analytics process for selected application use cases,

including potential attacks and their impact on edge data analytics.
O2. Review the state-of-the-art security threat models to identify how attacks are

handled on the edge during data analytics and identify research gaps.
O3. Identify the impact of threats on edge data analytics.
The research questions considered in this article are:
RQ1. How do various attacks affect data analytics in edge computing? This will be

discussed in Section 4 by considering three use case applications.
RQ2. What are the different security models available to mitigate various data threats?

This will be discussed in Section 5.
RQ3. What is the severity of the attacks on edge data analytics? This will be discussed

in Section 5.1.
The remainder of this article is organized as follows. Section 2 presents the background

to edge data analytics. Section 3 presents a classification of security threats relevant to edge
data analytics. Section 4 discusses application use cases. Section 5 reviews the existing
security threat models and identifies their impacts on the edge application use cases. Finally,
Section 6 presents the challenges and potential future research directions for addressing
security threats in edge data analytics.
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Table 1. Summary of related work (X—work considered,×—not considered, and δ—partially considered).

Ref. Description Threat
Considered

Impact
of the
Threat

Analysis of
the Threat

Model
Considered

Remarks

[10] Secure data analytics in
edge computing X × X

Propose key requirements for secure data
analytics and identify pros and cons of
existing works on data analytics.

[11] Data security in
edge computing × × X

Review different cryptography-based
solutions to address data security issues in
edge computing.

[21] Security issues during authentic-
ation schemes for data integrity × × X

Evaluate existing methods to preserve data
integrity in fog and cloud computing and
identify their limitations.

[7] Security issues in
edge computing × × X

Review security issues in terms of access
control, key management, privacy, attack
mitigation, and anomaly detection.

[22] Security-as-a-Service in
multi-access edge computing X × X

Evaluate IDS, secure communication, and
access control mechanisms, and propose a
secure service deployment framework.

[23]
Security issues that are caused
by adopting virtualization in
edge computing

X × X

Discuss the advantages of adopting
virtualization, containers, Uni kernels, and
real-time OS in edge computing. Security
issues and attacks on these technologies with
different use case scenarios are addressed.

[24] Security and prevention
mechanisms in fog computing × × X

Comparative analysis of different
techniques to address common security
issues in edge computing.

[25] Security threats in mobile
edge computing X × X

Review the advantages of using machine
learning techniques to improve network
efficiency and handle malicious attacks.

[26] Security aspects in
fog computing × × ×

Discuss security issues in edge computing
caused due to its operations in the physical
environment and the need for
interoperability between edge nodes and
IoT devices with various solutions.

[27] Security issues in edge, fog, and
IoT applications × × ×

Identify security issues and evaluate
authentication and encryption schemes to
address these issues.

[28]

Review of fog-based
applications’ architecture and
security issues at the
architectural level

× × ×

Discuss four edge-based applications and
security concerns to prevent malicious
access and data modification in
these applications.

[29] Security issues due to fog infra-
structure in various applications × × X

The present data analytics taxonomy
discusses the complexity during data
processing with research challenges.

[17]
Discuss how to improve
security issues and protocols in
fog computing

× × X

Present a comprehensive survey on overall
issues in edge computing. Analyze security
models that address location and data
privacy, secure communication, and
various intrusion systems.

[11]
Analyze fog computing
architecture, security, and
trust issues

× X X

Discuss security issues, various
mechanisms, and different technologies to
handle data security and privacy in
edge computing.

[16]
A comprehensive review of
edge computing security issues
with a few proposed solutions

δ δ X

Identify the challenges of the existing
security models to handle threats in edge
computing and suggest a few solutions
that can be applied to a similar edge
computing paradigm.
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Table 1. Cont.

Ref. Description Threat
Considered

Impact
of the
Threat

Analysis of
the Threat

Model
Considered

Remarks

[8] Security and privacy issues due
to fog computing architecture × × × Identify the threats in the edge

computing platform.

[30] Challenges due to data security
and privacy δ X ×

Justify how cloud data security solutions
cannot be applied to edge computing and
highlight the importance of addressing this
issue in edge computing.

[31] Layer-wise security and
threat issues × × X

Identify the threats in each layer and
propose a risk-based trust model to secure
the decision-making process and secure
data in the edge layer.

[14]
Review of security and privacy
issues to secure fog-based
IoT application

δ X ×
Identify the threats and security issues
related to data storage, computation, and
data sharing in the fog layer.

[13] Potential security issues in the
fog-based application X X ×

Various edge computing solutions are
analyzed, and security models related to
privacy-preserving, insider attacks,
resource management, encryption, and
authentication schemes are discussed.

[32]

Address all the common
security and privacy issues in
fog computing and identify
gaps in the existing
security solutions

× × X
Propose solution toward establishing trust,
secure communication channels, and
privacy-preserving schemes.

[33]
Concerning security and resil-
ience edge and fog computing
architectures are analyzed

× × × Address issues related to virtualized infrastr-
ucture and software-driven communication.

[12] Using fog computing, how to se-
cure healthcare data is discussed X × × Propose encryption algorithms to secure

data on the edge layer.

[19]

MITM attacks are studied
exclusively by CPU and
memory consumption on
fog devices

× X ×
Present authentication and authorization
techniques to protect edge nodes from an
MITM attack.

[34]
Security threats when adopting
edge computing in IoT
applications

× × ×
Review existing security models that address
MITM, intrusion detection, malicious nodes,
and data protection models.

[18]
Security threats that affect the
confidentiality, integrity, and
availability of the architecture

× X ×

Discuss the advantages of adopting edge
computing in IoT applications.
Recommend a few solutions to address the
vulnerabilities and threats due to adoption.

Current
study

Security issues on edge nodes
that affect decision-making and
analytics of the applications

X X X

Review potential threats that affect edge
nodes and disturb the normal functioning
of applications. Identify research gaps in
existing security models.

2. Edge Data Analytics

Edge data analytics allows preprocessing data for obtaining real-time decisions. The
data flow is similar to that on the cloud, with the difference that edge resources process
data. The data analytics process will need to consider the following five aspects: (a) data
source, (b) content format, (c) data storage, (d) data staging, and (e) data processing [35].
Data processing on edge nodes enables real-time interactions. The flow of data in an edge
computing layer sandwiched between the cloud and end-user devices layer (referred to as
the Internet of Things (IoT)) is shown in Figure 1. In edge-based IoT applications, sensing,
collecting, and analyzing the data depend on the types of services they provide.
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A data processing model has been proposed for edge computing systems [36]. Hetero-
geneous data are collected from ubiquitous devices and pushed forward through commu-
nication channels to preprocess. Real-time analysis and decision-making occur to support
quick responses to the applications on IoT devices. The services offering real-time analysis
may be transferred to the cloud. Data processing depends on the information gathered
from the hierarchical edge layer, how quickly the data are collected, and how they trigger
the specific services for decision-making. The components that support this process are
shown in Figure 2.
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Data Collection—All devices are the primary source to generate data. The devices may
be electrical appliances, homes, or embedded systems connected with the unique Internet
Protocol (IP) to establish connection and communication among them. Edge nodes closer to
devices collect data and support computation for the IoT devices’ applications by offloading
tasks across the cloud and edge nodes. Various deployment models deploy the task as
middleware between the cloud and IoT devices with efficient resource utilization [37].
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Data Storage—Data collected from devices can be stored in either the device or on
edge nodes in virtual machines or containers [38]. Typical efficient storage relies on
techniques such as mapping, hashing, clustering, replication, indexing, and so on. Data are
collected in clusters and sent to the storage devices [39]. In indexing, indexes are created
based on the extraction, recognition, and labeling of real-time data, such as video streams
or social media data [40]. In replication, the data are duplicated to support the data-intense
applications by encapsulating the coherent data logically [41].

Data Processing—IoT verticals, abstraction layers, and orchestration layers are the
three components responsible for data processing in edge computing architectures. IoT
verticals include the application that is in use. They provide multitenancy to host the
application on edge data servers and provide flexibility and interoperability to the edge
nodes. The abstraction layer provides a uniform virtualized platform through a generic
API to monitor, provision, and control physical resources. The orchestration layer includes
data API and orchestration layer API, which are responsible for node placement or node
selection, run-time monitoring, control during execution, and optimizing data-driven
decisions [42,43].

Data Analytics—Data collected from IoT devices are preprocessed on the edge nodes
through intensive real-time task analysis. This establishes real-time interactions between
the edge nodes and the users. For example, generating a diagnosis report for a doctor
to treat the patient remotely [44] or traffic signal detection for unmanned autonomous
vehicles [41]. The volume of data that may be challenging for the edge nodes to analyze
is pushed to the cloud for more complex data analysis [45,46]. Machine learning (ML)
algorithms are usually employed to provide long-term predictive decisions [47].

Decision-Making in Edge Data Analytics

Data analytics and decision management are two critical components of decision-
making. The report generated from data analytics is used by the decision management
component to identify what decisions should be made. For example, in traffic management
applications, information about traffic density, vehicle-specific data, and movement of
other vehicles and pedestrians are collected to perform quick data analytics and generate
decisions on traffic flow. Hence, agility in decision-making triggers the business process,
resource utilization, and customer satisfaction. Based on agility, decision-making is divided
into predictive and reactive models: (i) Predictive models rely on the cloud to collect large
amounts of data and perform long-term data analysis to identify the best decisions. They
evaluate decisions based on various policies in the applications and improve the predictive
analysis over time. (ii) Reactive models respond to an event with reactive decisions within
a short time interval. These models achieve real-time support without focusing on what
the system might look like in the future. The key characteristics of real-time support are
the most suitable for edge computing applications. To obtain a decision at an adequate
response time, edge nodes have to be placed closer to IoT devices [48]. Whether services
need to be placed on the cloud or edge is an optimization problem [49].

However, when edge nodes are scattered and placed closer to IoT devices, monitoring
these nodes will be challenging. Geographical factors, such as network infrastructure
and regulatory environments, significantly influence the design and deployment of edge
security solutions [50]. In regions with limited network infrastructure, edge security so-
lutions must adapt to unreliable or slow connectivity, potentially requiring decentralized
architectures to ensure data processing and threat detection can occur locally [51]. Reg-
ulatory environments, such as GDPR (General Data Protection Regulation) or HIPAA
(Health Insurance Portability and Accountability Act of 1996), dictate strict requirements
for data privacy and security, impacting how data are stored, processed, and transmitted in
edge computing environments [52]. Compliance with these regulations may necessitate
additional encryption measures, data residency requirements, or auditing protocols in
the design of edge security solutions. Moreover, variations in network latency due to
geographical distances can affect the responsiveness of security measures, prompting the
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optimization of algorithms or deployment strategies to accommodate latency-sensitive
applications. Additionally, geographical factors influence physical security considerations,
as edge devices deployed in remote or inaccessible locations may require robust physical
protection against tampering or unauthorized access [53]. Overall, accounting for geo-
graphical factors is essential in designing and deploying effective edge security solutions
that address the unique challenges posed by different environments. Intruders can easily
compromise and gain access to the edge layer, and thus they can mine or steal data that
are exchanged among edge nodes [54]. In cloud computing, there are regulations and
obligations for data protection, as per the European Commission [38]. However, no such
standards exist in edge computing, which makes them vulnerable to security attacks. In the
next section, the security models that affect decision-making and the normal functioning of
an application are reviewed.

3. Security Threats during Edge Data Analytics

Security threats during edge data analytics can render edge infrastructure vulnerable
to attacks or create breaches that could be exploited later. Compared to traditional data
processing environments, such as data centers or cloud platforms, security measures in
edge data analytics primarily focus on centralized servers and network infrastructure [55].
However, in edge data analytics, where processing occurs closer to the data source on
distributed devices, unique security challenges arise, including physical security threats,
such as theft or tampering of edge devices, network security threats, such as Man-In-The-
Middle attacks on data transmitted between edge devices and central servers, and device
compromise risks due to limited resources and security features on edge devices [56].
Additionally, edge data analytics introduces specific concerns related to data privacy and
integrity, as sensitive data are processed locally at the edge, emphasizing the importance of
securing data at the source.

Security breaches in edge data analytics can have severe consequences for data pri-
vacy and system integrity, potentially violating regulations such as GDPR or HIPAA [57].
Unauthorized access or exposure of sensitive data can result in legal penalties, loss of
trust, and reputational damage [58]. Integrity breaches can lead to inaccurate insights,
posing risks to safety in critical systems [59]. Data manipulation can deceive users or auto-
mated systems, impacting decision-making [60]. Service disruptions may occur, impacting
business continuity and customer satisfaction, while financial losses can stem from remedi-
ation costs, regulatory fines, and revenue loss. Intellectual property theft can undermine
competitiveness and innovation [61].

Appropriate threat models are used to safeguard applications against attacks, rep-
resenting the system it is running on, the users, and potential attackers. The growing
number of research articles on security, privacy, and threats underscores the importance
of addressing these issues in evolving edge computing applications. Table 2 summarize
the related studies by following the Open Fog reference architecture presented by the
Industrial Internet Consortium that categorizes threats based on attack venues: insider
attack, software attack, hardware attack, and network-based attack, all of which violate
confidentiality, integrity, authentication, availability, and data privacy.

Insider attack: An insider attack is caused by authorized users intentionally misusing
the system and network to exploit. The majority of threats occur due to insider attacks [62].
Once the user gains access to the organization, it is effortless to implement an insider attack.
There are very few opportunities to detect and prevent attacks. Host-based and network-
based detection techniques are used in cloud computing to identify insider attacks [63].

Hardware attack: In a hardware attack, the attacker gains physical access to the system
to obtain the information or modify its behavior. In many cases, covert or overt are the two
types of hardware attacks [36]. Covert attacks are when the victim is unaware of the attack,
and overt attacks are when the victim is aware of the attack on the system. A side-channel
attack is a typical covert attack.
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A hardware attack’s main intention is to disrupt the normal working of the hardware
or deny services, leading to system security failures [64].

Software attack: Software attacks are considered an indirect attack in many cases, as
the attack is against software modules that run on a system. The attackers usually know the
inner workings to launch an attack [65]. The attacker extracts information by introducing
rogue applications or trojan horses in the system [66].

Network attack: A network attack is the most common attack that bypasses the
security mechanisms of the victim. The attackers identify loopholes, bugs, and misconfigu-
rations in the services and disturb normal network activities. Usually, the attacker launches
this attack in four steps: gather network vulnerability information, compromise any nodes
in the network, attack using a compromised node, and finally, clear the attack history in
the activity log [67].

Table 2. Classification of threats.

Types Ref. Threats Definition Impact on the Edge Nodes and Networks

In
si

de
r

or
M

al
ic

io
us

A
tt

ac
k [68] Data

Breach Illegal data access and data leak Disclosure of confidential and sensitive data to an
unauthorized person

[69] Hacking Illegitimate users modifying or altering
the edge and user data

Loss of data integrity, manipulation of decision-making, and
disturb the normal functioning of the application

[70]

Identity
and
Password
Leak

Illegally hacked username and password
to gain access to the application

Gain unrestricted access to the application and misuse of
sensitive information

[63] Malicious
Insider

Illegally access the network and
control all the nodes Behave legitimately and take advantage of the services

[71] Forgery Forge the identities and profiles Generate fake information and mislead other users.
Consumemore bandwidth, storage, and energy

H
ar

dw
ar

e
A

tt
ac

k

[72] Jamming Blocking communication channel Loss of data or increased data transmission rate

[73]
Side-
Channel
Attack

Deliberately block
communication channel Falsification of data and increased computation time

[74] Resource
Depletion

Flood traffic and saturated storage or
network resources

Affects data processing and delays decision-making due to a
lack of resources

[75] Equipment
Sabotage Deliberately create resource deficiency Damage resources and disturb real-time services

[76] DoS
attack

Disruption of edge nodes, hardware
devices, or software applications

Consume more node resources, disrupt network operations, and
generate false messages

So
ft

w
ar

e
A

tt
ac

k [77] SQL
Injection Inject code to access sensitive data Modify sender data or fabricate new malicious data to affect

data confidentiality

[78] Impersonation Claim to be an alternative user by
using a forged character

Acquire illegitimate benefits and access confidential data with
malicious intentions

[14] Tampering Unauthorized entities intentionally
modifying data

Causes privacy leakage, hijacks services, or creates
other attacks

[79] Eavesdropping Illegally gain access to the network
and listen to the network communication

Hack users’ data and intercept communication channels to
degrade efficiency

N
et

w
or

k
A

tt
ac

k

[80] Message
Replay

Illegitimate user sending authorized
messages in the network Compromises other nodes and exposes sensitive data

[81] Spoofing Fake users repetitively
requesting services

Divert communication channel toward attackers’ destination.
Consumes more bandwidth and increases processing times

[14] Man-In-The-
Middle

An illegitimate insider in the network
with malicious intention

Steal users’ credentials, attack communication channels, or
alter data

[82] Flooding Generate enormous illegitimate
messages and increase network traffic

Disrupt the network and prevent legitimate users from
accessing the network

[77] Pattern
Analyses

Intercepting and examining the
data flow and network pattern in the
communication channels

Gain unauthorized access to the network and steal data

[83] Spamming Send spontaneous messages to all the
nodes requesting services Collect user credentials and gain access to the network

[84] Sybil Create a fake identity and gain access to
the network Acquire privileged access to the services

[85] Sinkhole
attack

The malicious node sends a fake message
and establishes a connection with a
legitimate node

Creates maximum traffic flow and makes adjoining nodes collide.
Increases bandwidth, leading to resource contention and
message destruction
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4. Motivating Use Case Applications

Various industries, including healthcare, transportation, and smart cities, leverage
edge data analytics to derive real-time insights and enhance operational efficiency [86]. In
healthcare, edge computing facilitates remote patient monitoring, medical imaging analysis,
and wearable health devices, while facing security challenges related to patient data
confidentiality, regulatory compliance, and medical device security [87]. In transportation,
edge data analytics enables real-time traffic monitoring, predictive maintenance, and
autonomous vehicle operations, posing security challenges such as protecting connected
vehicles from cyberattacks and ensuring the integrity of navigation data [88]. In smart cities,
edge computing supports smart energy management, public safety monitoring, and urban
infrastructure optimization, with security challenges including safeguarding citizen data
privacy and protecting critical infrastructure against cyber threats [89]. Addressing these
unique security challenges requires industry-specific security measures, robust encryption,
access controls, and ongoing security assessments to ensure the integrity and security of
edge data analytics deployments across various industries.

The integration of edge computing for smart applications can improve the user experi-
ence by enhancing the computing efficiency. This has resulted in adopting edge computing
for various use cases, including healthcare, traffic management, and smart city applications.
In this section, the use cases are reviewed and tabulated in Table 3. The use cases are
studied in the following section to understand the edge aspect of the applications, the
working model, and how they contribute toward decision-making. Any attacks on these
applications will adversely affect the decision-making process by falsifying information,
hacking confidentiality, and privacy, and all these are studied further.

4.1. Healthcare Applications

The use of healthcare applications is rapidly increasing since they offer mobility,
regular monitoring, periodic updates, and real-time interactions during an emergency. In
many healthcare applications, typical end-users are elderly patients who require special
attention and supervision. They use devices, such as smartwatches or smart glasses, with
various sensors, accelerometers, gyroscopes, and GPS. These devices are interconnected
and process patients’ information, which requires high levels of privacy and integrity.

In the present context, COVID-19 is a fast-spreading chronic illness that requires
monitoring of infected patients to control the rapid spread. Artificial intelligence (AI)-
integrated edge computing is proposed to provide real-time processing of a patient’s health
data to predict whether the patient is infected or not [90]. The edge node contains AI units
and a medical database capable of collecting, storing, processing, and generating alert
messages. The AI unit uses ensemble-based techniques to perform clinical diagnoses and
generate alert messages. The decision is based on the risk score estimated using an AI model.
This triggers an alert message to the doctors and assists them in taking immediate action to
quarantine the infected patients. Although AI supports the overwhelming decision-making
process, it is proven that AI increases the computation load on the devices. In case of any
attack on AI models, they become vulnerable to threats and lose their reliability [91]. This
may result in delaying the alert message to the doctors and degrading the efficiency of
the application. Similar applications were proposed for the Chikungunya virus diagnosis.
This application uses Social Network Analysis (SNA) to predict the virus outbreak. SNA
graphs generate relative scores for each region and identify the critical region. Based on
this, appropriate alert messages are generated [92]. Cancer prediction and monitoring
applications use data gathered in the healthcare system for decision-making based on
neuromorphic multi-criteria [93]. These decisions help the specialist to determine the
level of symptoms and provide quality services. There are several instances where cancer
patients’ data were hacked through cyber-attacks [94].

There are few fall detection applications available for patients suffering from stroke [95,96].
In these applications, sensors, edge gateways, and access points are interconnected in the
Low-Power Wide-Area Network (LPWAN). They monitor electroencephalography (EEG),
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electrocardiography (ECG), electromyography (EMG), blood pressure, and contextual
data, such as temperature, humidity, and air quality. The combination of health data and
contextual data assists in improving the accuracy of prediction. Low Bluetooth energy in
LPWAN reduces latency during data transmission. When the fall is detected, a notification
via smartphone is sent to the caregivers. However, if the body blocks the electromagnetic
signal transmissions in some postures, it may either reduce the quality of the link or make
communications within body devices impossible [97].

eWall is an advanced home sensing environment with e-health and e-solution for
elderly patients to live independently. Elderly patients may suffer from declining memory
functions, cardio-pulmonary conditions, neuro-muscular control movements, and so on.
This application provides an effective solution to address all these societal challenges. It
includes: (i) eWall devices, such as sensors and actuators, (ii) home sensing middleware
to connect devices, collect, query, report, and store data, (iii) a local context manager to
analyze human and non-audio/video perception processing, and (iv) a cloud to monitor
complete infrastructure communication. The services provided by this application are daily
activity monitoring (such as jogging, cycling, and gardening), daily functions’ monitoring
(such as shopping, walking in the park, cooking, sleeping, eating/drinking, socializing,
mood status, self-care, and chores), healthcare support through teleconference with a
medical professional, and caregiver notifications. Ubiquitous devices, such as sensors,
accelerometers, gyroscopes, GPS, utility sensors (such as gas, electricity, and bed), passive
infrared (PIR), and audio/video sensors are interconnected with Bluetooth or Zigbee
technology to provide these services. The data transmission rate in this technology is very
low [98]. The health Fog framework is another application where hospitals, clinics, and
smart homes are equipped with sensors, actuators, smartphones, and other smart devices.
Medical professionals monitor patient’s sedentary lifestyle, which affects their health, and
advise physical routines, diets, and other plans to pursue a healthy lifestyle. This is a
patient-centric application to improve human health and well-being with suitably engaging
technologies [99].

In the healthcare system, implementing security measures entails several ethical con-
siderations. These include safeguarding patient data privacy and confidentiality, obtaining
consent for data usage, ensuring patient data ownership and control, addressing biases in
algorithms, promoting transparency and accountability, and prioritizing patient safety [100].
However, in healthcare applications, since devices are connected in WPAN (Wireless Per-
sonal Area Network) or BAN (Body Area Network), this makes the network vulnerable
to potential attackers who can anonymously sneak into the devices, listen to all traffic,
hack personal data, and exploit the system [101]. Common threats identified in healthcare
applications include insider attacks, software attacks, and hardware attacks. Among these,
insider attacks cause severe damage because the attacker pretends to be legitimate and can
take control of the communication channel or devices [102].

Observation #1: The quality of medical services is improving tremendously due to the
integration of AI and edge computing. The health applications are serving as a powerful
tool for the medical field to monitor and control the spread of fatal diseases. Despite these
advantages, as the data volume increases, AI computation tasks increase. This can drain
the computation, network, and storage capacities of the edge infrastructure and affect its
performance or reliability.

Observation #2: The sensors and the devices in the healthcare applications are con-
nected in WPAN, Bluetooth, ZigBee, or WBAN. Even though these networks are energy
efficient, they have a lower network range than Wi-Fi and cellular connections. This may de-
crease the necessary bitrate for biomedical signals, such as ECG or EEG. If the patient wears
several body sensors, the transmission of electromagnetic signals may become blocked due
to some body postures affecting data transmission.
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4.2. Traffic Management Applications

VANET (Vehicular ad hoc Network) and VSDN (Vehicular Software-Defined Network-
ing) are the standard networks used in most edge-based traffic management applications.
The importance of these networks is to improve driving efficiency, navigation, and infor-
mation exchange in a decentralized network structure. A Vehicular Fog Computing (VFC)
network enables traffic schemes for traffic management and road safety in a decentral-
ized network structure. Events such as traffic jams, car accidents, and road surfaces are
uploaded to edge nodes, which are closer to the roadside units. Some data generated at
this level can be used for vehicle-level decision-making, while other data are processed
by the servers in the edge layer and pushed to the cloud. The traffic management server
on the cloud is responsible for broadcasting feedback messages to vehicles through the
edge nodes at roadside units [103]. When the data are transmitted to different nodes, a lack
of authentication can lead to malicious activities, such as hacking users’ personal data or
affecting the consistency of data [104].

A vehicular network collaboration using VSDN is used to assist various services, such
as autonomous driving, collision avoidance, accident detection, fast rescue, emergency traf-
fic prioritization, emergency message dissemination, remote video analysis, and so on. This
technique enables handling most of the software attack efficiently, but tracking location and
a few network attacks, such as sinkhole, sniffing, and spoofing, are challenging [105,106].
The vehicles behave as a content provider or consumer simultaneously, so tracking them
for process discovery or process request is very easy. Once these vehicles are tracked, they
can be easily made unreachable and isolated from the network [107]. The virtualization in
VANET is still evolving and there are no standards to integrate wireless communication
mechanisms, as in IPv6. Therefore, they are more prone to attacks such as DDoS and
network pattern analysis [108].

The 5G-based intelligent transport system was developed to track traffic violation
reports using vehicles’ speed sensors. It was based on security protocol to verify location-
based information with a digital signature [109]. The edge nodes aggregate multiple speed
violation reports, verify, and broadcast anonymous notifications to other entities in the
vicinity. Considering these reports, the transportation authority generates the decisions
on vehicles’ traffic violations. The digital signature mitigates the risk of jamming, privacy
violation, and false injection threats. Hence, the privacy of information and location, mutual
authentication, traceability, data confidentiality, and integrity are achieved. However,
hardware attacks, such as physical damage to sensor nodes or blocking communication
channels, are not considered. These attacks can cause the edge nodes to wait indefinitely
for the data [110].

Observation #3: In VANET, data are traversed from different nodes and regions. There
is high mobility and uneven distribution of vehicles in the network. This makes selecting
appropriate relay nodes challenging and results in consistency liability of data. Therefore,
there is a need for an efficient correlation mechanism to address data inconsistency.

Observation #4: The 5G, SDN, and virtualization technologies are broadly adopted in
VANET applications. They support traffic programmability, agility of services, and create
policy-driven network supervision. However, it will be challenging to achieve reliability,
abstraction, performance, scalability, and security by virtualizing the network infrastructure
for edge computing.

4.3. Smart City Applications

Smart city applications have enhanced the living standards of the users [111]. IoT
devices play a vital role in these applications to collect and sense real-time data. They
collect users’ data pertaining to city supervision and utilities (gas, lighting, etc.). In a
video summarizing framework, the edge nodes collect the captured videos and create
an embedded vision. Further, it is pushed to the centralized servers in the edge layer
connected through internet gateways. The servers operate as master nodes, and these
master nodes control the edge nodes. The servers offload the embedded vision to the cloud
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through the MQTT communication protocol. The embedded vision reduces bandwidth
consumption to the cloud significantly [112]. The MQTT protocol is prone to many threats,
such as DoS, flooding, spoofing, tampering, and denying access control [113]. These threats
result in maliciously dropped or delayed information, capture of transmitted data, send
infinite false details, contribute to degrading decision-making efficiency, and block the
resource for processing nodes [113].

A smart meter application is used to collect data on energy consumption. The collected
data are aggregated by the edge nodes and transferred to the cloud. The edge computing
layer includes smart meters to sense data, distribution transformers in the respective
geographic region, and a meter data management system at the substation level. The
data management system performs distributed data aggregation to summarize data before
sending it to the cloud. The routing protocols are used to transfer the data with multiple
hops to the destination [114]. The routing protocols can be prone to attacks, such as
eavesdropping, network pattern analysis, jamming, spoofing, data alteration, message
replay, and DoS [115]. In a smart lighting application, the controller node monitors the
streetlight switches when vehicles are approaching [116]. The smart lighting is further
enhanced by interconnecting to a smart city system for public safety. It includes various
sensors, such as a video camera or gun-shot detection sensor, and datasets such as weather
or traffic data. This application helps users to navigate the safest route based on pedestrian
count and road traffic. Google map API is used to assist navigation for the users. In case
of an emergency, such as accidents or theft, the users can press the emergency call button
and streetlights begin to pulse immediately. The responder can locate the emergency by
identifying pulsing streetlights nearby. The brightness of the streetlights and pulse are
between 10% to 100%, making it visible to pedestrians and emergency responders. This
application also includes secure communication protocols to mitigate cybersecurity threats,
such as DoS, eavesdropping, session hijacking, and MITM [117]. Similarly, in the smart
pipeline application, the controller node detects a fire or gas leak and closes the gas pipeline.
Fiber optic sensors and sequential learning algorithms on edge nodes are used to detect
events threatening pipeline safety [118]. The common threats anticipated are equipment
sabotage, jamming, eavesdropping, tampering, and sinkhole attacks. These attacks can
alter decisions, block the edge nodes from processing, or even isolate the edge nodes.

Observation #5: There are many sensors, IoT devices, and edge nodes connected in
the smart city applications. They collect and process data in the long term to obtain deep
sequential resolution. This advancement greatly reduces the power consumption of the
devices while maintaining the same performance. Therefore, there is a need to preserve the
longevity of devices and edge nodes.

Observation #6: Smart city applications continuously collect users’ sensitive data for
a long time and store them in the edge layer for processing before transferring them to the
cloud. Any threats to the data stored can lead to catastrophic events, such as information
theft or identity fraud. Lack of security measures can compromise the stored data and lead
to a loss of public faith and affect the reputation of the applications.
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Table 3. Analysis of edge use case applications and effects of threats on the applications.

Use
Case Ref. Working Model Decision Making

Node Evaluation Insider
Attack

Software
Attack

Hardware
Attack

Network
Attack Effect of Threats on the Model
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[90]
Emergency alert

message for
COVID-19 infection

Artificial
intelligence-based

fog node

Generate medical report and alert
message to caregivers and doctors Data breach - Equipment

malfunction - Hack data or may degrade alert
message efficiency

[96]
FAST—Fall

detection system for
stroke patients

Back-end module
server on
the cloud

Detects if the stroke patient is
about to fall and triggers message
to the emergency phone number

Forgery,
MITM Tampering - -

Causes false predictions, degrades
efficiency, and maliciously drops or

delays information

[95]
Fall detection or

electrocardiography
monitoring

Edge gateway—Fall
detection system

Notification and alert message
to caregivers

Forgery,
MITM Tampering - - May degrade notification efficiency

[98]

eWall—Home
management

for senior
citizens

eCloud or ePSOS
Track daily activities of an

elderly patient. Alert message from
eWall cloud to relatives or hospital

MITM,
malicious

insider
- Resource

depletion -
Affect confidentiality, breach privacy,
tamper with hardware devices, and

disturb normal data flow

[99] Activity monitoring
Cloud Access

Security
Broker

Activity detection and
calories burnt are sent to hospitals

and nutritionists

MITM,
insider,
hacking

Impersonation - - Affect confidentiality, privacy, and
reliability of the decision

[119]

Healthcare and
Assisted Living
(AAL) in Smart

ambient

Fog Accelerator
Nodes

Aggregate data from
IoT sensors and monitor

patients’ fall or cardiovascular
issues. In case of emergency,

informs caretakers

- SQL Injection Equipment
sabotage -

Affect confidentiality, leak sensitive
information, and destroy

hardware devices

[120] Smart e-Healt
hcare system Gateway nodes

Gather medical information of
patients from sensors,

aggregate in edge layer, and
generate EWS in case of emergency

for doctors or caretakers

Malicious
insider

Impersonation,
jamming - -

Malicious insider can watch the
activities, illegitimately communicate
with other users, falsify data, or send a

false alarm

[92] Chikungunya virus
diagnosis solutions

Alert generation
component
in fog layer

Alert message is sent to
government and healthcare to

control outbreak of virus
- - Equipment

sabotage -
May not create an alert message or

causes a delay in generating the
alert message

[93] Detect cancer and
monitor patients

Smart gateway
nodes in
fog layer

Send e-report to patients, send
ambulance in case of emergency,

and monitor patients until
they recover

Data breach - - Eavesdropping
Intruder may hack patients’ personal

data or
may be a silent spectator
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Table 3. Cont.
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[103] Traffic Management
Scheme Cloudlets

Minimize response delay for traffic
management by
load balancing

Data
breach,

malicious
insider

- - - Breach data privacy

[105] Vehicular Network
collaboration

Fog Controller
Node

Accident notification and
avoid road congestion
Traffic prioritization in
case of emergency and
directs fast rescue route

Location
privacy -

Fault
tolerance

Sinkhole,
sniffing,
spoofing

Track users’ location or deprive them
from the network

[106] Smart Traffic
Control

Traffic Control
Node

Identifies road congestion and
avoids traffic jams

Location
privacy -

Fault
tolerance

Sinkhole,
sniffing,
spoofing

Track users’ location or deprive them
from the network

[109] 5G-based Intelligent
Transport System

Transportation
authority at

the edge layer

Sends traffic violation report
(TVR) based on the

vehicle’s speed sensors
- -

Equipment
sabotage,

side channel
attack

Physical damage to sensor nodes,
blocks communication channels, and

increases waiting time.

[121] Smart Car Parking
system

Microcontroller
device generates
parking status

Identifies traffic jam and shows
parking spots

Location
privacy - Jamming Track users and vehicle information,

cause traffic congestion

Sm
ar

tC
it

y
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[122] Surveillance videos
for smart cities

Fog Aggregate
Nodes

Send compressed video data to
the cloud

Side channel
attack Tampering Equipment

sabotage

Eavesdropping,
Sybil,
DDoS,
pattern
analysis

Maliciously drop or delay information,
block the resource or request from the

users, hack user privacy

[123] Smart things to
machine interaction

Fog Controller
Node

Intelligent lighting—sensor
identifies when to turn the

switch on/off
- Tampering - - Device tampering

[118] Smart pipeline
monitoring system

Fog Controller
Node

Closes gas pipeline in case
of gas leakage or fire detection - Tampering - - Device tampering

[114]

Powerline
communication

for smart
meters

Fog Computing
Nodes

Summary of electric power
consumption data is sent to

the cloud
Data alteration - -

Eavesdropping,
pattern
analysis,
jamming,

DoS

Device tampering

[124]
Forest Fire

management
systems

Prediction system Identifies and generates an alert
message to forest authorities - Tampering - - Alters the decision with

malicious intentions
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5. Analyses of Existing Security Threat Models

As discussed in the previous section, edge computing has a potential number of
applications in healthcare, traffic, and smart cities. Edge computing applications reduce the
data flow to the cloud, provide uninterrupted connection, and improve the performance of
the application. They also offload some part of the analytics from the cloud data center to
the edge of the network, which leads to security and privacy issues. When the computation
gets closer to the edge of the network, end-user devices and edge data centers become
vulnerable to security threats. Therefore, it is necessary to build an expansive network with
minimal vulnerabilities. This section summarizes the existing security models that have
addressed the threats and built a secure edge computing layer. The findings with limitations
are tabulated in Table 4. There are various mechanisms in the edge computing paradigm
to handle the threats. Based on this mechanism, the available models are categorized and
studied in this section.

Table 4. Review of existing threat models.

Ref Solution Approach Performance Findings

[125]
Artificial neural
network-based
IDS

Detects malicious edge nodes
based on the node’s profile
features. Identifies DoS, flooding,
and replay attacks

High accuracy and low
false alarm rate. Efficient
to maintain the edge
network’s resilience by
discarding the intruders

[126]
Identifies insider attacks
using random Gossip
Consensus algorithm

Detects insider attacks using
edge node’s state information
without any supervision

Extensive resource
consumption

[127]

Hierarchical Identity-
Based Encryption
Scheme to achieve
data security

Four hierarchical layered
security keys are used to secure
data from the attack

Escrow key problem

[128]
Data privacy-preserving
scheme based on data
load forecasting

Smart meters are used to
calculate the workload using the
Oblivious Multivariate
Polynomial valuation (OMPE)
protocol and protect data from
unauthorized access

Reduces computational
overheads and data load
to the cloud

[129]

Password-based secure
communication prot-
ocol for data transmi-
ssion between cloud
and edge devices

Establishes secure
communication based on pivotal
agreement between user and
edge devices. Eavesdropping,
data alteration, MITM,
impersonation, and malicious
insider attacks are restricted

Most of the threats are
addressed, and
communication channels
are secured.
However, phishing can
be used to easily hack
the password

[130]

Gaussian Naive
Bayesian theorem
is used to analyze the
packets and identify
an intruder

Analyze the network using the
Markov model and lure attackers
using the Virtual
Honeypot method

Attacker can act legitim-
ately and gain access to
the Honeypot method

[78]

Q-Learning-based rein-
forcement learning
technique to identify
impersonation attacks

Detects attack accurately in edge
layer. False alarm rate,
misdetection rate, and the
average error rate are identified
using channel state information

Channel state informa-
tion can be considered to
study further attacks,
such as DoS, spoofing,
jamming, authentication,
etc. However, it is not con-
sidered in this approach
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Table 4. Cont.

Ref Solution Approach Performance Findings

[122]
Intrusion detection
and intrusion
prevention system

Identifies MITM attack.
Interrogates communication
channel using Advanced
Symmetric Encryption, and
exchanges keys using the
Diffie–Hellman method

Not suitable for
multi-hop attacks

[131]

Automated validation
of Internet
Security Protocols to
secure Intelligent
Edge-based
Transport System

Generates a 64-bit symmetric key
or 512-bit asymmetric key to
secure communication. It is very
complicated for attackers to
break this key

It is impractical to
assume that all vehicles
are legitimate

[132]
Fault diagnosis of the
hardware
components

Case-based reasoning model to
classify the fault type for a
hydropower plant using
storm-based architecture

System-specific
application

[133]
Anonymous and
Secure authenti-
cation scheme

Secure cryptographic algorithms
are used to establish
confidentially, privacy, and
mutual authentication among
edge nodes

Cryptographic
algorithms may increase
computational time

[134]

Cybersecurity
framework to
identify a
malicious node

Identifies malicious node
through Markov model and
shifts that node to a Virtual
Honeypot device

Efficiently traps the
malicious node, but the
attacker can act legitim-
ately and gain access to
the Honeypot method

[135]
Container-based map
reduction protocol to
secure computation

Hardware-assisted remote
attestation mechanism is used to
establish trusted containers

Linux containers
encapsulate the
application and establish
trust during
execution

[136] The DDoS attack
traffic system

Identifies spoofing or infinite
false requests and mitigates to
avoid power wastage

Challenging to imple-
ment during peak traffic

[12]
Privacy-preserving
model in healthcare
applications

Hybrid user profiling is used to
identify the attacker and direct
toward a decoy message to trap
the attacker

The focus is only on
multimedia data.
It cannot be applied to
other data

[137] User profiling to
handle data theft

Prototype-based web patterns
validate the effectiveness of
decoy messages in the edge layer

Decoy data generation is
time-consuming

[138]

Snort-based Field
Programmable
Array Intrusion
model

Signature-based detection
through network traffic
monitoring and generates an
alert message

Edge networks accelerate
at the generic level

[139] A hybrid approach
using machine learning

Two-stage detection: (a) identify
intrusion using binary detection,
and (b) detect and confirm attacks

High precision and
recovery rate. Cannot
classify the attack precisely

[140]
Fully automated IDS
using multi-layered re-
current neural network

Detect attacks using traffic
analyses engine and multi-
layered recurrent neural network

Accurately identifies DoS
attacks and works
efficiently in real time
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Table 4. Cont.

Ref Solution Approach Performance Findings

[106] Multi-attack IDS

Identifies abnormality using the
backpropagation neural network
and detects using the radial
basis function

Mobile edge nodes assist
to achieve high accuracy.
Identifies combinations
of mixed attacks

[81]
Spoofing detection
using multichannel
attribute

Creates clusters at edge servers
using a local heuristics algorithm
and identifies spoofing attacks

Clusters are created at
close optimal solutions

[141]
Live data analytics
with collaborative edge
and cloud processing

Integrates edge computing and
cloud computing to leverage
their respective advantages and
address the challenges of
processing massive amounts of
data generated by IoT devices

Resource optimization
and efficient data analy-
tics to address the chall-
enges of handling large
volumes of data and enha-
nce network performance

[142]

Secure IoT service
with an efficient
balance dynamic
based on cloud and
edge computing

Creates new parsing templates,
prioritize services with stringent
demands, and ensures the
reliability of IoT data transfer

Enhances trust evaluation
mechanisms and
collaborative strategies

5.1. Intrusion Detection System

In many security threat models, intrusion detection is the most widely adopted mech-
anism to identify an attack. The intrusion detection system (IDS) monitors network traffic
to detect attacks and sends an alert message to the network administrator. There are two
main types of IDS: anomaly-based IDS and signature-based IDS [143]. Anomaly-based IDS
is based on identifying the normal system’s anomalous behavior. It involves collecting
data over a specific period, performing analyses, and determining whether the system’s
behavior is legitimate or not. The standard techniques used in anomaly-based IDS are data
mining, statistical modeling, and the hidden Markov model. This approach is mainly em-
ployed when attack types are unknown and to reduce the false alarm rate [144]. Adaptive
IDS is used to identify the anomalies, such as misuses, cyber-attacks, or system glitches, on
the edge nodes. These anomalies can prevent data transmission on edge nodes or perform
accurate automated actions. Adaptive IDS detects when the edge nodes are compromised
and takes the required actions to ensure communication availability. Memory, CPU us-
age, and buffer utilization are the metrics used to measure against replay, flooding, and
DoS attacks [125].

Signature-based IDS is based on a predefined attack pattern of an intruder stored
in the system. The attack pattern is widely based on network traffic analysis. In case of
any changes in the pattern, the network administrator can detect with high-level accu-
racy. However, this cannot be used for unknown or undefined attacks in IDS [144]. The
combination of an anomaly and signature-based IDS is used to identify the patterns of
attack signatures. Field Programmable Gate Arrays (FPGA) are used as edge gateway
nodes, and IDS is incorporated on these nodes. FPGA are computationally intensive nodes
capable of identifying when the edge network traffic changes. The Wu-Manber algorithm
used in snort is used in FPGA as a signature-based IDS, while the adaptive threshold and
change point detection algorithm are the two anomaly-based IDSs used. Snort is a regular
expression-based engine used to identify the patterns of attack signatures [138]. Although
this system efficiently identifies many attacks (DoS, SYN flooding, and port scanning),
it executes at a generic level. To implement in a real-time scenario, the system’s level of
acceleration must be increased.
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5.2. Combination of an Intrusion Detection and Intrusion Prevention System

The IDS and intrusion prevention system (IPS) methods are used together to identify an
MITM attack and its variants, such as eavesdropping, packet modification, and wormhole
attacks, on the edge computing layer. This system includes two types of nodes: the
edge node and IDS node. When an IDS node identifies a compromised edge node or an
intruder, it informs the neighboring edge nodes and disconnects the infected node. Later,
to prevent the attack, IDS nodes acquire a key from the cloud and distribute it to the
edge nodes to prevent intrusion. The proposed system uses the Advanced Encryption
System (AES) symmetric encryption technique, and an encryption key is exchanged using
the Diffie–Hellman key exchange. It is a lightweight encryption technique to periodically
interrogate edge nodes that are one hop away. Even if the attacker identifies the IDS, it is
challenging to predict the nature of the IPS [122]. In any wireless sensor network or ad hoc
network of the edge computing layer, malicious nodes may unduly assign higher priority
to source packets and lower priority to transit packets and launch a traffic remapping attack
through multi-hop. These attacks are easy to launch, impossible to prevent, hard to detect,
and harmful to genuine edge nodes. Thereby, the security threats posed by malicious nodes
are aggravated by multi-hop [145].

5.3. Automated Intrusion Detcetion System

The automated IDS is used to identify cyber security attacks on the edge computing
layer. The traffic analysis engine and recurrent neural network classification engine are
deployed on the edge nodes. The traffic analysis engine preprocesses the traffic connec-
tion record leading to traffic data and classifies them as normal or attack data. Later,
the recurrent neural network classification engine generates a security alarm using the
backpropagation algorithm to inform the other edge nodes [140].

5.4. Machine Learning-Based Intrusion Detection System

The machine learning (ML)-based IDS is broadly adopted in a security system [146].
ML-based intelligence systems can easily detect different types of attacks according to nor-
mal and attack behaviors. Simulated annealing algorithms are incorporated on mobile edge
nodes to detect anomalies and secure data transmission in edge assisted IoT applications.
This ML algorithm uses backpropagation of the neural network to identify abnormal data
that do not follow the characteristics of normal data. Later, the radial basis function of the
neural network is used to detect multiple attacks in the periodicity of data generation [147].
Multi-channel attribute-based IDS is another approach, which uses the received signal
strength, direction of arrival signal, and channel impulse response to identify spoofing on
the edge network. The improved local heuristic-based cluster algorithm is used, and it
reduces the edge node computational complexity compared to the single attribute detection
technique [81]. Overall, it is observed that the ML-based IDS provides high detection
accuracy and computational efficiency for data-based intrusion detection.

5.5. Cryptography-Based Systems

The cryptography technique is a mechanism of converting plain text into cipher text
using encryption/decryption techniques and a private or public key. It protects confidential
data from unauthorized access in a wireless communication network [80]. Identity-based
hierarchical architecture for edge computing is proposed to provide data security in the
edge layer. This architecture uses an identity-based asymmetric cryptography method that
includes four phases: setup phase, extraction phase, encryption phase, and decryption
phase. The unique secret key is generated to every edge node and reserves each node’s
security separately. The key’s complexity is enhanced by using a private key to decrypt,
and this key is known only to the root key generation center [127]. Combining bilinear
pairing cryptography with the decoy technique is used to secure private medical data in
edge-based healthcare applications. Two copies of medical data are created—original and
default. The original data are secured in the cloud, while the default data are shared on the
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edge layer. The default data are used in the honeypot as a decoy for the attackers. When
the user requests their medical data, default data are shared. Later, user profiling, key
exchange, and authentication algorithms are used to verify the authenticity of the user.
After confirmation, access to the original data in the cloud will be granted [12].

A multi-encryption technique is used to establish mutual authentication between edge
users and edge servers. This includes three phases: initialize, register, and authentication.
Pseudonym-based encryption is used to initialize and register the user. The authentication
phase uses session keys to secure communication between edge users and servers. The
session keys and series of patterns are generated using elliptical curve cryptography, bi-
linear pairing, pseudonym-based identity-based encryption (IBE), and pseudo-random
number generator (PRNG). It is challenging for the attackers to predict the pattern and
break into the system [133]. The Q-learning algorithm-based security framework is an-
other cryptography model used to identify impersonation attacks in the edge layer. The
attributes of the communication channel between edge nodes and users, such as the signal
strength, channel frequency response, and channel state information, are used to perceive
the attack [78]. Cryptography techniques secure data transmission and prevent data theft,
unauthorized data access, and system hacking in the edge layer. It will be challenging for
any adversary to decrypt the private key and gain access to the system.

In identity-based cryptosystems, a private key generator (PKG) is a trusted third-party
entity. It maintains the private key for all users and establishes trust in the system. This
process of storing the keys is called key escrow. However, if any key is lost or compromised,
then it can be used to decrypt data and permit restoring original data in an unencrypted
state. This is a key escrow problem that can occur in PKG [148]. Simple cryptography
techniques are based on computational infeasibility and incur too many resources to
compute. Addition of cryptographic techniques in edge computing may cause processing
delays in the edge computing layer [80].

5.6. Authentication Scheme in the Edge Computing Layer

The authentication scheme in the edge computing layer is the process of validating
edge users, nodes, and servers who request access to the system. This prevents access
of confidential information by unauthorized users and secures data from threats such as
data leak, data breach, and data alteration [77]. A password-based secure communication
protocol is used to establish mutual authentication among user, edge devices, and the
cloud server. This protocol uses session key agreement to transmit sensitive data in the net-
work [129]. However, password-based authentication systems are susceptible to protocol
weaknesses that can be exploited by keystroke logging, Google hacking, wiretapping, and
side-channel attacks. Even potentially strong passwords are prone to brute force dictionary
attacks [149].

5.7. Hybrid Models

Hybrid models are used when the available models are not accurate enough to reduce
instability. The state-of-the-art hybrid models present sufficiently high accuracy and attack
detection rates. The hybrid binary classification method using the k-Nearest Neighbor
(kNN) algorithm is used to identify DoS and its variants on the edge nodes. Each edge node
performs intrusion detection locally without any interaction with the cloud and reports
only the summary of detection, thus avoiding latency. Each edge node monitors network
data traffic to identify malicious nodes and initiate the countermeasures [139]. This method
can be adopted in any edge computing application, and based on the requirements, the
IDS can be implanted on the edge nodes. The naive Bayesian classifier approach-based
hybrid model is used to detect DDoS attacks in edge networks. This method combines the
Markov model and Virtual Honeypot Device (VHD) to reduce the false alarm rate. The
two-stage Markov model analyzes each edge device to identify attacks, and the hidden
Markov model determines the future states of the devices. Based on the prediction of the
future state, the edge devices are sent to the VHD [90]. The VHD is a simulated virtual
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computer at the network level. It closely monitors the network and distracts the adversaries
in the network by providing an early warning. The honeypots gather information through
frequent interaction and notify the defender in case of attacks. However, the frequent
interaction can compromise the network and make it vulnerable [150].

A similar approach is used to identify malicious edge devices in the edge computing
layer [134]. The advantage of hybrid models is early detection of malicious nodes, the
reduction of false alarms, and adaptability to any application framework. Similar to the
VHD, decoy is another method used to provide the attacker with fake information or
evidence and trap the attacker. The combination of an offensive decoy and user behavior
profiling is used to identify data theft by insider attack in the edge computing layer. User
access behavior profiling maintains a log of each user and validates them. When the system
identifies any unauthorized access, the offensive decoy method asks challenging questions
to verify authorization. It identifies the attacker based on the reply. However, generating
and shuffling decoy questions may increase the run time [137].

5.8. Application-Specific Security Models

An edge computing-based fault diagnosis system is used to monitor hardware de-
fects in hydro-power plants. This is an extension of the cloud-based system, where edge
computing is used to provide parallel fault diagnosis with sufficient computational and
bandwidth capacity. Edge nodes are used as a Strom-based computing unit. This creates a
cluster of spout and bolt nodes, similar to the master–slave architecture. The performance
of the hydro-power plant is extracted from different sensors connected to the bolt nodes.
Spout nodes compare with standard fault cases stored in the database and report to the
cloud in case of errors [132]. Similarly, an edge-based security framework is used for the
Intelligent Traffic Light Control System. The edge nodes are used as a roadside unit to
monitor specific regions and broadcast encrypted messages sent from the cloud server to
vehicles [131].

5.9. Container and Consensus Protocols in Edge-Based Security Models

The container-based model is used to secure distributed computing in edge computing
infrastructure. This model secures any IoT application deployed on edge computing
infrastructure from hardware memory attacks and provides secure execution of application
on the remote host. Linux containers are deployed on each edge node and container-based
map to reduce prototypes for secure computing. It includes a remote attestation mechanism
at the master node to validate the containers as a trusted node. Only trusted containers are
integrated to the cluster, and un-trusted containers are discarded [151]. Hence, the protocol
provides a secure and trusted execution with reasonable performance overhead. Containers
in edge computing provide lightweight virtualization to support high interoperability
and scalability among edge nodes with minimum performance overhead. Therefore, the
containers are more suitable to enhance security in edge computing [152]. The consensus
protocol is a primitive peer-to-peer message passing protocol that interacts randomly
with other nodes and performs computation locally. A decentralized gossip consensus
algorithm is used to identify insider attacks in neural network models. The consensus
algorithm supports edge nodes to exchange information with neighboring nodes without
any supervision. Considering this behavior, each node in the neural networks is trained to
detect the attack online. The consensus algorithm has a significant advantage of monitoring
the applications without a central controller and achieving scalability [126]. However, the
consensus algorithm can increase the run time during implementation and deplete the
edge nodes’ resources [153].

5.10. Bridging Gap with Cloud Security

Security measures in edge and cloud computing aim to protect data integrity, confi-
dentiality, and availability. Fundamental techniques, such as encryption, authentication,
access control, and intrusion detection systems, are employed in both paradigms to mitigate
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external threats and unauthorized access. However, the implementation of these measures
varies between edge and cloud environments [154]. Edge computing operates in decentral-
ized, resource-constrained settings, necessitating lightweight security solutions tailored
to edge devices and networks. In contrast, cloud computing benefits from centralized
management and ample computational resources, enabling the deployment of more sophis-
ticated security measures, such as advanced threat detection algorithms [155]. While edge
computing emphasizes real-time processing and proximity, cloud computing prioritizes
scalability and standardization. Leveraging traditional cloud security features can enhance
security within edge computing models by fortifying defenses against internal attacks,
ensuring data integrity and confidentiality, and enabling dynamic resource allocation and
efficient security-related tasks [156].

By leveraging both edge computing and cloud resources, the IoT service architecture
dynamically balances service provision, resource allocation, and trust evaluation, leading
to improved performance and adaptability [142]. In addition, integrating trust evaluation
mechanisms and service templates across both cloud and edge layers further enhances
security by deploying only authenticated and trusted services within the edge environ-
ment. This hybrid approach combines the robust security features of cloud computing
with the agility and proximity of edge computing, addressing security challenges in IoT–
cloud systems and bolstering overall security in edge computing deployments [141]. The
overall security posture of edge computing infrastructure can be improved by applying
security implementations from traditional cloud computing environments to edge data
analytics [157].

Observation #7: The hybrid models and cryptography techniques discussed in this
section include PKG to generate pseudonym keys to check authenticity and data integrity.
However, the storage of these keys in edge nodes increases the transmission overhead.
Further, if multiple keys are added to the edge nodes, it may cause network congestion in
communication channels.

Observation #8: Adopting containers in edge computing has numerous benefits, such
as lightweight, fast, more accessible to deploy, and better resource utilization. Along with
this, the container also brings the complexities of optimizing edge computing infrastructure
to containers, and they are vulnerable to kernel-based and container-based attacks.

5.11. Impact of Threats on Edge Data Analytics

In edge computing, highly granular data are used to perform real-time decisions and
actions, referred to as edge data analytics. These actions are handled by edge nodes in the
edge computing layer; in particular, edge nodes store and analyze the data gathered to
perform data analysis [48]. Edge nodes are deployed in a place where there is a lack of
strict protection and supervision. Thus, it becomes vulnerable to many threats and attacks
that compromise the system [158]. This significantly impacts the data present in the edge
layer and edge data analytics. This section summarizes the impact of the threats affecting
the data analytics in the edge layer.

Data are transmitted between vehicles, vehicle to edge nodes, and edge nodes to the
cloud in the traffic management applications. Deploying edge computing applications in
roadside units facilitates accessibility, trust, and synchronization with sensors and edge
devices. The absence of authentication on roadside units can cause malicious attacks,
affecting data consistency. Inconsistent data can alter decisions during edge data analytics
and disturb the normal functioning of the application [104]. In VANET, secure encryption
techniques and digital signatures are used to secure systems from most software attacks.
However, virtualization makes it prone to network attacks, such as spoofing, replay, DoS,
flooding, and pattern analysis. These threats can expose the data stored in edge nodes, hack
confidential data, and affect data integrity [159]. DoS or DDoS (Distributed DoS) are the
most prevalent threats in VANET. These threats can bring down the network performance,
consequently rendering the VANET unavailable. Security in edge computing requires
adaptability and autonomy at the network’s edge, whereas cloud computing focuses on



IoT 2024, 5 144

centralized control and scalability to safeguard vast amounts of data stored in centralized
data centers [160].

In healthcare applications, security threats due to wireless sensor networks causing
malicious attack are the major issues [161]. These threats affect data analysis thorough
data breaches, hacking of personal data, and malicious insiders. They compromise access
points and communication channels and may change the destination of packets or make
routing inconsistent [13]. Similarly, when data are transmitted in WBAN, software attacks
can cause threats such as eavesdropping, impersonation, data replay, or data modification.
These threats can defraud adjacent edge nodes and cause system failure [101].

Finally, in smart city applications, the impacts of software, hardware, and insider
attack are similar to those in healthcare and traffic applications. However, communication
protocols, such as MQTT, or routing protocols can make the network more vulnerable
to network attacks. For instance, in the MQTT protocol, a Denial of Service (DoS) attack
can overwhelm the communication channel. This could enable attackers to compromise
unsecured MQTT broker access, thereby gaining access to data stored in edge nodes or
servers, escalating privileges to unauthorized users, or even tampering with edge devices.
These threats can result in data modification and hijacking of communication channels,
thereby affecting the data integrity [113]. Similarly, the routing protocol attacks can target
MITM, sniffing, Sybil, and spoofing attacks, absorb network traffic, or inject themselves in
the network, which controls the network traffic flow. They can monitor the data processing
and decision-making performed by the edge nodes, thereby gaining complete control over
the system [115].

6. Future Research Directions

Future research directions that could leverage the existing solutions to make further
progress toward securing edge computing applications are listed below:

1. Adopting federated learning (FL) algorithms for edge data analytics—Following
observation #1, the integration of AI in edge computing is widely adopted, especially
in healthcare applications. It remarkably enhances the scope and computational
efficiency of edge nodes [90]. However, the challenging aspects of AI models are
their short battery life, power-hungry, delay-intolerant portable devices, vulnerable to
security threats, and a loss of their reliability [91]. These limitations can be resolved by
adopting the federated learning framework in AI models. Federated learning is an ML
technique used to train data across decentralized edge devices without exchanging
them with other devices. This reduces the amount of data in wireless uplinks, adapts
well with heterogeneous cellular networks, and preserves privacy. Pace steering in
FL is a flow control mechanism that controls data uplinks by regulating the device
connection pattern [162]. FL deploys secure data aggregation mechanism, where data
remains secure even in the memory to protect additional security in data centers [163].
Therefore, FL can be best applied for applications such as edge computing, where
device data are more relevant, for better data transmission and to provide security.

2. Enhancing IEEE communication standards in edge-based healthcare applications—The
sensors in healthcare applications are connected through BAN or WPAN. As noted in
observation #2, the network may not offer necessary bitrates for biomedical signals’
transmission. This will delay communication or reduce the quality of a link within
body devices, especially when many body sensors are interconnected [97]. Currently,
IEEE 802.15 technical standards are used in BAN or WPAN, which results in low-rate
data transmission in edge data analytics, but this standard was designed for Zigbee
or 6LoWPAN, whereas IEEE 802.15.6 is a standard for WBANs that helps healthcare
service providers to monitor patients at any time and location. It provides human body
communication with a data rate of more than 2 Mbps (Mega Bytes Per Second) and an
operation band of 27 MHz (Mega Hertz). These operation bands are valid in the major
European countries. Apart from that, it also provides secure communication with
three different security levels through authentication and encryption. This provides
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solutions for integrity, reply defense, confidentiality, privacy protection, and message
authentication problems. Therefore, adopting IEEE 802.15.6 in healthcare applications
can enhance the reliability, service quality, low power, data rate, and non-interference.
This standard also deals with particular BAN requirements, such as security, energy
consumption, range of communication, scale of the network, and data rate [164].

3. Developing a robust and efficient data dissemination technique in VANET for a node
selection strategy—As noted in observation #3, in VANET it is challenging to maintain
a specific topology for every vehicle due to the high mobility and uneven distribution
of vehicles. Conventional routing protocols use a street-centric divide-and-conquer
approach. This approach can be efficient if a succession of vehicles between the source
and destination is determined in advance [165]. However, it may not be possible
in a real-time scenario, as it results in unavoidable collision problems. Therefore, a
robust and efficient data dissemination technique is required that considers selecting
efficient relaying nodes to forward packets even when the source and destination
of the vehicles are not known in advance [166]. The data dissemination technique
should be aware of the vehicle topology within its coverage and monitor the changes
in topology so that the data transmission between edge nodes and devices can be
scheduled and secured with the assigned frame. This approach can greatly reduce the
data transmission delay for edge analytics and secure the transmitted data.

4. Employing energy harvesting techniques to preserve longevity and processing capa-
bilities of edge nodes in smart city applications—In an efficient smart city application,
integrating energy harvesting techniques into edge computing for smart city appli-
cations offers a robust solution to safeguarding against data threats, ensuring the
integrity, confidentiality, and authenticity of critical information. By harnessing re-
newable energy sources, edge devices can maintain continuous operation, facilitating
real-time data analysis and threat detection. This uninterrupted surveillance capability
is pivotal in detecting and mitigating potential security breaches. As noted in obser-
vation #5, high battery consumption is the most common problem in crowdsensing
when actively collecting data, and this may affect the quality of data collected and the
processing capabilities of edge nodes [167]. Moreover, with decentralized processing
at the edge, sensitive data can be processed closer to its source, minimizing the risk of
exposure during transit to centralized servers [168]. Additionally, energy harvesting
supports the implementation of advanced encryption protocols and authentication
mechanisms, further fortifying data security measures [102]. By combining energy
harvesting with edge computing, smart city infrastructures can establish resilient
defenses against evolving data threats, ensuring the trustworthiness and reliability of
their systems in safeguarding citizen safety and critical infrastructure.

5. Enhancing network infrastructure in the edge layer—Different technologies, such as
SD, NFV, 5G, or virtualization, can significantly bolster security measures against
threats and attacks in edge data analytics. SDN and NFV enable centralized man-
agement and orchestration of network resources, allowing for dynamic and granular
control over security policies and access permissions [169]. The 5G networks pro-
vide higher bandwidth, lower latency, and greater reliability, facilitating secure and
real-time communication between edge devices and centralized servers [170]. Virtual-
ization techniques enable the isolation of critical network functions and applications,
limiting the potential impact of security breaches or attacks [171]. By leveraging these
technologies collectively, organizations can establish resilient and adaptive network
infrastructures capable of mitigating risks and ensuring the integrity, confidentiality,
and availability of data in edge-based IoT environments.

6. Adopting fine-grained access control mechanisms in the edge layer—It can be noted
from observation #6 that when data are stored in the edge layer for a long time before
transferring them to the cloud, it can lead to any catastrophic events. This can result
in data authentication and integrity issues, affecting the decision-making capabilities
of the edge nodes. It is also observed that hybrid models and encryption techniques
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are used to address these issues in the existing security model. However, as stated in
observation #7, complex keys due to these techniques can result in network congestion
in communication channels. Therefore, adopting access control mechanisms between
data owners and the edge layer, which is a straightforward approach, can overcome
these issues. This approach has proved to be efficient in cloud computing [172]. How-
ever, in edge computing, the access control mechanism has to be fine-grained, which
supports secure collaboration, interoperability between heterogeneous devices, and
enhances data tracking. At the same time, the design goals and resource constraints
of edge nodes have to be considered so that it provides a lightweight and secure data
analytics scheme.

7. Designing trust management models in an edge computing framework—The decen-
tralized edge computing has a huge obstacle of collecting and managing information
from various edge nodes to perform data analytics. These criteria can be distinct to
various applications and services [32]. Further, edge nodes might frequently move
from one area to another [10]. This movement causes challenges in establishing trust
among edge nodes during data processing. Thus, designing a trust model that sup-
ports mobility and scalability is required in an edge computing framework. The trust
models can be third-party models used to decrease the computation overload of the
edge nodes and should manage interregional trust values through historical data to
track the mobility of edge nodes.

8. Isolating the infected edge nodes in the edge computing layer—In the currently
available edge threat models, malicious nodes are the common threats that affect
the decision-making process. Malicious nodes can always compromise other nodes
and create other attacks in the edge layer, such as DoS, repeated storage/processing
requests, spoofing, or leakage of confidential data [158]. This induces security and
trust risks, spreading among the edge nodes and to the whole edge layer. Therefore, a
strategy needs to be developed to identify the malicious node and isolate it from the
other nodes to reduce the risk of malicious nodes gaining control on the edge layer.

9. Enhancing security with emerging technologies, such as AI and blockchain—AI
algorithms can play a crucial role in real-time threat detection and anomaly detection
at the edge layer, continuously monitoring device behavior and network traffic to
identify potential security threats. Additionally, AI-based techniques can leverage
historical data to improve the accuracy and effectiveness of security measures in edge
data analytics systems [173]. Furthermore, blockchain technology offers promising
solutions for ensuring data integrity and enhancing trust in edge data analytics.
By providing a decentralized and immutable ledger, blockchain can create tamper-
proof records of data transactions, ensuring the authenticity and transparency of
data collected and processed at the edge layer [174]. Moreover, blockchain facilitates
secure and transparent data sharing among multiple parties in edge computing
environments, preserving data privacy and confidentiality while enabling efficient
collaboration [175]. Combining AI and blockchain technologies presents an exciting
avenue for future research in enhancing security in edge data analytics. By integrating
AI algorithms for threat detection with blockchain for secure data transactions, edge
data analytics systems can achieve a higher level of security, trustworthiness, and
resilience against security threats [176]. Exploring innovative approaches that leverage
the synergies between AI and blockchain holds great potential for advancing the
security capabilities of edge data analytics systems and addressing evolving security
challenges in edge computing environments.

7. Discussion and Conclusions

Decision-making in edge computing is a critical aspect that provides data analysis at
the end-user’s proximity and uninterrupted real-time interactions. Real-time responsive-
ness has made edge computing widely adopted in many applications, such as healthcare,
transportation, and smart cities. However, these services on the edge layer are prone
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to security threats by compromising the edge nodes and affecting edge data analytics’
efficiency. In this paper, we presented the basic concepts and features of edge data analytics
and analyzed the working aspects with three use cases. The potential security threats and
privacy issues that occur during data analytics were also analyzed to understand how
they might degrade the efficiency. Further, we identified the limitations and challenges in
existing security threat models.

The edge computing applications include a wide range of sensors and ubiquitous
devices to collect and store data. They function uninterruptedly to provide deep progressive
resolution, so it is required to preserve their endurance. When data are traversed from
different nodes and regions in the edge layer, the crowdsensing mechanism should establish
an efficient correlation to achieve data consistency and support reliable edge data analytics.
New technologies, such as AI, SDN, NFV, and containers, are widely adopted in edge
computing to provide agile services. However, they can burden edge nodes in computation
and make them vulnerable to new security issues. Hence, cautionary measures should be
considered before integrating edge computing with these technologies.

Advancing edge security presents several key challenges and opportunities. These
include addressing the heterogeneity and scalability of edge environments, managing
resource constraints on edge devices, and adapting to the dynamicity and mobility inherent
in edge computing. Ensuring data privacy and trust while maintaining interoperability
and regulatory compliance are also critical aspects. Interdisciplinary approaches involving
computer science, cybersecurity, networking, and regulatory compliance are essential to
develop scalable, adaptive, and privacy-preserving security mechanisms tailored to the
unique characteristics of edge computing environments. Collaboration between researchers
from diverse domains, integration of techniques from machine learning and cryptography,
and engagement with policymakers are crucial for effectively addressing these challenges
and seizing opportunities for innovation in edge security. Considering these key research
challenges or limitations of the current research and research trends, it is critical to develop
and design security models that secure data on the edge layer and, in turn, complement
the edge computing characteristics.
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