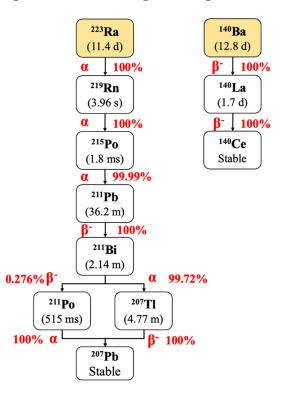
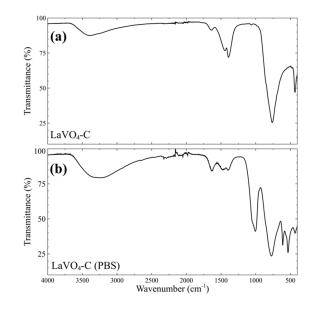
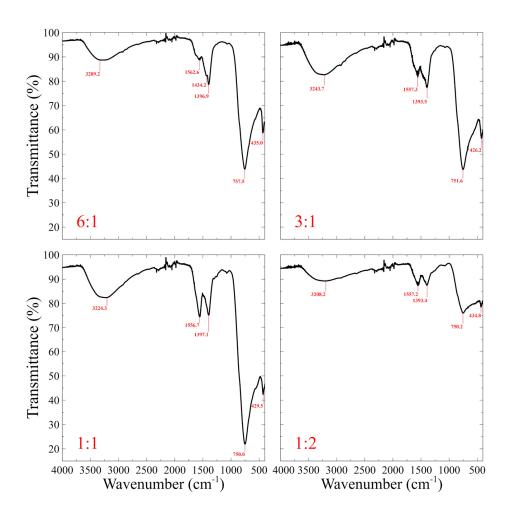
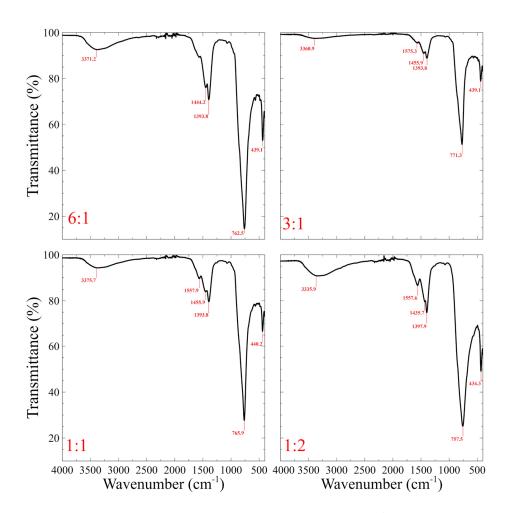
## **Supplementary Materials**

Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(<sup>223</sup>Ra)VO<sub>4</sub> Nanoparticles for Targeted Alpha Therapy

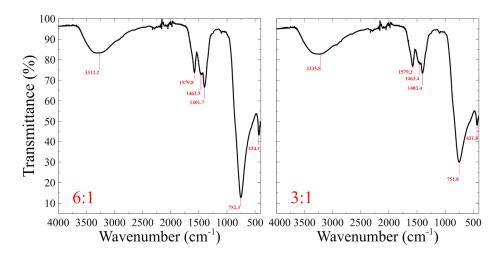





Figure S1. Decay schemes of <sup>223</sup>Ra and <sup>140</sup>Ba.

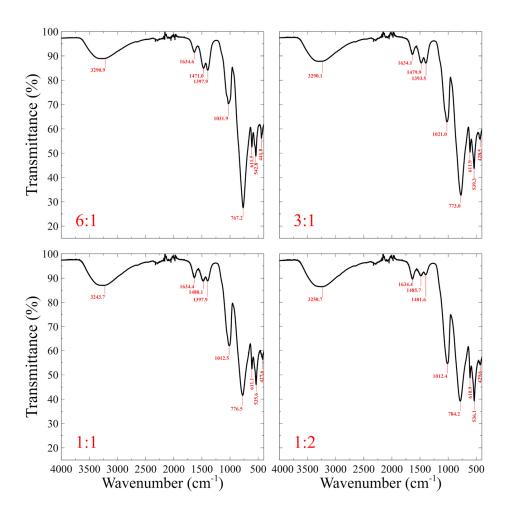
**Table S1.** Summary of  $\gamma$ -ray energies and intensities used to calculate the activity of each radionuclide [1].


| Radionuclide      | γ-ray energy (keV) | Intensity (%) |
|-------------------|--------------------|---------------|
| <sup>223</sup> Ra | 144.23             | 3.27          |
|                   | 154.08             | 5.70          |
|                   | 269.46             | 13.90         |
| <sup>211</sup> Pb | 404.85             | 3.78          |
|                   | 832.01             | 3.52          |
| <sup>211</sup> Bi | 351.07             | 13.02         |
| <sup>140</sup> Ba | 162.66             | 6.22          |
|                   | 304.85             | 4.29          |
|                   | 537.26             | 24.39         |
| <sup>140</sup> La | 328.76             | 20.30         |
|                   | 487.02             | 45.50         |
|                   | 815.77             | 23.28         |

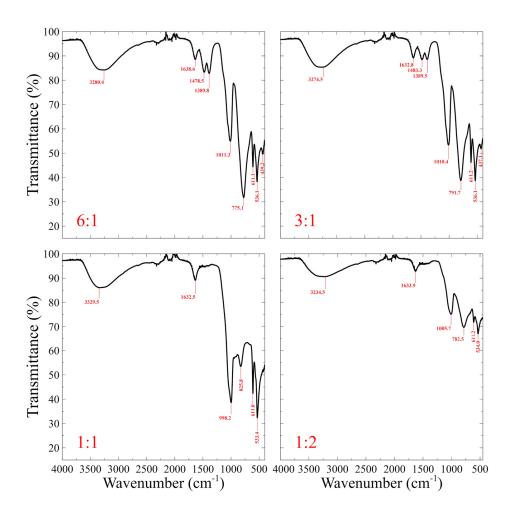



**Figure S2.** Dispersion of LaVO<sub>4</sub> NPs in phosphate-buffered saline (PBS; 1X, pH = 7.4) results in the addition of phosphate groups on the particle surface. FTIR spectra of LaVO<sub>4</sub> NPs synthesized following procedure C (a) before and (b) after dispersion in PBS.

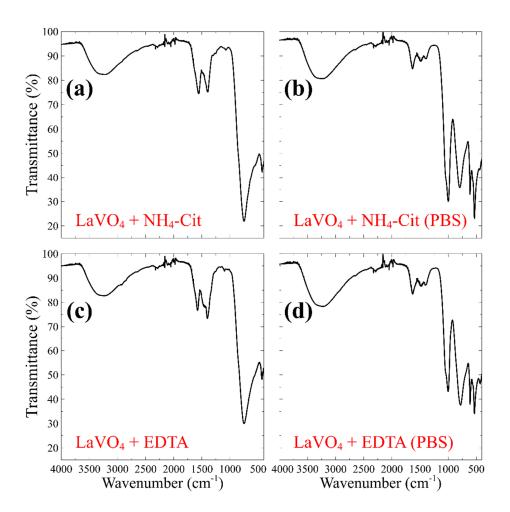



**Figure S3.** Increase molar fraction of NH<sub>4</sub>-Cit results in the appearance of the carboxylate bidentate bond stretching band at  $\sim$ 1,560 cm<sup>-1</sup>, where a 1:1 LaVO<sub>4</sub>:NH<sub>4</sub>-Cit molar ratio exhibits the highest transmittance for the carboxylate bidentate bond stretching band. FTIR spectra of LaVO<sub>4</sub> NPs modified with NH<sub>4</sub>-Cit at different LaVO<sub>4</sub>:NH<sub>4</sub>-Cit molar ratios.




**Figure S4.** Carboxylate bidentate bond stretching band at ~1,560 cm<sup>-1</sup> is evidenced at LaVO4:Na-Cit molar ratios greater than 1:1. FTIR spectra of LaVO4 NPs modified with Na-Cit at different LaVO4:Na-Cit molar ratios.




**Figure S5.** Surface modification with EDTA is evidenced by the carboxylate bidentate bond stretching band  $\sim 1,580 \text{ cm}^{-1}$ . A shift of the carboxylate bidentate bond stretching relative to NH<sub>4</sub>-Cit and Na-Cit suggest differences in the coordination of the carboxylate groups around the La cation. FTIR spectra of LaVO<sub>4</sub> NPs modified with EDTA at different LaVO<sub>4</sub>:EDTA molar ratios.



**Figure S6.** LaVO<sub>4</sub> NPs modified with TPP exhibited characteristic phosphate vibration bands at LaVO<sub>4</sub>:TPP molar ratios as low as 1:6. FTIR spectra of LaVO<sub>4</sub> NPs modified with TPP at different LaVO<sub>4</sub>:TPP molar ratios.



**Figure S7.** Characteristic phosphate vibration bands observed in LaVO<sub>4</sub> NPs modified with Hex at LaVO<sub>4</sub>:Hex molar ratios as low as 1:6. LaVO<sub>4</sub>:Hex molar ratios greater than 1:1 removed the vibration bands corresponding to carboxylate groups from precipitation of carbonate species. FTIR spectra of LaVO<sub>4</sub> NPs modified with Hex at different LaVO<sub>4</sub>:Hex molar ratios.



**Figure S8.** Presence of phosphate vibration bands after dispersing  $LaVO_4 + NH_4$ -Cit and  $LaVO_4 + EDTA$  in PBS. FTIR spectra of  $LaVO_4 + NH_4$ -Cit and  $LaVO_4 + EDTA$  NPs (a, c) before and (b, d) after dispersion in PBS (1X, pH = 7.4).

## References

[1] "Nudat 2." https://www.nndc.bnl.gov/nudat2/ (accessed Jun. 12, 2020).