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Abstract: Inorganic nanoparticles have emerged as an attractive theranostic tool applied to differ-
ent pathologies such as cancer. However, the increment in inorganic nanoparticle application in
biomedicine has prompted the scientific community to assess their potential toxicities, often prevent-
ing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are
present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle
treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage.
Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity.
This review will briefly address the main characteristics of different adhesion structures and focus on
the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome
dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton
targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the
nanoparticle-driven interference of adhesome dynamics will facilitate the future development of
nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
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1. Introduction

The nanomedicine field has grown in the last decades, supported by the develop-
ment of highly innovative and easy-to-scale nanomaterials to treat diverse pathologies,
e.g., cancer [1–4], autoimmune [5,6], and neurodegenerative disorders [7,8]. The thera-
peutic success of nanomaterials, in particular nanoparticles, relies on the relatively low
toxicity and the chemical and physical versatility that facilitate their functionalization. Re-
searchers have modified nanoparticle surfaces with a variety of moieties such as targeting
moieties [9], drugs [10], the on-surface-built stimuli-responsive molecular domains, e.g.,
pH- [11,12], and reactive oxygen species (ROS)-sensitive bonds [13,14]. Combining the
above surface domains with the intrinsic physical properties associated with nanoparti-
cle core, such as magnetism [15] and plasmon coupling [16], provides promising tools
for therapy and diagnosis. Nonetheless, nanotoxicological concerns remain the bottle-
neck hurdle for nanotheranostics to reach clinical stages [15–17]. For the wide range
of potentially toxic biological outcomes that cells can undergo upon nanoparticle-cell
interaction, the cytoskeleton-associated disarrangements play a key role in mediating
these processes. Biological processes such as cell migration [18], invasion [19], immune
response [20,21], proliferation [22], and cell death [23], depend partly or entirely on the
dynamics of cytoskeleton-stemmed structures. However, only recently has some research
addressed the complexity of cytoskeleton–nanoparticle interactions, becoming an active
and vital field for nanotheranostic development. We will discuss and put into perspective
the recent advancements in this matter. At first glance, we will highlight the adhesive struc-
tures’ main structural and functional features focusing on similarities and disparities. We
then revise and discuss the effect of different inorganic nanoparticles on adhesive structures
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and consider the importance of elucidating nanoparticle interference with cytoskeleton
dynamics.

2. Adhesome Structure, Function, and Dynamics

The term adhesome collectively refers to a complex structural domain that links the
intracellular cytoskeleton network to the adhesion complexes and the protein network
interactions comprising such domains [24,25]. These proteins act as a scaffold for the
formation of adhesions and integrate the extracellular signals into a rapid functional
response regulated by kinases, GTPases, and proteolytic enzymes. Adhesome definition
was first coined by Singer II, et al. referring to granules containing extracellular matrix
(ECM)-specific receptors in leukocytes and monocytes [26]. However, the term expanded
to include the entire protein network comprising or regulating all the cell-ECM interactions
and the cell–cell and the cell–matrix adhesion receptors [27]. The structures that mediate
the cell-ECM adhesions include filopodia [28], lamellipodia [29], focal adhesions [30],
podosomes [31], and invadopodia [32], all differing in protein composition, dynamic,
and functional activity, often associated with a specific cell type and microenvironmental
context [31]. Significant structural and functional differences between these structures
highlight the high complexity of the cell-ECM interaction (Table 1). We briefly pinpoint the
principal structural components and the functions of these actin-rich microdomains.

Filopodia and lamellipodia are related structures. Filopodia arise from lamellipo-
dia upon actin rearrangement into parallel filaments bundled by actin-bundling proteins,
i.e., fascin, villin, and α-actinin (Figure 1). Numerous actin-capping proteins such as
formin [33,34], small GTPases belonging to Rho families such as Rac1 and Cdc42 [35,36],
kinases [37], and actin regulators such as Ena/Vasp [38,39], facilitate the actin linear poly-
merization. Filopodia are sensitive to mechanical forces that ultimately regulate their
dynamics and seemingly depend on formin and myosin IIA interplay at the filopodium
base [40]. Noteworthy, actin-bundling proteins tightly pack actin filament in a unidirec-
tional manner, allowing the motor machinery to transport receptors and vesicles toward
the tip of the filopodium. Filopodia are mediators of cell probing of the surrounding
microenvironment in various physiological processes such as immune response [41] and
embryonic development [42] due to their structural organization and the unidirectional
transport of receptors. Since filopodia act as transport tunnels for receptors, e.g., integrins,
they drive the formation of adhesions at diverse locations within the structure. Those at
the base of the tip are more similar to the focal adhesions formed at the lamellipodia.

Nonetheless, those assembled at the filopodia shaft and the end are less characterized.
They likely play an essential role in stabilizing the filopodium and probing or reinforcing
the cell–cell junctions and cell-ECM anchorage, limiting the filopodium growth [43] and
the sensing of the ECM rigidity [44]. What is certain is that the cyclic lamellipodium
advancement and retraction promote the formation of these adhesions at the filopodium
shaft. Some reports, however, indicate that the adhesions formed at the shaft and the tip of
the filopodium can evolve toward a mature focal adhesion, suggesting that the former are
more like nascent focal adhesions [44].
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Figure 1. Actin rearrangement in lamellipodia and filopodia. Filopodia emerge from lamellipodium at the leading edge in
a cell in movement. Then, actin starts nucleating, helped by specialized proteins such as Arp2/3, GTPases, kinases, and
regulators of the actin polymerization such as capping (formin) and anti-capping (Enabled) proteins, these last allowing
filament growth, protruding into filopodial extensions. Concomitantly, actin-bundling proteins such as fascin, villin, and
α-actinin, bundle actin filaments.

Table 1. Adhesive structures, connecting cytoskeleton with ECM, structural and functional differences.

Lamellipodia Filopodia Focal Adhesions Podosomes Invadopodia

Structure

Sheet-like
protrusions that
attach to ECM

driven by
branched actin
arrangements

Often originating
at lamellipodium

as finger-like
extensions driven

by linear actin
polymerization

Clusters of
transmembrane

receptors,
integrins, and

cytosolic proteins
driven by parallel

actin filaments
branched at the

end

A discrete actin-rich
core surrounded by

a ring of
actin-associated and
signaling proteins,

driven by branched
and unbranched
actin filaments

A discrete actin-rich
core is surrounded by

a ring of
actin-associated and
signaling proteins.

Often linked to tumor
cells driven by parallel
actin filaments within
the tip and branched

at the base

Cellular
location Leading-edge Embedded within

lamellipodia
Leading-edge of

the cell

Ventral cell surface,
often clustered

behind the leading
edge of the cell

Ventral cell surface,
often situated under

the nucleus
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Table 1. Cont.

Lamellipodia Filopodia Focal Adhesions Podosomes Invadopodia

Dimesions Width: 0.1–0.2 µm Width: 0.1–0.3 µm;
length: 3–10 µm Width: 2–6 µm Width: 0.5–2 µm;

length: 0.5–1 µm [45]
Width: 0.5–2 µm;

length: >2 µm

Pericellular
proteolysis Minimal No Minimal [46]

Yes, through
MT1MMP and

UPAR

Yes, through MMP2,
MMP9, MT1MMP,

seprase, UPAR,
ADAM12, ADAM15,

and ADAM19

Duration of
structure Minutes Minutes

Hours, it depends
on the rate of cell

migration
Minutes [47] Hours [48]

Soluble
stimuli

HGF [49,50], TNFα
and TNFβ [51],

endothelin-3 [52],
CLCF-1 [53]

VEGF-A [54],
GDF-5 [55], EGF
[56], HGF [57],
TNFα [58] and

TNFβ [51], leptin
[59]

Estrogen [60],
TGFβ1 [61],

endothelin-3 [52]

IL-5 [62], VEGF-A
[63], pro-NGF [64],
thymosin α1 [65],

hepatoma-derived
growth factor

(HDGF) [66], TGFβ1
[67], NaF [68], KGF
[69], SDF-1α [70],

exosomes [71],
osteopontin [72]

EGF [73], PDGF [74],
TGFβ [75], VEGF [76],

HGF [77,78], SDF-1
[79]

ECM stimuli Fibronectin [80],
fibrinogen [81]

Fibronectin [80],
fibrinogen [81] Fibronectin [82,83],

Collagen I [84],
fibronectin [85,86],

fibrinogen [85],

Fibrinogen [87],
Collagen I [88,89],
hyaluronan [90]

Focal adhesions (FAs) are membrane microdomains that cluster transmembrane re-
ceptors, i.e., integrins and a plaid of cytosolic proteins involved in scaffolding, actin
arrangement, and regulatory activities [91] (Figure 2). FAs are actin-rich structures special-
ized in transducing mechanical cues into biochemical signals where focal adhesion kinase
(FAK) plays a central role acting as a signaling hub between transmembrane receptors and
downstream proteins [92,93]. The translocation of FAK to FAs requires the autophosphory-
lation of FAK (Tyr397), which opens an Src homology 2 (SH2) binding site for the kinase
Src to associate, and, in turn, phosphorylate other residues at the kinase domain activation
loop pf FAK (Tyr576/577). Afterward, the formation of the Src-FAK complex renders the
maximal activation status of FAK, facilitating the phosphorylation of other sites at the FAT
domain and recruiting several downstream proteins targeted to the FA [94]. The physical
interaction between integrins and ECM elements allows the sensing of mechanical forces
at the cell-ECM interface, triggering a series of biochemical reactions that modulate the
intracellular cytoskeleton [95].

Although it is well known that FAs mediate outside–in (ECM-stemmed) signaling, FAs
can also mediate inside–out signaling (cytoskeleton-stemmed). Indeed, the intracellular
traction forces driven by actomyosin are transferred to the ECM through FAs [96]. FAK
and paxillin [97], and other proteins, are part of the signaling module of the FA adhesome.
The structural module comprises proteins involved in FA stabilization and maturation and
includes three major components: vinculin, talin, and tensin [98]. It is noteworthy that the
structural proteins’ turnover exhibit a more prominent dependence on ECM stiffness than
signaling proteins [99], emphasizing their role as mechanosensing mediators. The interplay
between ECM and intracellular traction forces is mediated by several mechanosensitive
proteins that respond to tension-triggered conformational changes. Their targeting, resi-
dence time, and turnover at the FA appear to depend on the magnitude of ECM stiffness.
Of all, vinculin and paxillin constitute fundamental partners in bridging mechanobiolog-
ical transduction at FAs [100]. However, vinculin also promotes FA maturation, which
correlates with the sensing of external stiffness [101]. Vinculin cooperates with another
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essential actin-binding protein, talin, to provide FA stabilization and, therefore, FA matu-
ration [102,103]. Accordingly, the FERM domain-containing talin head interacts with the
short intracellular tail of the b-integrin subunit, thus releasing the a-integrin subunit from
its inhibitory effects and inducing conformational changes in the extracellular domains
that increase integrin affinity for their ligands [104].

Figure 2. Schematic representation of focal adhesion structure and the different molecular domains. FA mediates the
ECM-cell contact through integrin receptors (domain D). The integrin–integrin receptor engagement triggers the recruitment
of critical kinases, such as FAK (domain C), to transduce the signal into structural changes in actin-linking proteins (domain
B). As a result, the extracellular signal promotes actin filament mechanical force (domain A). The schematic simplifies the
complex FA machinery to include those proteins that are most likely to be involved in the formation and structural integrity
of FAs.

The invadosome family comprises two multi-molecular complexes at the cytoplasmic
membrane: podosomes, found in a physiological context such as immune response, and
invadopodia, described in pathological scenarios as cancer. While FAs anchor cells to
ECM, invadosomes degrade ECM to facilitate cell migration through tissue and basement
membrane. Podosomes, like FAs, contain integrins that help cells probe ECM stiffness in
an outside–in signaling process. In contrast to FAs, podosomes provide cells with ECM
degradation ability through the focalized secretion of metalloproteases and other proteases
(Figure 3). A microtubule/motor-mediated vesicular transport at the site of podosome
core often confines proteases such as the membrane-bound MT1-MMP [47,105,106], main-
taining an on-demand proteolytic reservoir (Table 1 and [107]). Podosomes are dot-like
actin-rich structures often found as individual dots, clusters, belt-arranged formations
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in steady cells. External cues such as ECM stiffness or cytokine/growth factors induce
podosomes to re-arrange into ring-like sealing areas called rosettes [31]. Noteworthy, the
coalescence of individual podosomes and the fission of larger rosettes drive the de novo
formation of podosome superstructures, most likely through the polarization of myosin II-
mediated contractility [108]. From a structural point of view, podosomes can be described
as a modular architecture, consisting of two different parts: (1) an actin-rich protrusive core
driven by the Arp2/3-mediated actin polymerization, and (2) an integrin-based discontinu-
ous cluster-like ring that surrounds the core [109]. Curiously, the distribution appears to
follow an isotype-specific localization within the podosome structure with β1 associated
with the core, whereas both β2 and β3 localize in the ring preferably [45,110,111]. The
ability of podosome to re-arrange into a more complex superstructure relies on a set of
two unbranched actin filaments, i.e., the ventral lateral filaments that likely connect in-
tegrin and another adhesive receptors-based ring with the branched actin-rich core [47],
and the dorsal filaments most likely involved in linking individual podosomes to form
clusters, belt, or rosettes [112,113]. Nonetheless, a newly discovered set of filaments in
dendritic cells can be involved in the podosome arrangement into superstructures, i.e.,
interpodosomal zyxin-positive filaments that appear to bring podosomes close and do not
depend on actin polymerization [114]. Podosome cap is another structural module that
hubs actin- and myosin-interacting protein, regulates its activity, and is linked to contractil-
ity forces. Besides, podosome caps are the primary source of podosome variability even
within a single cell. In macrophages, a larger podosome population at the leading edge
coexists with other smaller podosome subpopulations of a longer life in the ventral zone
of the cells [115]. Similar to FAs, actin-linkers proteins are also found within podosomes,
including paxillin [116], vinculin [117], and talin [118]. Noteworthy, ECM can drive po-
dosome formation and dictate which integrin responds on a cell-type bias (e.g., β1 binds
collagen I in megakaryocytes [85], β2 binds fibrinogen in macrophages [119], and β3 binds
osteopontin in osteoclasts [120]) and also the ECM fiber geometry can influence podosome
subcellular localization, morphology, rearrangement, and lifetime [85,109,121]. That is the
case for dendric cells where interpodosomal filaments-driven arrangement into highly
packed clusters is dictated by substrate topology [114]. Therefore, podosomes are highly
dynamic actin-rich structures whose architecture, morphology, configuration, localization,
and proteolytic activity are dictated by both intracellular dynamical cytoskeleton-stemmed
forces and the composition and organization of the ECM.

As mentioned before, invadopodia associate with diverse pathological conditions
such as cancer. They are the main ECM-degrading structures that mediate tumor cell
invasion and metastasis [122–124] and, therefore, are one of the potential targets for cancer
treatment [125]. Although invadopodia share structural similarities and components with
podosomes, they exhibit a more extended life even for hours [50] than their counterparts,
which usually last less than 10 min [47,126,127]. Like podosomes, invadopodia are also
protrusive structures that elongate deeper in the ECM. In terms of protein composition, in-
vadopodia and podosomes show proven differences. For instance, the regulatory proteins
WASP and Grb2 locate at podosomes but not at invadopodia [128,129], while Nck1 and the
ENA/Vasp family member Mena (mammalian-ENA) protein form part of invadopodia
but not podosomes [130–132]. The currently accepted model for invadopodium formation
distinguishes three discrete temporal stages, i.e., (I) invadopodium core precursor initia-
tion triggered by ECM or growth factors, (II) invadopodium core precursor stabilization,
and (III) invadopodium maturation. For invadopodium to start forming, actin-nucleation
proteins, such as Arp2/3, cofilin, and regulatory protein N-WASp, must translocate to
and associate with the nascent cortactin-actin complexes close to the plasma membrane.
Following phosphorylation of cortactin, the complex Nck1-N-WASp supports the lim-
ited Arp2/3-dependent actin polymerization. The nascent invadopodium core precursor
stabilization is then driven by the Src kinase substrate, Tks5, which anchors the core to
the plasma membrane through PI(3,4)P2 [48]. The recruitment of PI(3,4)P2-producing
phosphatase SHIP2 by lamellipodin-Mena complex [133,134] further strengthens the Tks5-
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dependent invadopodium core [118]. Such recruitment is facilitated by a PH domain within
lamellipodin, driving its anchoring to the plasma membrane [135]. The actin polymeriza-
tion initiation attracts the myosin II-Na+/H+ exchanger-1 (NHE1) complex, lowering local
pH and activating cofilin-dependent actin polymerization [136]. Both actin-polymerization
mechanisms then synergize in growing the membrane protrusion. Cofilin drives the forma-
tion of daughter actin filaments that in turn activate new N-WASp-Arp2/3-mediated actin
nucleation [136]. Invadopodium maturation is finally forced by the Small GTPase Cdc42
that keeps Arp2/3 complex activated, and thereby the elongation of the filaments and
the protrusion growth [137,138]. An active vesicular transport toward protrusions occurs,
mediating the secretion of proteolytic enzymes that degrade the basement membrane
and ECM [139]. In this regard, Tks5 also plays a key role by tethering the Rab GTPase
Rab40b-positive MMP2- and MMP9-containing vesicles through its PX domain. Conse-
quently, vesicles are targeted to invadopodia, and the proteolytic content is released into the
extracellular microenvironment [140]. The metalloproteinase MT1-MMP trafficking toward
invadopodia seems to be mediated by other vesicular trafficking molecules such as syntaxin
4 and the vesicle-associated membrane protein 7 (VAMP7) [141,142]. Although the initia-
tion of invadopodia can occur in seconds to minutes, their maturation and stabilization
can last for hours allowing tumor cells to degrade ECM and invade surrounding tissues.

Figure 3. Schematic representation of invadosome (podosomes and invadopodia). Invadosomes mediates the ECM
degradation through the secretion of several metalloproteinases and other proteases. The schematic simplifies the complex
invadosome machinery to include those proteins that are most likely to be involved in its formation and structural integrity.
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3. Impact of Inorganic Nanoparticles on Adhesome Dynamics

The extended biomedical application of metallic nanoparticles and the underlying
concern on their effects on living systems from the cell to the organism level have raised
the need to better understand the complex interaction with cell processes. The nanoparticle
internalization requires the mobilization of the endocytosis machinery, which in turn
triggers cytoskeleton arrangements. Therefore, the endocytosis of nanoparticles per se
affects the cytoskeleton dynamics and all the associated cellular structures indirectly.
Once inside the cells, the nanoparticles can trigger a broad spectrum of cellular signaling
pathways depending on their chemical nature, including those affecting the cytoskeleton
dynamics. To better guide the readers, the effect of nanoparticles on adhesomes will
be classified according to the signaling input: (1) as outside–in when the interaction of
nanoparticles with the cell membrane induces profound changes in adhesome dynamics,
thus being a ECM-stemmed signal; and (2) inside–out, when internalized, the nanoparticles
activate diverse signaling pathways leading to a profound change in adhesome dynamics,
thus being a cytoskeleton-stemmed signal (Table 2). This classification will allow us to
dissect whether the interaction of the nanoparticles with cell membrane microdomains is
sufficient for disturbing adhesomes or whether intracellular trafficking and biodegradation
of nanoparticles are needed to promote such changes.

3.1. Inorganic Nanoparticles and Focal Adhesions Dynamic

Nanoparticle-induced disturbance of cytoskeleton arrangement would potentially
affect cytoskeleton-based cellular processes such as migration and invasion. Indeed, Vieira
et al. observed that human fibroblasts subjected to AuNP or AgNP exhibited increased in-
tracellular actin fibers correlating with a significant migration impairment [143]. Although
no further elucidation of the molecular machinery behind such effect was performed, it
was clear that inorganic nanoparticles impacted cytoskeleton dynamics. Soon after, Lo
HM et al. demonstrated that similar AuNP could disrupt platelet-derived growth factor
(PDGF)-induced FAK phosphorylation, decreasing the vascular smooth muscle cell adhe-
sion to a collagen I-rich ECM and inhibiting cell migration [144]. Recently, Královec K.,
et al. observed that a novel type of complex nanoparticles, SiO2@Ga-substituted ε-Fe2O3,
also induced FA shortening and a loss of stress fibers in human lung adenocarcinoma
A549 [145]. Therefore, inorganic nanoparticles disturb fiber formation and stability at first
glance, leading to an impaired cell migration. Table 2 summarizes the more recent reports
on inorganic nanoparticle effects on FA dynamics.

An important aspect when studying the effect of nanoparticles on cell migration is the
experimental system adopted. The latter should resemble as far as possible the biological
microenvironment where the cells in question nest. In this regard, glioblastoma cells
U87 migration appeared unaffected when treated with transferrin-coated porous silica
nanoparticles (Tf@SiNP) in the classical 2D wound scratch experimental setup. Nonetheless,
Tf@SiNP did inhibit U87 migration within a microfluidic chamber that mimics the tight
ECM tract found in tumor masses [146]. Noticeably, migrating cells exhibited a shortened
FA dynamics at the leading edge where FAs disassembled after 20 min compared to the
50 min of persistent FA formation in untreated cells [146]. Cells also lost plasticity, as
suggested by the loss of cell volume, which precludes them from properly shrink from
entering microfluidic chambers.

Cell adhesive capacity, often detrimental to cell migration, might be beneficial in
certain physiological and pathological conditions. That is the case for human mesenchymal
stem cell (hMSC)-based therapy for heart infarction. For hMSCs to properly adhere to
ventricles walls, FAs must exhibit a highly stabilized structure that lasts enough for cells
to reach the infarcted tissue. In this sense, Popara, et al. found that hMSCs treated with
SiO2 NP display more elongated and more oversized FAs that consistently favored hMSCs
stronger adhesion to fibronectin-based ECM in vitro. More importantly, when injected in
heart infarcted rats, SiO2 NP-treated hMSCs grafted more in both ventricles walls than
untreated counterparts [147]. Although the authors did not elucidate precisely which
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molecular pathways might underly the SiO2 NP effect on FAs, the fact that SiO2 NP-treated
hMSCs showed transiently impaired autophagy might as well explain the slow FA turnover.
Autophagy is integral to the degradation of several components of FA structure and inte-
grin trafficking system mediated by the autophagy cargo receptor NBR1 [148–150]. Con-
sequently, cells where autophagy is impaired display an enlarged leading edge-stemmed
FAs due to the slow assembly-disassembly rate [150,151]. Therefore, the nanoparticle can
disturb proper FA dynamics indirectly by damaging autophagy-dependent FA turnover.
Indeed, many inorganic nanoparticles can interfere with autophagy processes by fostering
or inhibiting them. However, most of these studies do not address whether cell adhesions
are affected. The direct involvement of autophagy in FA turnover has become a potential
target for metastasis, as demonstrated by Wang, Y. et al., who designed a tumor-activable
nanoparticle carrying the autophagy inhibitor chloroquine. Nanoparticle-treated 4T1 tu-
mor cells exhibited a >2 fold decrease in paxillin degradation in vitro and in vivo and
consequently displayed a reduced migration and metastatic potential [152].

Nonetheless, Shin, T.H. et al. were able to elucidate the molecular signaling engaged
upon silica-coated magnetic nanoparticle internalization in human bone marrow-derived
mesenchymal stem cells (hBM-MSCs). That is: SiO2@MNP induced a significant cell shrink-
age along with a consistent loss of FAs and reduced traction forces [153]. The diminished
phosphorylation of FA-associated kinases such as FAK and Src reflected an intrinsic inabil-
ity to form FA properly. Interestingly, Shin, T.H. et al. observed that SiO2@MNP treatment
hamper cell membrane fluidity mediated by increased lipid oxidation. Therefore, reactive
oxygen species (ROS)-mediated mechanisms can partially contribute to the global effect of
nanoparticles on cytoskeleton dynamics. Indeed, Mulens-Arias, V. et al. also found ROS
can mediate nanoparticle-induced FA disturbance. Polyethyleimine@IONP-treated human
umbilical vein endothelial cells (HUVECs) showed a reduced FA number concomitant with
a decrease in phosphorylated Src and phosphorylated cortactin. However, when cells were
pre-treated with the ROS-scavenger BHA, phosphorylated Src and cortactin levels were
recovered [154]. This change in cytoskeleton morphology has also been observed with
gold nanoparticles when internalized by HUVECs. More in detail, Ma, X. et al. detected
a shortening of actin and tubulin fibers leading to reduced filipodia and FA area [155].
More important, using biochemical cell-free actin and tubulin polymerization assay, AuNP
impaired polymerization reactions and the elongation of actin and tubulin fibers in vitro,
likely indicating a direct and physical interference with fiber dynamics in cellulo.

Nanoparticle effects on cytoskeleton dynamics often emerge without detectable cell
death, at least in a short time, emphasizing the need for in-depth analysis of nanoparticle–
cell interaction. Královec, K. et al. found that even when cell death was not detected, yet
thiol-functionalized silica-coated IONPs induced a profound disruption of the microtubule
network (β-tubulin+) and a shortening of the FAs (paxillin+) in A549 cells accompanied by
the impairment of the spatial organization of the cytoskeletal network and FA-associated
proteins [156]. In contrast with the work in hBM-MSCs by Shin, T.H. et al. [153], the
thiol-functionalized silica-coated IONPs augmented FAK phosphorylation, suggesting a
distinct molecular mechanism for FA disruption.

The dysregulation of filopodia and FA dynamics induced by nanoparticle treatment
can lead to a loss in rigidity sensing of the cell. In this regard, Ketebo, A.A. et al. found
that SiO2@MNP reduced the formation of filopodia and FAs in HEK293 cells when seeded
onto a rigid surface (2 MPa) but inflicted negligible effect on cells seeded on a soft surface
(5 kPa). In addition, it appeared that reduced phosphorylation of paxillin accounts for
the impairment of FA formation, leading to a change in the spatial force distribution and
directionality at the leading edge of HEK293 cells [157].

There is evidence that, even when focal adhesions do not exhibit a proteolytic activity
as high as that of invadosomes (podosomes and invadopodia), FAs can degrade ECM to
some extent [46,158]. Therefore, according to the described effects of inorganic nanoparti-
cles on the FA dynamic, it is logical to believe that they can indirectly affect FA-dependent
ECM degradation. Indeed, Mulens-Arias, V. et al. found that AuNP of 16, 30, and 40 nm
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of diameter induced an increase in FA size in mouse endothelial cells, SVEC4-10, in the
first 30 min of incubation followed by a significant reduction after 1 h [159]. As a result,
murine endothelial cells degraded less the ECM, most likely due to an impairment of
MT-MMP recruitment to FAs, the decrease in MMP2, and the increase of metalloproteinase
inhibitors TIMP1 and Serpine1. However, the same AuNPs had the opposite effect on
mouse mesenchymal stem cells (mMSCs) as both the total (Vinculin+/F-Actin+) and the
mature (Zyxin+/F-Actin+) FA number and size increased as early as 1 h after AuNP treat-
ment. Consequently, AuNP-treated mMSCs exhibited an exacerbated ECM degradation
rate [159]. These effects were observed at early incubation times (<1 h), suggesting that
the mere AuNP interaction with cells effectively affects FA dynamics, thus supporting the
outside–in signaling mechanism.

Soenen, S.J.H. et al. found evidence on the physical hindering of intracellular cytoskele-
ton network analyzing clinical relevant iron oxide nanoparticles (IONPs) such as Resovist
and Endorem, and other experimental very small IONPs and magnetoliposomes [160].
When treated with any of these IONPs, the primary human blood outgrowth endothelial
cells (hBOECs) exhibit a disrupted cytoskeleton and microtubule architecture accompanied
by a reduction in the level of phophoY358-FAK, thereby impairing FA formation and
maturation. Nonetheless, metallic nanoparticles appear to strengthen the actin filament
tension by disrupting the tubulin network in some cases. Tay, C.Y. et al. demonstrated that
when oral mucosa cells TR146 are treated with TiO2, SiO2, and hydroxyapatite nanoparti-
cles, the acetylated α-tubulin, which is responsible for the tubulin network stabilization,
decreased, thus exacerbating the intracellular F-actin filament traction forces [161]. Ac-
tomyosin and microtubules are antagonistic force-generators that keep the intracellular
tensile homeostasis. While the slide of the actomyosin motor along the actin filaments
generates contractibility, the microtubules counteract this force by generating compres-
sional forces and prevent the cell from collapsing [162–164]. Therefore, if nanoparticles
perturb microtubule stability, the contractability will increase accordingly. It is documented
that FAs grow and mature partly by the generated intracellular tension when mediating
mechanical transmission in an inside–out manner [165,166]. In line with this, Tay, C.Y.
et al. found that nanoparticle-treated TR146 cells showed an increase in the formation and
maturation of FA, most likely due to the exacerbated tension in filamentous actin filaments
and, as a result, cell migration is retarded [161].

Similar sensitivity of microtubule network to metallic nanoparticles was observed by
Ibrahim, M. et al. when treated human osteoblast-like cells SaOS-2 with TiO2 nanopar-
ticles [167]. Despite the global increase in phosphorylated FAK (Tyr397), TiO2-treated
SaOS-2 cells failed to recruit phospho-FAK to FA, reducing their size. Moreover, TiO2
nanoparticles also downmodulated the level of vinculin, a structural protein tightly linked
to FA, partly explaining the reduced FA area. One excellent example of how signaling
direction can differentially affect FA dynamic is TiO2. Contrarily to the TiO2 nanoparticle
internalization effect on FA in osteoblast, osteoblasts cultured on nano-thin TiO2 surface
display an increase in FA size, which exacerbated cell adhesion to the surface [168].
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Table 2. List of inorganic nanoparticles and their effect on focal adhesion dynamic.

Nanoparticle Cell FA Markers
Probable
Signaling
Direction

Time (h) Effect

SiO2

Human
mesenchymal stem

cells
Vinculin Inside–out 16 Increased FA size and maturation

[147]

SiO2 (50, 100, 300 nm)
Bovine aortic

endothelial cells
(BAEC)

F-actin/vinculin Outside–in 24 Decreased FA size [169]

SiO2 (50, 100, 300 nm)
Mouse calvarial
preosteoblasts
(MC3T3-E1)

F-actin/vinculin Outside–in 24 Increased FA size [169]

SiO2@IONP

Human bone
marrow-derived

mesenchymal stem
cells (hBM-MSCs)

F-actin/vinculin Inside–out 12

Decreased FA size, decreased
phospho-Src, reduced

phospho-FAK, reduced traction
forces and cell migration [153]

Ga-substituted
ε-Fe2O3

A549 F-actin/vinculin Inside–out 24 Decreased FA area and reduced cell
adhesion [145]

Resovist, Endorem,
and

magnetoliposomes

Primary human
blood outgrowth
endothelial cells

(hBOECs)

F-actin/vinculin Inside–out 24

Decreased FA formation and
maturation

Reduced phospho-FAK
Reduced cell migration [160]

AuNP (16, 30, 40 nm) Mouse endothelial
cell(SVEC4-10)

F-actin/vinculin and
F-actin/zyxin Outside–in 2 and 24

Decreased total FA size, reduced
MT1-MMP recruitment

Reduced MMP2 and ECM
degradation [159]

AuNP (16, 30, 40 nm) Mouse mesenchymal
stem cells

F-actin/vinculin and
F-actin/zyxin Outside–in 2 and 24 Decreased total and mature FA,

reduced ECM degradation [159]

AuNP
Human umbilical

vein endothelial cells
(HUVECs)

F-actin/vinculin Inside–out 24
Reduced FA size and impaired

F-actin and tubulin
polymerization [155]

SiO2
Oral mucosa cells

TR156 F-actin/vinculin Inside–out 12
Increased F-actin filament traction,

increased FA formation
Decreased cell migration [161]

TiO2
Oral mucosa cells

TR156 F-actin/vinculin Inside–out 12
Increased F-actin filament traction,

increased FA formation
Decreased cell migration [161]

Hydroxyapatite Oral mucosa cells
TR156 F-actin/vinculin Inside–out 12

Increased F-actin filament traction,
increased FA formation

Decreased cell migration [161]

TiO2

Human
osteoblast-like cells

SaOS-2
F-actin/p-FAK Inside–out 24

Decreased FA area, reduced cell
migration

Reduced vinculin [167]

Polyethylenimine@IONP HUVEC F-actin/vinculin
p-cortactin Inside–out 6

Lower phospho-cortactin+ FA,
reduced cell migrationReduced

phospho-Src and phospho-cortactin
ROS involvement [154]

The disturbance mentioned above of cytoskeleton dynamics upon inorganic nanopar-
ticle uptake translates into a global mechanical change at the cellular level, recently demon-
strated by Perez, J.E. et al. [170]. Measuring the deformation of a single mouse embryonal
carcinoma F9 cell (d(t)), caught between two glass plates, one rigid and another flexible,
Perez, J.E. et al. recorded a transient increase in cell viscoelastic module (G) after treatment
with citrate-coated γ-Fe2O3 nanoparticles. This behavior indicated an increment in cell
stiffness, most likely related to the rise in the stress fiber density in the first 30 min after
nanoparticle treatment.

The studies above relied on nanoparticle internalization (inside–out). However,
nanoparticles can impart changes to cytoskeleton dynamics in an outside–in manner.
Indeed, Lipski, A.M. et al. analyzed the impact of crystal roughness on bovine aortic
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endothelial cells (BAECs) and mouse calvarial preosteoblasts (MC3T3-E1) coated crystal
with 50–300 nm SiO2 NP. Consequently, whereas the nanoparticle layer reduced FA size in
BAECs, an increase in FA size was observed in MC3T3-E1, revealing a cell type bias [169],
as demonstrated by others [155]. AuNP layers also impart cytoskeleton changes to mouse
embryonic stem cells (mESCs) whereby smooth Au, nanorough AuNP surface (106 nm),
and sub-microrough AuNP surface (<393 nm) appear to promote FA formation although
with distinguishably distribution, i.e., in smooth Au mESCs display FAs mainly in the
periphery while exhibiting a more random distribution in nanorough and sub-microrough
AuNP layers [171]. On the contrary, mESCs cultured on microrough AuNP layers (>573 nm)
display significantly fewer FAs as measured by vinculin expression, all suggesting that
metallic surface typology can also modulate FA dynamics in an outside–in manner, as
demonstrated by others [172–175]. The latter has consequences for biomaterial-based tissue
engineering as the maintenance of the proper formation of FA in mESCs on smooth Au,
nanorough, and sub-microrough AuNP layers, also correlated with the maintenance of cell
pluripotency. In contrast, the low FA formation rate on microrough surfaces is conducive
to osteoinduction [171,176].

3.2. Nanopaterneting as a Platform for FA Study

The extracellular pattern can modulate FA dynamics and ultimately shapes cellular
topography. And here, metallic nanoparticles provide an invaluable tool to study adhesive
structures under a controlled spatial patterning. Posa, F. et al. unraveled the synergistic
effect of integrins and a bone morphogenic protein (BMP-2) in regulating FA size and
clustering using a nanopatterned surface built by 50 nm-separated BMP-2-coated AuNPs
and co-presented with integrin ligands [177]. Furthermore, the nanoparticle-based ECM
nanopatterning can also furnish researchers with a remote-control system for cellular
adhesion modulation. Representative work by Kang, H. et al. showed an integrin ligand
(RGD) coupled to IONPs and attached to a glass surface by a flexible polyethylene glycol
linker, that upon the application of an external oscillating magnetic field can either promote
FA assembly or disassembly in human mesenchymal stem cells depending on the frequency
of the magnetic field [178]. As such, when a slow magnetic field (0.1 Hz) is applied,
oscillating IONPs promote RGD–integrin ligation and the formation and maturation of FAs
both in vitro and in vivo. By contrast, a relatively faster magnetic field (2 Hz) inhibits FA
formation and hampers RGD–integrin ligation. Curiously, either effect reversed when the
magnetic field frequency was changed, demonstrating the remote-control capability of the
system. Similar results were obtained by designing a strategy where an AuNP bridged the
glass surface with a magnetic nanocage, and the RGD ligand was linked to the AuNP [179].

In addition to the potential of nanopatterned surfaces for study adhesome dynam-
ics, colloidal inorganic nanoparticles have also proved helpful in deciphering structural
features of adhesions. Recently, Okada, T. et al. developed a novel imaging microscopy
technology named scanning electron-assisted dielectric-impedance microscopy (SE-ADM).
Based on 60-nm colloidal gold nanoparticles coated with an integrin β1-specific antibody,
Okada, T. et al. showed that the adhesion core contains three or four integrin β1-rich re-
gions connected to actin bundles [180]. The importance of the techniques lies in the direct
visualization of the living cells without staining or fixation.

3.3. Inorganic Nanoparticles and Invadosome Dynamic

The effects of inorganic nanoparticles on podosomes have been described primarily on
cells of the mononuclear system, where these structures play a crucial role in cell migration
and invasion. Mulens-Arias, V. et al. found that AuNP can promote podosome assembly
into rosettes in the murine macrophage RAW 264.7, measured as phospho-cortactin-rich
F-actin spots [159]. Such an increase in podosome rosette overlapped with an increment in
podosome assembly and an exacerbated ECM degradation. However, there was a clear
dependence on AuNP size, as the effects mentioned above were only observed for smaller
nanoparticles <16 nm.
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Very often, macrophages exhibiting a reduced migratory rate upon inorganic nanopar-
ticle treatment show an increase in podosome-mediated ECM degradation. Rojas, J.M.
et al. demonstrated that superparamagnetic iron oxide nanoparticles (SPION) coated
with dimethyl succinic acid, 3-aminopropyl-triethoxysilane, or aminodextran, promoted
podosome assembly in bone marrow-derived macrophages M2 and, thereby, an increment
in ECM degradation while inhibited macrophage migration [181]. The latter can be ex-
plained by the consistent production of active MT1-MMP metalloproteinase upon SPION
uptake by macrophages. Notably, the above effects on macrophage invasion behavior
coincided with a global change in the activation profile, where important cytokines and
chemokines were upregulated, such as Tnfa, Il23a, Ccl2 mRNA, and critical signaling path-
ways activated, including the MAPK and AKT. Altogether, the SPION-induced podosome
formations appeared to be associated with a macrophage activation mechanism rather than
a direct effect.

Another study shed more evidence on the modulation of podosome dynamics as
part of the macrophage activation process. Mulens-Arias, V. et al. found that the murine
macrophage RAW 264.7 exhibited an activation shift toward an M1 phenotype when
treated with two different PEI@MNP, as determined by the increment in activation mark-
ers CD80, CD83, CD40, and I-A/I-E, and the upregulation of several pro-immunogenic
cytokine/chemokines, e.g., Tnfa, Il1b, Arg1, and Ccl2 [182]. However, the exciting outcome
for the interest of this review is the concomitant increase of podosome density, indicat-
ing that podosome dynamic shifts as macrophage activation status does. Contrarily to
SPION effects on M2 macrophages, the rise in podosome density did not translate into an
exacerbated ECM degradation; on the contrary, PEI@MNP-treated macrophages exhibited
a reduced ECM degradation ability [182]. The first suspects behind such effects are the
atomic iron and ROS, all products of the MNP intracellular degradation. The intracellular
trafficking of MNP leads to NP degradation and, thus, the enrichment of the labile iron
pool (LIP). The LIP contributes to the intracellular ROS level through the Fenton reaction,
where the Fe2+ is converted into Fe3+ by H2O2, producing hydroxyl radicals [183]. The
excess of ROS acts as intermediates in several signaling pathways [184] and can promote
podosome formation [71].

In another example of the influence of nanoparticles, cell activation, and podosome
dynamics, Xu, J. et al. interrogated the impact of atomic cobalt (Co2+) and cobalt nanoparti-
cles (CoNPs) on macrophages to better understand the macrophage retention at the site
of metallic implant, leading to the adverse retention to metal debris (ARMD) events [185].
When the U937 macrophages were treated with Co2+ or CoNPs, the researchers observed
a profound inhibition of cell migration in vitro and in vivo. This effect was simultaneous
with the hyper-acetylation of α-tubulin, leading to a global microtubule network rear-
rangement. As a result, macrophages showed increased cell spreading, adhesion, and
podosome density. This increment in podosome density promoted an exacerbated ECM
erosion, most likely due to the activation of the metalloproteinase MMP9. Notably, Xu,
J. et al. demonstrated that Co2+ and CoNP effect on podosome formation is associated
with ROS production that inhibits the activation of the Rho GTPase RhoA, a well-known
regulator of actin and podosome turnover [186].

Like podosomes, invadopodia can also be affected by inorganic nanoparticle treatment
due to a global cellular signaling shift. The murine pancreatic tumor adenocarcinoma cells,
Pan 02, showed a reduced migratory rate and a diminished degradation of the collagen type
IV-rich basement membrane upon treatment with PEI@MNPs [187]. When Mulens-Arias,
V. et al. assessed the invadosome density, they found that the formation of invadosome
in PEI@MNP-treated Pan 02 cells was severely hampered, most likely associated with
reduced activation of the Src kinase. Notably, the reduction in invadosome density was
accompanied by a downmodulation of metalloproteinases MT1-MMP and MMP2 and
the upregulation of SerpinE1, a natural inhibitor of extracellular proteases [188]. Since
SerpinE1 directly affects the protease activity and the cytoskeletal rearrangement and focal
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adhesions, it is plausible that PEI@MNP-induced SerpinE1 limits extracellular protease
activity and cell motility through the modulation of Jak/STAT1 signaling axis [189].

Altogether, inorganic nanoparticles can impart a global change in the intracellular
signaling network that eventually leads to a profound shift in invadosome dynamics.
Several intermediates have been described to drive such effects, including the production
of reactive oxygen species, atomic metal such as iron, nanoparticle coating-induced cell
membrane receptor activation, or direct interference with actin polymerization. Therefore,
each new inorganic nanoparticle intended to be used as a theranostic agent should be
thoroughly studied to evaluate any possible impact on adhesome dynamics that can
hamper the final therapeutic goal or even enhance it.

4. Perspectives

Whether directly or indirectly, the influence of inorganic nanoparticles on cellular
mechanical dynamics emerges as a potential therapeutic approach for diverse diseases
such as cancer and tissue regeneration. The recent findings on nanoparticle-driven changes
in adhesome dynamics and the increasing interest in dissecting the molecular mechanisms
involved can accelerate the designing and exploitation of nanotheranostics for impairing
or triggering cell migration as a basis for a therapeutic effect. For instance, the application
of nanotheranostics to inhibit invadosome formation and, thus, ECM degradation might
preclude primary tumor cells from invading surrounding healthy tissues and metastasize to
other organs. However, a thorough analysis has to be made to elucidate the exact molecular
mechanisms through which the nanoparticles inhibit such processes, knowing that each
type of nanoparticle can behave differently. Thus, systematic research has to be performed
regarding nanoparticle-driven adhesome changes as it is done for nanoparticle toxicity.

Notably, nanoparticles still cope with several drawbacks while reaching the clinical
stage. Three well-defined levels of obstacles can be observed: (1) the pharmaceutical
design, where the development of large-scale production under the good manufacturing
practices standard and the quality control assays remain an essential obstacle; (2) the
preclinical study, including pharmacokinetic and pharmacodynamics, where more precise
and reproducible assays to detect early toxic effects in cells are needed, and a better
understanding of the nanoparticle-cell (tissue) interaction is vital; and (3) the clinical
stage, where there is still a limited regulatory guideline and a poor understanding of the
nanoparticle biological interaction including the targeted site within the patient body. In
this context, the interference of adhesome dynamics driven by nanoparticles and their
comprehension can help overcome some of the obstacles identified in the preclinical and the
clinical stages. At least, the study of adhesome dynamics must be considered paramount
for elucidating the nanoparticle biological interaction with cells and biological tissues and,
thus, pave its route toward the clinical stage. However, as it can be observed from this
review, different biological and physical assays have been followed to study nanoparticle
interference in adhesome dynamics, making it difficult to find points of comparison among
nanoparticles. Therefore, researchers should also meet standardized protocols to dissect
nanoparticle effects on adhesome dynamics to make results comparable and reproducible
and facilitate nanoparticle translation to the clinic.

From the present review, it is clear that some inorganic nanoparticles are endowed
with the intrinsic capacity to modulate adhesome dynamics and that such effects can be the
basis for a therapeutic strategy. Furthermore, nanoparticle features traditionally known to
influence their cell toxicity, internalization, and therapeutic outcome, also appear to affect
nanoparticle-driven interference in adhesome dynamics. Like the AuNP size influence in
FA dynamics, nanoparticle surface charge and protein corona might also determine the
extent of the adhesome dynamic interference. Thus, future studies should address the
impact of various nanoparticle properties (e.g., size, charge, protein corona, aggregation
state, and intracellular degradation rate) to comprehend nanoparticle potentials fully.
More importantly, these parameters also affect nanoparticle biodistribution and, thus, link
nanoparticle behavior in vivo to the local effects.
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To exploit nanoparticles as adhesome modulators, researchers must overcome the
traditional hurdles for nanotheranostics, i.e., tissue specificity, biodistribution, pharma-
codynamics, and systemic toxicity. Besides, the nanoparticle can be modified to increase
tissue specificity or longer circulation time and impart signal input to the cytoskeleton
network to change cell migration/invasion. Among them, the use of integrin ligands or
agonists and kinase inhibitors as cargo might provide potential use.
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