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Abstract: Respiratory diseases often show no apparent symptoms at their early stages and are usually
diagnosed when permanent damages have been made to the lungs. A major site of lung pathogenesis
is the small airways, which make it highly challenging to detect using current techniques due to
the diseases’ location (inaccessibility to biopsy) and size (below normal CT/MRI resolution). In
this review, we present a new method for lung disease detection and treatment in small airways
based on exhaled aerosols, whose patterns are uniquely related to the health of the lungs. Proof-
of-concept studies are first presented in idealized lung geometries. We subsequently describe the
recent developments in feature extraction and classification of the exhaled aerosol images to establish
the relationship between the images and the underlying airway remodeling. Different feature
extraction algorithms (aerosol density, fractal dimension, principal mode analysis, and dynamic
mode decomposition) and machine learning approaches (support vector machine, random forest, and
convolutional neural network) are elaborated upon. Finally, future studies and frequent questions
related to clinical applications of the proposed aerosol breath testing are discussed from the authors’
perspective. The proposed breath testing has clinical advantages over conventional approaches,
such as easy-to-perform, non-invasive, providing real-time feedback, and is promising in detecting
symptomless lung diseases at early stages.

Keywords: exhaled aerosol fingerprint; lung diagnosis; personalized therapeutics; obstructive
respiratory disease; nanoparticles; fractal; random forest

1. Introduction

Exposure to environmental and occupational toxins can lead to various respiratory
disorders [1,2], such as pneumoconiosis [3], chronic obstructive pulmonary diseases
(COPD) [4], and lung cancer [5]. Small airways in deep lungs can be significantly in-
volved in the early course of the pathogenesis before the onset of symptoms [6,7]. However,
remodeling in such small airways has proven difficult to be detected by existing diagnostic
methods due to their distal location (inaccessibility to biopsy) and tiny size (below normal
CT/MRI resolution). Considering the possible decade-long symptomless development of
lung diseases, it is crucial to detect the subtle, silent pathogenesis at its early stages [8–11].
It is also highly desirable to detect the level of severity of the disease, as well as the site of
the disease, so that targeted intervention can be formulated.

Early diagnosis of lung cancer is crucial to patient survivability. The cure rate can
be 70% for patients with non-small cell lung cancer (NSCLC) if detected at stage I but
only 25% if detected at stage III [12,13]. Current techniques to detect lung cancer and
respiratory diseases include spirometer for pulmonary function tests, X-ray for screening,
SPET/PET/CT to identify airway remodeling, and biopsy to evaluate the disease type
and extent [14]. These diagnostic tools are reliable in general but are also expensive and
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require professional operations. Some have radiological risks (CT/PET/SPET) and can be
invasive (biopsy).

Pneumoconiosis is the most common respiratory disease among coal workers [15].
Prolonged exposure to airborne dust, particularly mineral dust, can progressively lead
to airway inflammation, fibrosis, black lung, or even death [16]. However, patients with
pneumoconiosis may have no apparent symptoms at their early stages and are usually diag-
nosed by routine workplace surveillance tests when symptoms are obvious and significant
damages have been made to the lungs [17]. Because there is no cure for pneumoconiosis,
early detection of this disease is critical to the patients’ quality of life, as well as surviv-
ability. Patients with pneumoconiosis experience frequent episodes of shortness of breath,
cough, and intolerance to heavy exercise [18], while patients with severe pneumoconiosis
may have to live with external oxygen supplies or undergo lung transplants. In addition,
patients with pneumoconiosis and silicosis are at a higher risk of developing tuberculosis
and rheumatoid arthritis [19].

In recent years, new diagnostic devices for lung diseases have surfaced that utilize
exhaled breath, which contains clues of lung health [20–23]. A growing tumor cell is also
accompanied by metabolic changes, which produce a unique group of chemicals and form
a signature breath “fingerprint” for that type of tumor. This breath fingerprint can be
exploited to decide if a specific pathology is present and if so, what stage it is in [24].
As the breath test provides a non-invasive alternative to conventional diagnostic tools,
extensive studies have been carried out in analyzing the breath contents and identifying
signature breath biomarkers. Increased concentrations of nitric oxide have been associated
with asthma [25], cytokines with cystic fibrosis [26], antioxidants with chronic obstructive
pulmonary disease (COPD) [27], while decane, H2O2, and isoprene with non-small cell
lung cancer (NSCLC) [28,29]. While some biomarkers have already been applied in clinical
practices, such as nitric oxide for asthmatic patients, other biomarkers are still being
developed (e.g., profiles of volatile organic compounds—VOC) [30]. Reviews of using VOC
breath tests for lung cancer diagnosis and developments of associated medical devices are
presented in [23,31–33]. One critical limitation of the gas-signature-based approach is that
it can only determine the presence and concentration of certain exhaled chemicals. No
information on the carcinogenic site can be retrieved from such breath tests, which is also
essential to cancer treatment planning. At the current stage, such information can only
be attained using imaging tools such as MRI, PET, or CT, which, despite high accuracy,
suffer from high cost and potential health risks [34,35]. Moreover, targeted delivery could
only live up to its name if the diseased tissue was found beforehand. It is, therefore, highly
desirable to have alternative tools that can pinpoint the malignant sites in a non-invasive
and less costly manner.

Computational simulations of respiratory dynamics have persistently indicated that
the distributions of exhaled airflow and aerosols, although appearing chaotic in pattern, are
indeed unique to lung physiology [36–38]. Whenever there is a structural remodeling in
the lung, these distributions change accordingly. It is therefore hypothesized that each lung
generates its signature exhaled aerosol fingerprint (AFP). The AFP pattern is a collective
distribution of all exhaled trace particles that have traveled through the respiratory tract.
As such, a deviation from the normal profile indicates airway remodeling within the
respiratory tract and it should be possible to retrieve it using the inverse approaches that
were proposed in Xi et al. [37–43].

The proposed concept of AFP-based breath testing has two characteristics that are
desirable in lung disease diagnosis and treatment: (1) detect and locate the disease site, and
(2) deliver a personalized dose of therapeutic agents to the diseased site. If the concept were
proven feasible, an integrated diagnostic–therapeutic system could be further developed.
The device would be non-invasive, give real-time diagnosis feedback, be capable of precise
drug delivery, and at the same time, it would be easy to use and low-cost. The vision is that
the patient takes a breath test for diagnostic purpose, and a patient-specific drug delivery
protocol can be subsequently developed, targeting therapeutic aerosols at the diseased
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site only, thereby optimizing the medical outcome and minimizing side effects. The
proposed AFP-based breath testing will work best for respiratory diseases with measurable
structural remodeling, such as asthma, COPD, and NSCLC. The proposed breath testing
will be especially suitable for respiratory disease screening for those under elevated and
prolonged exposures, such as workers in the textile industry, coal mine, wood industry,
and refinery. Due to its easy-to-use and low-cost features, the workers could do the tests
more frequently. Regular testing can track the changes in the patient’s lung health. The
ability to localize the disease sites can facilitate a personalized treatment protocol, such as
targeted topical inhalation therapy.

Previous studies also attempted to use exhaled aerosols as diagnostic tools, based on
a method termed aerosol bolus dispersion (ABD) [44–48]. The similarities and differences
between the method presented in this study and ABD are described as follows. Both
methods were based on the same concept—that a patient with a remodeled lung exhales
differently, which manifests itself in expiratory fine-regime aerosols. However, at least three
factors establish the novelty of the proposed method: (1) test procedures, (2) variables to
measure, and (3) information that we can get from the test. Concerning the test procedures,
ABD needs only one step, i.e., inhalation–exhalation. By contrast, the AFP-based test needs
up to three steps. In the first step, a bolus aerosol is inhaled to a predefined depth and then
exhaled for screening purposes. In the second step, aerosol tracers are released selectively to
the suspected regions of the lung to localize the disease site. In the third step, a personalized
treatment plan can be developed that targets pharmaceuticals at the malignant tissues only.
Regarding the variables to measure, ABD records the aerosol concentration as a function
of the flow volume to evaluate the severity of airway remodeling [44,47]; on the other
hand, the AFP-based approach directly uses the images (particle distribution pattern) of
the exhaled aerosols collected on a mouth filter. Lastly, concerning new information that
can be inferred, ABD tests will not generate new information on lung health other than
current functional tests. By contrast, new information on the disease site can be discovered
from the proposed AFP-based tests, which is crucial in achieving targeted drug delivery to
the diseased site.

In this study, we review the recent developments in feature extraction and classi-
fication of the exhaled aerosol images to establish the relationship between the images
and the underlying airway remodeling. Different feature extraction algorithms (aerosol
density, fractal dimension, principal mode analysis, and dynamic mode decomposition)
and machine learning approaches (SVM, random forest, and convolutional neural network)
are discussed, with emphasis on their suitability and accuracy in categorizing respiratory
diseases based on exhaled aerosol images. In the end, potential roadblocks to clinical
applications of the proposed aerosol breath testing for lung diagnostics and therapy will
be discussed from the authors’ perspective.

2. Materials and Methods
2.1. Healthy and Diseased Airway Models

In this study, images of exhaled aerosols, or AFP, were numerically generated using
physiology-based modeling and simulations in anatomically accurate airway models, as
shown in Figure 1a. To this aim, two respiratory airway models were developed. The first
model was a simplified geometry that included the respiratory tract from the oral cavity
to the sixth generation (G6) of lung bifurcations (Figure 1b,c), while the second model
was a more complex, realistic geometry that extended to the ninth generation (G9) of lung
bifurcations (Figure 1d). The first model was developed based on MRI scans of a 53 year
old non-smoking male with no respiratory disease [36]. Mimics (Materialise, Ann Arbor,
MI, USA) were used to segment the airspace from other organs. Due to the presence of
artifacts in the segmented geometry, the polylines that enclosed it were extracted, and
they were further used as the scaffold to reconstruct the airway surface geometry by
patching it with ~3–5-edge faces. This method allowed cleansing of apparent artifacts,
improved computational quality, and controlled modification of regional airway structures.
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The downside of this method was that it was time-consuming and labor extensive, as
most of the procedures, such as artifact-cleansing and surface-patching, were manual.
There were 23 outlets in the geometry. Detailed procedures of model development and
airway dimensions can be found in Xi and Longest [36]. The second model shared the
mouth–throat geometry with the first one, which was connected to a more complex lung
model [49]. The volume of the lung model was scaled to be 3.5 L, which is consistent
with the functional residual capacity (FRC) [50,51]. There were 115 outlets in this lung
model. The two airway models were further modified using HyperMorph (Troy, MI, USA)
to generate airway geometries that represented different types of diseases with varying
severities (Figure 1b–d). A high-quality computational mesh was generated for each airway
model. Three test cases were designed to evaluate the performance of proposed algorithms,
as described below.

In the first test case (Figure 1b), we aimed to test if there were significant differences in
exhaled aerosol distributions in the upper airway between health (Model A) and diseased
lungs (Model B–D). Specifically, Model B had a 10 mm sized tumor at the carina ridge of the
trachea, while Model C had a 4 mm sized tumor located at G3 (i.e., segmental bronchus) in
the left lower lobe. In both models, the ratio of the tumor sizes to the host airway diameters
followed those in Segal et al. [52], who investigated the influences of the location and size
of tumors on respiratory airflows. In Model D, there were two constricted bronchi in the
left upper lobe (number 3 and 4 in Figure 1b) intended to represent local asthmatic airways.

In the second test case, we aimed to characterize the differences of the exhaled aerosol
images due to a growing tumor at the segmental bronchus (G3) (Figure 1c). A squamous
tumor results from uncontrolled growth of round cells [53]. They can grow in size and
constitute cavities in the lung parenchyma. These kinds of tumors are often observed
in central larger airways, either in the main bronchi or the major lobes [53]. In this case
(Figure 1c), the tumor was at the segmental bronchus of the lower left lobe and had five
different diameters to model the varying stages of the tumor [54].

In the third test case, we aimed to test whether the proposed diagnostic method
could detect the geometrical changes in small airway with diameters less than 2 mm
(Figure 1d). The rationale behind this test is that a diagnostic tool should be sensitive (and
robust) enough to work reliably in clinical settings, which can have more compounding
factors. To this aim, four levels of airway constrictions (A1, A2, A3, A4) were generated by
progressively narrowing the diameters of the bronchioles at G7 in the lower left lobe using
HyperMorph [55,56]. The minimal diameter and cross-sectional area of the constricted
bronchioles, along with the bronchiolar volumes that are affected by the constriction, can
be found in [56].

2.2. Acquisition of Exhaled Aerosol Images

Physiology-based simulations were undertaken to mimic the breath tests and generate
the images of exhaled aerosol distributions. A bolus of aerosol tracers was inhaled by the
patient to a certain depth and was subsequently exhaled to an aerosol collector positioned
at the mouth opening. The aerosol bolus was generated using a stochastic scheme and
consisted of 30,000 particles [41]. The respiratory airflow was simulated using the low
Reynolds number (LRN) k-ω model [58], which has been demonstrated to capture flow
transitions accurately [59].

A discrete-phase Lagrangian tracking model with near-wall treatment was used to
track the particle trajectories [60]. The governing equation for the particle motion was
expressed as in [36]:

dvi
dt

=
f

τpCc

(ui − vi) + gi(1− α) + fi,Brownian + fi,Li f t (1)

where ui is the flow velocity, vi is the particle velocity, f is the drag factor [61], τp (= ρp dp
2/18µ)

is the particle transient time, with dp being the particle diameter and µ the flow viscosity,
and Cc is the Cunningham slip factor as formulated in [62]. User-defined functions (UDFs)
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were applied to take into account the finite particle inertial [63] and near-wall damping [64].
This model had been well validated in our previous studies, which had provided good
agreements with comparable in vitro measurements for both nano particles [63] and mi-
cron particles [38]. The computational meshes were created using ANSYS ICEM CFD
(Ansys, Inc), grid independent study being performed with incrementally increasing mesh
densities [37] until the variation in the variable of interest was less than 1%.
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2.3. Feature Extraction of Exhaled Aerosol Images
2.3.1. Relative Concentration

Although the particle distributions can be visually differentiated between different
lung geometries, particle overlapping may make such visual judgment unreliable. To
accurately quantify particle concentrations, the ratio of local aerosol concentration to the
mean can be calculated [65]. For lung models with small structural variations, the exhaled
aerosol distributions can be very similar. The quantitative aerosol concentrations can help
identify such structural variations, which are also the sites of pathogenesis.

2.3.2. Fractal Dimension and Multifractal Spectrum Analysis

The exhaled aerosol images exhibit a complex profile and can be characterized using
the box-counting fractal dimension (DB), which quantifies the complexity of the image at
varying resolutions. Mathematically, DB is computed as the gradient between the number
of grids containing pixels (box-count) Nε and the resolution scale ε in the log–log plot.

DB = lnNε/ln ε (2)

The multifractal spectrum analysis is another approach to measure the complexity of
a system. This method rests on the fact that a natural system usually has multiple scaling
probabilities. To compute the multifractal spectrum, a normalized parameter µi(q,ε) can be
calculated from a group of scaling exponents, q [66].

µi(q, ε) = [Pi(ε)]
q/ ∑[Pi(ε)]

q (3)
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Here, Pi(ε) is the possibility of pixels found in the ith box with a resolution scale of ε.
The singularity strength α(q) and the multifractal function f(α) in relation to µi(q,ε) can be
calculated as

α(q) = lim
ε→0

∑ µi(q, ε)lnPi(ε)

lnε
(4)

f
(
αq
)
= lim

ε→0

∑ µi(q, ε)lnµi(ε)

lnε
(5)

The plot between α(q) and f(q) is the multifractal spectrum of the image, which is
computed using open-source codes ImageJ and FracLac [67].

2.3.3. Dynamic Mode Decomposition (DMD)

Disease progression is inherently a dynamic process. Thus, time-varying features
are desirable to gauge the stage of the disease. Dynamic mode decomposition (DMD)
is an image analysis algorithm that considers the system dynamic as X” = A*X′, where
X” = [A1, A2, A3, ..., An] and X′ = [A0, A1, A2, ..., An−1]. Here, A1, ..., An are different
stages of the disease (Figure 2a). For comparison purposes, proper orthogonal decompo-
sition (POD) and principal component analysis (PCA) were also considered. The major
difference between these two algorithms is that POD deals with the untreated image
matrix X = [A0, A1, A2, A3, ..., An] (Figure 2b), while PCA studies the corrected matrix
X̂ =

(
X− X

)
, where each image was subtracted by the mean (Figure 2c). In comparison

to POD, DMD requires an extra step, which extracts the temporal features from X′ to X”
(Figure 2c). Once the dominant features (or eigenvectors, eigenmodes) are identified, each
image can be represented using a linear combination of these features. The eigenmode
coefficients constitute a vector that represents the image, which can be further implemented
for classification training and testing.
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2.4. Image Classification of Exhaled Aerosol Images

Two classification methods, support vector machine (SVM) [68,69] and random forest
(RF) [70], were used to classify healthy and abnormal lung geometries [71]. A ten-fold
cross-validation method was adopted, where the data were randomly split into ten equal-
sized groups. In each step, nine groups were used for training and one for testing. This
step was repeated ten times. The classification accuracy is expressed below:

Accuracy = 1− Total number o f misclassi f ied samples
Total number o f samples

(6)

To obtain a classification accuracy of statistical significance, the 10-fold cross-validation
test was iterated one hundred times. The R package “e1071” was used to train and test the
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SVM and RF models. Minitab 18 (State College, PA) was used for the calculation of the
classification variability using one-way analysis of variance (ANOVA).

3. Results

Three test cases were presented herein. The first test case demonstrated that significant
differences existed in exhaled aerosols between health and disease and among different
types of diseases. The second test case demonstrated that such differences could also be
measurable at different stages of one disease (e.g., a growing squamous tumor in G3).
The third test case showed that even airway remodeling in deep lungs (G7-9) could be
detected using the proposed fractal-machine-learning method. In Section 3.4, the third
test case was further explored using DMD-extracted features, which further improved the
classification accuracy.

3.1. Proof-of-Concept Study in Upper Airway Models
3.1.1. Image Acquisition from Physiology-Based Modeling

The AFP image is the distribution of all exhaled aerosols that are collected at the
mouth opening. To develop a correlation between the AFP images and underlying lung
disorders, the AFP images must be sensitive enough to the disease-induced variations in
lung morphology. In Figure 3, significant differences can be observed in particle distribu-
tions among the four models, indicating a high sensitivity of the APF images to underlying
airway abnormalities in the upper airways. Figure 3a,b show the expiratory airflow and
exhaled aerosol distributions at the mouth opening, respectively, in the four airway geome-
tries with one normal and three malignant lungs, i.e., with a carinal tumor, a squamous
tumor at the left segmental bronchus, and constricted bronchioles [57]. The sizes of tracer
nanoparticles were 0.6–1.0 µm for their low diffusivity, low inertia, and low retention rate
in the airway [63,64].
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Figure 3. Proof-of-concept study in the upper airways: (a) airflow, (b) exhaled aerosol patterns, and (c) comparison of
particles that were originally released from normal and constricted bronchi. One normal (Model A) and three diseased
(Model B–D) were considered. The three diseases in the models B–D were carina tumor, bronchiolar tumor at G3 of the left
lower lobe, and constricted bronchi in the left upper lobe (or asthma), respectively. Adapted from [57].

This hypothesis was further tested by examining the destination of aerosol particles
released only from the diseased site, i.e., the two constricted bronchi in the asthma model
(Figure 3c). The patterns of the red trace particles were well defined and can be used as a
biomarker for asthma. Similarly, these trace particles can also be applied to localize the
lung disease site and assess the severity of asthma-inflicted constrictions.

After identifying the disease site and condition, one can devise an inhalation therapy
protocol to target medications at the diseased cells with a calculated dose tailored to the
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disease condition. For the applications of targeted lung delivery, it is essential to know
where the administered pharmaceuticals deposit within the lung. To answer this question,
we first released aerosol particles from the entire mouth opening, and then selectively
traced the aerosol particles that had deposited at the region of interest to their initial release
locations at the mouth. Figure 4 displays the initial release locations of the aerosol particles
that were deposited at the diseased sites. Conversely, if pharmaceutic agents were released
only from these locations, all agents shall deposit in the diseased sites, thus maximizing the
therapeutic outcomes and minimizing adverse side effects. Note that the release positions
in the case of carina tumor also displayed substantial asymmetry (Figure 4b).
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Figure 4. The release positions of aerosols that will deposit on the diseased regions: (a) normal, (b) carina tumor, (c) bronchial
tumor, and (d) constricted bronchi (asthma). Adapted from [57].

3.1.2. Relative Concentration

Although the particle distributions in Figure 3b are visually distinct among models,
particles that overlap each other preclude an accurate perception of particle accumulations.
Figure 5 shows the particle concentration, with the blue color being zero concentration and
red the maximum concentration [65].
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Figure 5. Relative concentrations of exhaled aerosols from the normal and three diseased airway
models. The concentration difference in the second row was calculated by subtracting the relative
concentration of each model by that of Model A. Adapted from [65].

3.1.3. Fractal and Multifractal Feature Extraction

Figure 6 shows the fractal dimension (FD) and the multifractal spectrum of the exhaled
aerosol images shown in Figure 3. The human lung has a tree-like architecture and is a
typical fractal structure [25,26] with an FD of approximately 1.57 [27,28]. During respiration,
inhaled aerosols cyclically fill and empty the lung networks. It is naturally conjectured that
the exhaled particles, which travel back from the deep lung to mouth by passing through
the branching networks, should retain the fractal characteristics and thus are fitting for
fractal analysis. Figure 6a shows the box-counting method to calculate the FD of exhaled
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aerosol images from Model A (right panel), as well as the comparison of FDs among the
four models for the whole image (middle panel) and a prespecified region of interest (ROI,
left panel). It was observed that the whole-image FDs did not show significant differences
from the normal case except Model D. Instead, significant differences were found in the
regional FDs among the four models. Similar results were also observed in the multifractal
spectrum (Figure 6b), where significant differences among models were absent for the
whole image but prevail for the ROI. This indicated that FD in sub-regions, not the whole
image, should be used for later pattern recognition and disease classification [29]. The
aerosol distribution is also visualized, in Figure 6c, as a rose plot, which also exhibits
large differences among the four models. It was, therefore, inferred that variations in lung
structures appear to generate sufficiently large differences in the exhaled aerosols, which
can be explored to correlate to the underlying lung diseases.
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Figure 6. Fractal and multifractal analyses of exhaled aerosols from the normal and three diseased airway models:
(a) box-counting method to calculate fractal dimension, FD (left), and FDs of the whole image (middle) and ROI (right);
(b) multifractal spectra for the whole image (left) and ROI (right). The spatial distribution of aerosols was also visualized as
a rose plot in (c). *: p ≤ 0.05; **: p ≤ 0.01.

3.2. Growing Bronchial Tumor
3.2.1. Perturbed Airflow Field

Figure 7a shows the airflows during exhalation in each of the five stages of a squamous
tumor located at a G3 branch in the left lower lobe. The airway obstruction due to the
bronchial tumor noticeably modified the airflows near the tumor, as illustrated by the
highly distorted stream traces. The flow perturbation was transported by the exhalation
flows throughout the respiratory tract. As the tumor progressed from case A to E, more
airway obstruction and higher flow resistance were expected, which caused a reduced
volumetric flow rate under similar respiration efforts. Due to airway obstructions, the
trajectories of aerosol particles were also disturbed, which could perceivably change the
exhaled aerosol distributions. Figure 7b compares the velocity contours at three cross-
sections (a–a’, b–b’, c–c’) among the five stages of the growing tumor. As expected, the
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flow speed progressively dropped with increasing tumor size. As the expiratory airflow
travelled to the mouth, the difference in airflows gradually decreased due to the mingling
of flows joining from neighboring branches. It is reminded that the aerosol profile is
determined by both local airflows and the flow histories. Although the flow fields in the
trachea looked similar among the five models, the aerosol patterns could be highly distinct
because of their time-integrative properties.
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Figure 7. Test case 2: airflow fields at the five stages (A–E) of a developing tumor (a) stream traces and (b) cross-sectional
velocity profiles.

3.2.2. Patterns of Exhaled Aerosol Fingerprints

Distributions of the tracer particles collected at the mouth opening are visualized in
Figure 8a. Both differences and similarities were observed in particle distributions among
the five stages of the bronchial tumor. Among many differences in Figure 8a, two are
noteworthy. First, a recirculation zone was observed in the left lower corner that occurred
at all stages of the tumor, while a smaller recirculation zone in the right corner shrank
in size gradually from case A to E (Figure 8a). These two recirculation zones were not
symmetric relative to the centerline of the circular filter, which was presumably due to
the left-right asymmetry of the lungs. Second, large differences existed in the particle
distributions between the two regions outlined by a dashed red circle and a box (Figure 8a).
In both regions, the particle concentration decreased with increasing tumor size. Moreover,
increasingly scattered particle distributions were observed in the dashed red box with
increasing tumor size from A to E.

Figure 8b shows the relative concentrations (or local density) of exhaled particles
on the mouth filter, with zero concentration in blue and maximum concentration in red.
Compared to particle profiles (Figure 8a), the concentration image (Figure 8b) identified
the peak particle accumulations (red color), which could not be identified in the exhaled
aerosol images per se due to particle overlapping. In this test case, both recirculation zones
(i.e., at the left and lower-right corners) exhibited elevated levels of aerosol accumulations.
The accumulation levels in left recirculation remained relatively unchanged for all stages
herein, while that in the lower-right corner declined continuously with the tumor growth.
A similar decline can be observed in Figure 8a in the right-middle zone (red rectangle).
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These time-varying correlations can be utilized as biomarkers to probe the progression of
the tumor, which is further discussed in later sections.
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Figure 8. Test case 2: comparison of (a) exhaled aerosol patterns and (b) relative concentration among the five stages (A–E)
of a growing squamous tumor.

3.2.3. Fractal Dimension

Fractal dimensions (FD) were computed for exhaled aerosols images both in the whole
image and specified ROIs (Figure 9). In each case, the standard deviations in FD were
computed from aerosol images that were predicted based on stochastically generated
inlet particle profiles (n = 5). A consistent FD variation with growing tumor sizes was
not observed for the whole images, as indicated by the erratic change of the FD values
in Figure 9a. Rather, a constant decrease in FD was noted for the two ROIs with tumor
growth. This finding confirmed the previous observation that malignant lungs gave lower
FDs than those in normal lungs [72]. Different from the small FD variations for the whole
images, large variations in the FD were predicted in both ROIs across the five disease stages.
Moreover, the derivation of FD from the normal (case A) increased steadily in diseased
models from B to E. Accordingly, the ROI-based FD seem to be a feasible biomarker to
monitor tumor growth and gauge disease severity. Considering that FD in sub-regions may
carry more concentrated information about the disease, each aerosol image was further
split into a 6 × 6 grid. Figure 9b shows the FD values in each grid. As expected, large
differences in color patterns were observed across the five tumor stages, with a unique
pattern in each stage.

3.2.4. Multifractal Spectrum Analysis

The multifractal spectra of the exhaled AFP images are shown in Figure 10 for the five
stages of the growing tumor. Interesting transition patterns can be observed across stages
(Figure 10a), as illustrated in the 3D surface plots of particle localization at the mouth. First,
the height of the peaks in the left corner (solid black arrow) decreased continuously from
Model A to E. Second, the aerosol concentration in the left-middle zone (red rectangle)
decreased as the tumor grew from Model A to E. These two outlined zones were used as
the ROIs for multifractal spectrum analyses, as shown in Figure 10b,c, respectively.
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Figure 10. Multifractal spectrum analysis in the test case 2: (a) 3D plot of aerosol concentrations; (b) comparison of the
multifractal spectra in ROI_1 across the five tumor stages (A–E); (c) comparison of the multifractal spectra in ROI_2 across
the five tumor stages (A–E).

Again, different profiles among the five disease stages were observed in the multi-
fractal spectra in both ROIs (Figure 10b,c), lending support to the idea that the differences
in exhaled aerosols can be significant and are quantitatively comparable between health
and disease. Differences between the two ROIs were also predicted in their multifractal
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spectra. As illustrated in Figure 10b, the f(α)-spectra in the first ROI converged to a single
point (q = 0), which was not observed in the second ROI (Figure 10c). As a result, the first
ROI is a mono-fractal, while the second ROI_2 is considered to be multifractal. Comparing
the right panels in Figure 10b,c, the discrepancy (αmax − αmin) was associated with the
heterogeneity of the aerosol images. This discrepancy decreased persistently for both
ROIs considered as the tumor grew in size from Model A to E, indicating a decrease of
pattern heterogeneity with tumor growth. This result corroborates the reports in the litera-
ture [73,74] that a narrower range of α often gives a lower value of lacunarity, which is an
alternative indicator of image heterogeneity. Similar examples include vascular networks
with high density [74] and soils with low porosity [73].

3.3. Asthmatic Bronchioles in Small Airways
3.3.1. Airflow Field and Exhaled Aerosol Images

Figure 11 compares the exhalation flows and aerosol distributions among the five
stages of an asthmatic bronchiole at G7. The bronchiolar constriction significantly altered
the velocity field in the bronchiole (Figure 11a). These flow perturbations were transported
by exhalation flows downstream to approximately four bifurcations beyond the constricted
bronchioles. Disturbances to solid particles persisted even a longer distance because of their
inertia. The constricted bronchioles also increased the flow resistance and decreased the
volumetric flow rate through it, which further modified the exhaled aerosol behaviors. It is
emphasized that although downstream airflows appeared similar, the aerosol distributions
could differ significantly due to upstream particle perturbations. This was evident in the
strikingly distinct patterns of exhaled trace particles that were originated from branches of
five constriction levels (Figure 11b).
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Figure 11. Airflow and aerosol dynamics in the test case 3: (a) comparison of streamlines near the
constricted bronchioles at G7 among five stages and (b) exhaled particle distribution for particles
originated only from the disease-affected bronchioles at varying stages.

3.3.2. Fractal-Feature Extraction

To vectorize the exhaled AFPs, the aerosol image shown in Figure 12a was split into
an n × n matrix, and the FD in each grid was computed. Figure 12b shows the FDs at a
3 × 3 matrix while Figure 12c shows the FDs at 6 × 6. The color code was calculated as
the ratio α(i) = FD(i)/FD(A0), i = A0, A1, A2, A3, A4, with the red being the highest ratio
while the dark blue the lowest. The pattern of color arrays was observed to be distinct
for each model and at each matrix resolution (n × n). Each image was expressed as a
vector consisting of n features by stacking the n × n FD values in one row. The distinct
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color patterns between different matrix resolutions for the same image can impart more
information in revealing the subtle variations that are hidden in the images.

J. Nanotheranostics 2021, 2, FOR PEER REVIEW 16 
 

 

 

Figure 12. Exhaled aerosol patterns and FD-based feature extraction in the test case 3: (a) exhaled AFPs for the five stages 

of the bronchiolar tumor, (b) FD distribution at 3 × 3 resolution, and (c) FD distribution at 6 × 6 resolution. 

 

Figure 13. PCA-based quality check of images in the test case 3 that was mapped in a 9 × 9 matrix: (a) eigenvalues of the 

first 20 features, (b) score plot of the airway obstruction level vs. the first two features (principal components). 

3.3.4. Classification Using SVM and Random Forest (RF) Algorithms 

Two classification methods, SVM and random forest (RF), were applied to train and 

test the image data at varying matrix resolutions. Figure 14a,b show the statistical results 

of the five-class classification (A0–4) using the random forest (RF) and SVM, respectively. 

As expected, the lowest classification accuracy was predicted at the 3 × 3 resolution be-

cause of its low sampling resolution. The classification accuracy improved with increasing 

sampling resolutions until reaching the optimal one at 12 × 12 and dropping thereafter as 

the sampling resolution became even finer (Figure 14a,b). This accuracy deterioration may 

be due to the probability that a too-small sampling grid may miss the disturbance signals 

Figure 12. Exhaled aerosol patterns and FD-based feature extraction in the test case 3: (a) exhaled AFPs for the five stages of
the bronchiolar tumor, (b) FD distribution at 3 × 3 resolution, and (c) FD distribution at 6 × 6 resolution.

3.3.3. Database Quality Check

Principle component analysis (PCA) was carried out to check the dataset quality, as
shown in Figure 13. It was observed that the first principal component (PC1) had an
eigenvalue of 15.5 and captures 20.6% of the total data variance (Figure 13a). The PC2
has an eigenvalue of 10.5 and captured 14.0% of the data variance. In combination, these
two leasing PCs captured 34.6% of the data variance. The first five PCs captured 56.8%,
whereas the other 85 PCs captured the remaining variance of 43.2% (100 PCs retained in this
case). As a result, unimportant components could be safely neglected without noticeably
compromising classification accuracies. To identify outliers in the image database, the
Mahalanobis distances were plotted (Figure 13b) for all images in the database [75]. No
obvious outlier was found in this database because all data points fell below 10.65, the
reference line for outlier existence [75].

3.3.4. Classification Using SVM and Random Forest (RF) Algorithms

Two classification methods, SVM and random forest (RF), were applied to train and
test the image data at varying matrix resolutions. Figure 14a,b show the statistical results of
the five-class classification (A0–4) using the random forest (RF) and SVM, respectively. As
expected, the lowest classification accuracy was predicted at the 3 × 3 resolution because
of its low sampling resolution. The classification accuracy improved with increasing
sampling resolutions until reaching the optimal one at 12 × 12 and dropping thereafter
as the sampling resolution became even finer (Figure 14a,b). This accuracy deterioration
may be due to the probability that a too-small sampling grid may miss the disturbance
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signals from the small airways. The highest accuracy with SVM was also found at 12 × 12.
Overall, RF persistently outperformed SVM in this test case (Figure 14a vs. Figure 14b).
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3.3.5. Misclassification Analysis

Figure 14c shows the misclassification rates using RF in this test case. The highest rates
of misclassification were observed for the pairs of A2–A3 and A3–A4, indicating its strong
association with structural similarities. Conversely, misclassifications were much reduced
for A2–A4, whose geometrical difference is more pronounced than that of A2–A3 or A3–A4.
Regarding different resolutions, extensive misclassifications were found at either highly
coarse (3 × 3) or highly fine (24 × 24) resolutions. Misclassification spikes were absent at
6 × 6 and 12 × 12, although there were still misclassifications for A2–A3 and A3–A4 at
these two resolutions (Figure 14c). It was conjectured that the best classification accuracy
at 12 × 12 can result from the disease site at G7 that has 128 (27) sister bronchioles and,



J. Nanotheranostics 2021, 2 109

if being evenly mapped, needs an 11.3 × 11.3 matrix. However, the verification of this
hypothesis needs future investigations.

3.4. Dynamic Mode Decomposition (DMD) to Catch Disease Growth
3.4.1. DMD vs. Conventional Algorithms

In this section, we explain the usage of dynamic mode decomposition (DMD) to
extract dominant features of the images and demonstrate its superiority over conventional
methods, such as fractal dimension, POD, and PCA. As a quick explanation, both POD
and PCA are rooted in the singular value decomposition (SVD) that can handle non-
square matrices. POD decomposes the system into mutually orthogonal eigenmodes that
are spatially independent of each other. PCA is similar to POD but removes the mean
to emphasize the image contrast. PCA has been widely applied in machine learning for
dimensionality reduction and feature extraction. DMD is also an SVD-based decomposition
method, such as POD and PCA. However, the DMD-modes directly capture the temporal
evolution of the system and are inherently suitable to study time-varying systems, which
develop around an attractor (e.g., one type of lung disease) with transient oscillators
(e.g., diseases at different stages). Details of the mathematical algorithms for DMD, POD,
and PCA can be found in Xi and Zhao [76].

3.4.2. DMD Feature Extraction of Exhaled AFP Images

Figure 15a displays DMD-predicted dynamic eigenvalues in the complex plane, with
each dot representing one eigenmode. Most modes were observed to be within the unit
circle, while some eigenmodes were laying on or close to the right side of the circle. The
radius of each mode (i.e., distance from the center) denotes its dynamic characteristics,
growing if the radius is larger than one, while decaying if the radius is less than one. In
Figure 15a, nearly all eigenvalues fall within the circle, which signifies a strong damping
and a stable system in this test case.
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The transformed eigenvalues are shown in Figure 15b, expressed asω = log(λ)/(2π).
The real part of ωi in each point represents the response of the eigenmode to inputs
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(e.g., disease types and stages). Similarly as in Figure 15a, while decay occurred for most
modes, several modes laid on or in the proximity of the red line, suggesting neutral stability
and slow decay for these modes. Figure 15c shows the DMD spectrum. Three spikes were
noted at frequencies f0, f1, and f2. It was no surprise that f0 was related to the respiration
flow rate (repeated every three cases), f1 to the disease stage (repeated every five cases),
and f2 to the diameter of tracer particles (repeated every nine cases). It was noted that that
three inhalation rates and nine particle sizes were considered in this test case.

The test images were subsequently projected into the eigenspace spanned by the
leading eigenmodes. Figure 15d shows the images in the eigenspace spanned by the first
three modes. Reasonable clustering and separation of data points were observed according
to the disease stage. It is emphasized that eigenvalues from DMD are complex numbers,
with the real part signifying the growth/decay and the imaginary part signifying the
oscillation. This capacity to characterize both the growth/decay and oscillation behaviors
is highly advantageous when studying temporal signals and progressive systems.

3.4.3. SVM and RF Classification Based on DMD Features

The classification accuracies for five stages of an asthmatic bronchiole (A0-4) at G7
are shown in Figure 16. This figure was plotted from the 10-fold cross-validation tests
that were iterated 100 times. To evaluate the effects of extracted features, one retained
25 eigenmodes and the other retained 100 (Figure 16a vs. Figure 16b). To study the effect
of classification algorithms, SVM and RF were considered. Overall, RF outperformed
SVM for all tests. When using the RF classification algorithm, the classification accuracy
using the DMD-extracted feature was significantly higher than that obtained using POD-
or PCA-extracted features (Figure 16a,b, upper panel). However, when using the SVM,
an insignificant discrepancy was observed in the classification accuracy among the three
features (Figure 16a,b, lower panel). It was also observed that retaining more features
could increase classification uncertainty, as indicated by the outliers presented in the
100-mode case (Figure 16b) versus no outlier with 25 modes (Figure 16a). This uncertainty
might be caused by noisy data and associated features that contaminated the disease
stage-related features.

J. Nanotheranostics 2021, 2, FOR PEER REVIEW 19 
 

 

oscillation. This capacity to characterize both the growth/decay and oscillation behaviors 

is highly advantageous when studying temporal signals and progressive systems. 

3.4.3. SVM and RF Classification Based on DMD Features 

The classification accuracies for five stages of an asthmatic bronchiole (A0-4) at G7 

are shown in Figure 16. This figure was plotted from the 10-fold cross-validation tests that 

were iterated 100 times. To evaluate the effects of extracted features, one retained 25 

eigenmodes and the other retained 100 (Figure 16a vs. Figure 16b). To study the effect of 

classification algorithms, SVM and RF were considered. Overall, RF outperformed SVM 

for all tests. When using the RF classification algorithm, the classification accuracy using 

the DMD-extracted feature was significantly higher than that obtained using POD- or 

PCA-extracted features (Figure 16a,b, upper panel). However, when using the SVM, an 

insignificant discrepancy was observed in the classification accuracy among the three fea-

tures (Figure 16a,b, lower panel). It was also observed that retaining more features could 

increase classification uncertainty, as indicated by the outliers presented in the 100-mode 

case (Figure 16b) versus no outlier with 25 modes (Figure 16a). This uncertainty might be 

caused by noisy data and associated features that contaminated the disease stage-related 

features. 

 

Figure 16. Classification accuracy of the five stages of an asthmatic bronchiole (A0-4) by retaining a 

varying amount of eigenmodes: (a) 25 and (b) 100. Various combinations between feature extraction 

(POD, PCA, DMD) and classification (SVM and RF) algorithms were compared. The asterisks in (b) 

are outliers. 

4. Discussion 

In many circumstances, it is nontrivial to find a subset of features that can effectively 

characterize the system of interest. In this review, we introduced a non-invasive method 

for lung disease diagnosis based on exhaled aerosols and presented the latest develop-

ments in extracting features from the exhaled aerosols. The performance of extracted fea-

tures in correlating to underlying respiratory obstructive diseases was compared in terms 

of classification accuracy in both the tracheobronchial region (G3) and small airways (G7). 

It was found that the DMD-extracted features, in combination with the RF classification 

algorithm, gave the highest prediction accuracy. 

Figure 16. Classification accuracy of the five stages of an asthmatic bronchiole (A0-4) by retaining a
varying amount of eigenmodes: (a) 25 and (b) 100. Various combinations between feature extraction
(POD, PCA, DMD) and classification (SVM and RF) algorithms were compared. The asterisks in
(b) are outliers.
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4. Discussion

In many circumstances, it is nontrivial to find a subset of features that can effectively
characterize the system of interest. In this review, we introduced a non-invasive method for
lung disease diagnosis based on exhaled aerosols and presented the latest developments
in extracting features from the exhaled aerosols. The performance of extracted features
in correlating to underlying respiratory obstructive diseases was compared in terms of
classification accuracy in both the tracheobronchial region (G3) and small airways (G7).
It was found that the DMD-extracted features, in combination with the RF classification
algorithm, gave the highest prediction accuracy.

4.1. DMD vs. Other Feature Extraction Algorithms

Why DMD can extract more informative features and give improved classification
accuracy compared with POD or PCA is discussed below. DMD considers the time-varying
features related to different stages of a squamous tumor and an asthmatic bronchiole
and, therefore, captures the phase transition from one stage to another. Instead, POD
and PCA extract mutually orthogonal eigenmodes from the image matrix; loss of infor-
mation associated with the disease growth often occurs during the averaging process to
construct the correlation matrix. Furthermore, the POD- and PCA-extracted eigenmodes
are not temporally independent of each other [77], which would also adversely affect their
classification accuracies.

The DMD-RF method outperformed the fractal-RF method by a large margin (7.8%).
Fractal dimensions have been explored in previous studies [56,78] to vectorize exhaled
aerosol images at different sampling resolutions. The best fractal-RF classification accuracy
for the five-class classification of an asthmatic bronchiole was 87.0% [56]. Despite the
ability of fractals in quantifying complex patterns, information losses are inevitable due
to the box-counting principle underlying the fractal dimensions. It is not clear yet how
the information loss impacts the disease classification. In contrast, DMD-based features
(eigenmodes) are directly extracted from raw images using SVD to find the leading coherent
structures, thus minimizing information loss. The second DMD-based enhancement comes
from the temporal dynamics that are deeply rooted in disease growth. Time-related features
can be disclosed that can be otherwise overlooked using static decomposition approaches
such as POD and PCA.

Detecting diseases in small airways is more challenging than in the central and large
airways owing to their much weaker perturbation signals. Two factors can contribute
to these weak signals: small perturbations due to small airway sizes in deep lungs and
a longer period of signal decay during expiration. It is critical that these signals can be
captured as exhaled aerosol fingerprints at the mouth opening and can be reversely traced
back to the origin of these signals. In this review, we demonstrated that the DMD-RF
method was sensitive enough to detect structural variations in small airways of 2 mm
diameter or less in AFP images. In the test case of the asthmatic bronchiole with a diameter
less than 1.87 mm, the classification accuracy was 94.8% among five disease stages when
using 100 features. In addition, this asthmatic bronchiole model has only one bronchiole
deformed and is expected to generate much weaker disturbance signals relative to real-life
asthma, where often a large area is affected and thus is more suitable for diagnosis. Note
that the high accuracy hereof may result from many idealized assumptions, as will be
detailed in 4.3; the classification accuracy is expected to be lower in clinical settings due to
numerous compounding factors.

4.2. Future Directions

Convolutional neural network (CNN) has gained ever-increasing popularity in recent
years with mounting evidence of improved performance over conventional machine learn-
ing methods [79,80]. One major advantage of CNN is that it can automatically learn the
features from the training images and thus can directly use the input images. In addition,
the rich features that CNN can learn at multiple levels have given rise to many successful
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applications in medical image analysis [81,82]. However, there are specific challenges in
using CNN models. Due to its self-learning nature, a CNN model needs a large dataset
to capture the image features effectively; however, quality medical images are usually
not readily available. In this test case, a dataset of 405 exhaled aerosol images was used
that might be enough for classifications with SVM and RF but was still far from adequate
for meaningful CNN training and testing. Future assessment of CNN performance in
automatic feature extraction and classification of exhaled aerosol images is warranted as
more AFP images become available.

In this review, local bronchiolar constrictions in G3 (a growing tumor) and G7 (asth-
matic bronchioles) in the left lung were selected to demonstrate the applicability of exhaled
AFP-based breath tests in lung diagnosis. It was noted that disease-induced airway remod-
eling can happen in the respiratory tract anywhere and at multiple places [83–86]. Will
the overlaying of particle perturbations from different disease sites make it too complex
to differentiate by the proposed fractal-RF or DMD-RF methods? Our best guess is that
it will not. All AFP images, regardless of how complicated they appear, can simply be
characterized as feature vectors for classification purposes. As different types of diseases
will give rise to their unique patterns of exhaled aerosols, a database of common respiratory
obstructive diseases can be developed to train and validate a generic diagnostic system.
The database can readily be augmented by including new AFP images. As more AFP
images are becoming available, the existing diagnostic system can be constantly refined for
improved accuracies.

4.3. Assumptions and Limitations

The high classification accuracy in this study may result from idealized assump-
tions and controlled airway structural remodeling. Results in this study do not apply to
other respiratory diseases, nor can they be directly compared to the diagnostic rate of
current diagnostic techniques. Many uncertainties exist that can complicate the training
process and reduce classification accuracies. Patient-related uncertainties include the body
position, inhalation rate, mouth shape, and tongue position. The lung geometry itself
can also differ among patients. The compounding influences from certain factors can
be alleviated by careful planning; other factors demand additional investigations. For
example, using a mouthpiece is anticipated to minimize the impacts of the oral cavity
shapes and tongue positions [87,88]. Likewise, standardization of breathing and sitting
posture should mitigate compounding influences from the variability in respiration rates
and body positions, respectively.

Several assumptions may restrict the physical realism of the results presented in this
review, such as steady inhalation and exhalation, noncompliant airway walls, uniform
outlet pressure, and a small cohort of respiratory disease models. Tidal breathing [38]
and compliant walls [89] can exert noticeable impacts on both airflow and aerosol dy-
namics. Moreover, the ventilation distribution can differ between the case with a uniform
outlet pressure and the case with specific resistance and compliance of downstream air-
ways [90,91]. It is acknowledged that uniform pressures were adopted at the outlets in all
test scenarios in this study due to the lack of resistance/compliance data. The impact of this
assumption on diagnostic accuracy, however, should be minor, considering the consistency
of this assumption for all images herein, as well as the fact that classification was based not
on individual patterns, but on similarities/differences among patterns. Considering the
high variability in site, size, and type of respiratory diseases, detecting a disease that has
not been included in the database is impractical. One advantage of the simulation-based
database is that it can be readily extended by simulating more scenarios of obstructive
diseases. The development of the training database could be an ongoing effort, with
new sample images helping improve both the prediction accuracy and statistical power.
Considering the respiratory airway models, only two lung geometries were considered,
while intersubject variability was neglected [92]. Moreover, only numerical simulations
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were undertaken. Complementary in vivo and in vitro studies are required to verify the
physiology-based modeling and predictions herein.

4.4. Potential Roadblocks and Solutions

There are some frequently asked questions regarding the clinical applications of
this proposed aerosol breath testing, with the best-practice approaches to address these
roadblocks from our perspective.

4.4.1. How the Proposed Breath Test Can Be Implemented in Clinical Settings?

The patient will inhale a bolus of particles at a slow and steady inhalation speed, then
exhale. A mouth filter will be used to collect the exhaled aerosols, which deposit in the filter
surface and form a unique pattern. This filtered image will then be analyzed to determine
the chance of a specific respiratory disease.

4.4.2. How Can a Classifier Be Developed when There Is No Record of Aerosol Images at
the Patient’s First Visit?

The proposed breath test is envisioned to have two steps (i.e., screening and validation).
In the first step for screening purposes, the exhaled aerosol image collected from the patient
will be tested against a population-based classifier that had been trained on the database of
a specific disease (such as COPD), to determine the probability of the disease in this patient.
If the probability is high, follow-up breath tests are needed for validation purposes. In the
second step, the aerosol images collected thenceforth will be grouped into a new database
and used to train a personalized classifier to verify the initial screening result. Because of
the persistence (or progression) of the disease, common features (or feature evolution) will
show up in the time sequence of aerosol images. As such, this personalized database can
also be used to measure disease progression or treatment efficacy of the patient. Moreover,
this database can be incorporated into the population database to improve the applicability
of the population-based classifier.

4.4.3. There Is Significant Intersubject Variability in Upper Airway Morphology and
Breathing Habit. How Can These Compounding Effects Be Minimized?

Effects from these factors can be minimized through standardization. For instance,
adopting a mouthpiece during the test will minimize the impact of the shape of the mouth
and tongue position. Likewise, standardizing the patient’s breathing pattern (slow and
steady) and sitting position (upright) can reduce the complication from breathing and
body position.

4.4.4. What Effects on the Breath Test Results Are Expected from Turbulent Flows?

The turbulent flow will reduce the differentiability of the exhaled aerosol images, and
thus may reduce the prediction accuracy of the classifier. However, the method proposed in
this study doesn’t depend on the behaviors of individual particles, but rather on the patterns
of particle distributions, which will be different between two different lung structures.
Moreover, slow and steady inhalation will be used to minimize turbulence effects.

4.4.5. Diseases Can Occur Anywhere in the Lung. How to Tell the Location of the Disease
from an Aerosol Image?

That is why we need a large database and use machine learning to analyze the images.
Healthy lungs share a tree-like architecture while a given phenotype of diseases (like COPD)
share similarities in airway remodeling. At the same time, exhaled aerosols from different
sites of the lungs with different severities will exhibit distinct patterns. In other words, these
aerosol images contain information of both similarities and differences; machine learning
can be used to extract those features of interest and correlate them to the disease site and
severity. Given a large enough database, there will be enough features to differentiate a
wide spectrum of lung diseases.
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5. Conclusions

In conclusion, nanoparticle-based exhaled aerosols from human lungs exhibit unique
features, and a deviation may be associated with underlying structural variations in
the lungs. Different algorithms of feature extraction were discussed, and their capacity
in characterizing airway variations was evaluated in both larger and small airways of
anatomically accurate lung models. The fractal dimensions of the exhaled aerosol images
at multiple resolutions appeared to effectively capture the geometrical variation that
accompanies the progression of respiratory diseases. Significantly improved performances
were achieved using dynamic algorithms for feature extraction (DMD) than with static
algorithms (fractal, POD, and PCA). Considering machine learning models, RF consistently
outperformed SVM for both static and dynamic features considered in this study.
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