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Abstract: Antibodies (mAbs) are attractive molecules for their application as a diagnostic and
therapeutic agent for diseases of the central nervous system (CNS). mAbs can be generated to have
high affinity and specificity to target molecules in the CNS. Unfortunately, only a very small number of
mAbs have been specifically developed and approved for neurological indications. This is primarily
attributed to their low exposure within the CNS, hindering their ability to reach and effectively
engage their potential targets in the brain. This review discusses aspects of various barriers such
as the blood–brain barrier (BBB) and blood–cerebrospinal fluid (CSF) barrier (BCSFB) that regulate
the entry and clearance of mAbs into and from the brain. The roles of the glymphatic system on
brain exposure and clearance are being described. We also discuss the proposed mechanisms of the
uptake of mAbs into the brain and for clearance. Finally, several methods of enhancing the exposure
of mAbs in the CNS were discussed, including receptor-mediated transcytosis, osmotic BBB opening,
focused ultrasound (FUS), BBB-modulating peptides, and enhancement of mAb brain retention.

Keywords: BBB; BCSFB; mAb brain delivery methods; mAb brain clearance; mAb brain retention;
glymphatic system; mechanism of mAb uptake

1. Introduction

Monoclonal antibodies (mAbs) have emerged as promising therapeutic and diagnostic
candidates for a wide range of diseases due to their ability to target specific molecules
with high affinity. They offer advantages including low toxicity, long systemic half-lives,
and the capacity for large-scale production with high purity. However, the development
of mAbs for central nervous system (CNS) diseases is hampered by the limited access
to the CNS caused by protective barriers surrounding the brain such as the blood–brain
barrier (BBB). These barriers pose challenges in delivering mAbs to their intended targets
within the brain at concentrations necessary for their optimal efficacy. Moreover, mAbs
administered directly into the cerebrospinal fluid (CSF) are rapidly cleared from the CNS
to the systemic circulation, with reported half-lives from minutes to hours [1–3]. Despite
these obstacles, recent FDA approvals for treatments of neurological disorders, such as
Leqembi® (lecanemab) and Aduhelm® (aducanumab) for Alzheimer’s Disease (AD), have
demonstrated the potential of mAbs for treating brain disorders. Both mAbs have shown
the ability to reduce amyloid plaques in the early stage of AD [4,5]; however, the high
intravenous doses of mAb required for achieving sufficient doses in the brain for its efficacy
have been associated with damage to the blood–brain barrier (BBB) [6]. Therefore, many
researchers are investigating new methods to safely improve the efficiency of mAb delivery
to the brain. This review aims at enhancing our understanding of antibody brain exposure
by investigating their uptake and clearance from the central nervous system (CNS), while
also exploring the current state-of-the-art mAb delivery methods. By delving into these
aspects, we strive to improve antibody brain exposure, ultimately enhancing their potential
therapeutic efficacy.
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1.1. The Blood–Brain Barrier

The blood–brain barrier (BBB) comprises the largest interface between the central nervous
system (CNS) and the systemic circulation, serving as a protective barrier that regulates the ex-
change of substances between the brain and the peripheral parts of the body (Figure 1A). The
BBB is formed by a collaborative effort between endothelial cells, pericytes, and surrounding
astrocytic endfeet, which collectively create a specialized structure known as the neurovas-
cular unit (NVU). This unit is characterized by the close association of endothelial cells and
pericytes and they share a common basement membrane [7], while being supported by the
enveloping astrocytic endfeet. Together, these components contribute to the establishment
and maintenance of the BBB’s selective permeability and functional integrity.
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Figure 1. (A) A schematic of the BBB that is composed of endothelial cells (blue) surrounded by
supportive pericytes (green) and astrocytic endfeet (pink). The basement membrane (light blue) is
shared between pericytes and endothelial, while perivascular spaces (yellow) are located between
the basement membrane and astrocytic endfeet and are filled with CSF. AQP4 channels on astrocytic
endfeet mediate water flux into PVS. (B) In the glymphatic system, fluid movement is facilitated by
AQP4 channels located on astrocytic endfeet, driving convective flow from the CSF-filled periarterial
spaces to the perivenous spaces. This convective flow within the brain parenchyma is believed to
contribute to the clearance of waste products from the brain. Subsequently, the parenchymal waste
present in the CSF is drained into the peripheral lymphatics through the perivenous spaces.
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The molecular permeability of the BBB is primarily hindered by brain capillary en-
dothelial cells (BECs), while pericytes and astrocytes in the neurovascular unit (NVU) con-
tribute to structural stability and release chemical factors that maintain BBB integrity [7–9].
BECs impose stringent restrictions on both transcellular and paracellular transport of
molecules (Figure 1A). Transcellular transport is limited due to the lack of fenestrations,
abundance of mitochondria, low rates of transcytosis, and expression of efflux trans-
porters [10,11]. Moreover, tight protein–protein interactions form tight junctions—adherens
junctions—and desmosomes between BECs, severely impeding paracellular transport
across the BBB. These BBB properties present a formidable obstacle to the delivery of thera-
peutic and diagnostic agents to the brain. Indeed, approximately 98% of small molecule
drugs and mostly all macromolecule therapeutics are unable to penetrate the CNS through
the BBB [10,12].

1.2. The Blood–Cerebrospinal Fluid (CSF) Barrier (BCSFB)

The choroid plexus (CP) serves as a part of a barrier known as the blood–cerebrospinal
fluid (BCSFB) barrier, establishing an additional interface within the CNS for the passage of
molecules. The CP is constructed of a highly vascularized stroma with specialized epithelial
cells and fenestrated capillaries. Positioned strategically in each of the four ventricles of
the brain, the CP plays a crucial role in CSF production. The CP actively transports
ions, nutrients, and metabolism products between the blood and CSF, contributing to the
maintenance of a chemically balanced environment in the CNS.

After its production by CP epithelial cells, CSF circulates from the lateral ventricles
to the third ventricle through the intraventricular foramen and, subsequently, reaches
the fourth ventricle via the cerebral aqueduct. From the fourth ventricle, CSF continues
to circulate in the subarachnoid space lining around the brain, as well as through the
spinal cord central canal. The subarachnoid space is defined by a barrier of epithelial-like
arachnoid cells that separates the CSF from the fenestrated vasculature present in the dura.
As a result, these arachnoid barrier cells also contribute to the BCSFB.

Similar to the BECs of the BBB, the epithelial cells of the CP and arachnoid barrier cells
are joined together using tight and adherens junctions that restrict paracellular transport
into the CSF. Restricted paracellular transport allows cellular transporters to control the
distribution of solutes on both sides of the barrier (Figure 1A). BSCFB cells also express a
wide variety of transporters, which are often distributed asymmetrically between the baso-
lateral and apical membranes, carefully regulating chemical homeostasis [13]. Additionally,
like the BECs of the BBB, CP epithelial cells contain a high number of mitochondria to meet
the energetic demands of transepithelial transport [13].

2. Mechanisms of Antibody Uptake into the CNS

Although mAbs possess high specificity, a long systemic half-life, and minimal off-
target effects, their potential as therapeutic candidates for neurological diseases is impeded
by the restrictive CNS barrier. The physicochemical properties of mAbs (i.e., large size,
high hydrogen bonding potential, charge) prevent them from traversing through the BBB to
reach potential targets within the CNS. Nevertheless, peripheral administration of mAbs has
demonstrated their presence in the CNS with CNS-to-plasma or CNS-to-serum ratios ranging
from 0.1% to 0.3% [14–18]. The precise mechanisms by which mAbs in the systemic circulation
achieve CNS exposure are speculative, however, several theories have been proposed.

Several mAbs have been approved for use in patients with brain diseases such as
Alzheimer’s disease (AD), multiple sclerosis (MS), and brain tumors (i.e., glioblastoma,
neuroblastoma) (Table 1) [19–21]. Several approved therapeutic mAbs have functions to
control biological events in the peripheral tissues or outside the brain; thus, they do not
need to cross the BBB into the brain for their biological activities. For example, an MS
drug, Natalizumab (Tysabri), has activity to inhibit the infiltration of activated immune
cells into the brain by blocking immune cell adhesion on the BBB endothelial cells [22]. The
two successful mAbs (i.e., Aducanumab, Lecanemab) that target amyloid beta plaques in
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the brain have been approved for treating AD patients; these mAbs presumably have to
cross the BBB to clear the amyloid beta plaques in the brain [4,23,24]. In contrast, several
clinical trials of mAbs for the remyelination of axons in MS patients, such as VX15/2503,
anti-LINGO-1 (Opicinumab), sHIgM22, and anti-Nogo-A, were terminated due to the lack
of efficacy [25–28]. Similarly, the phase 2 clinical trial of anti-Tau mAb (8E12) in AD patients
was stopped due to the lack of mAb efficacy [29]. In some cases, the delivery of mAb to
the brain was not efficient because of the difficulty of crossing the BBB from the systemic
circulation. In addition, there is still a lack of comprehensive and quantitative studies to
compare the efficiency of various methods to deliver mAbs into the brain.

Table 1. Monoclonal Antibodies for CNS Diseases.

Alzheimer’s Disease

Name (Brand) Target mAb Type US Approval (Status)

Aducanumab (Aduhelm) Amyloid beta Human IgG1 2021

Lecanemab (Leqembi) Amyloid beta Humanized IgG1 2023

Donanemab Amyloid beta Humanized IgG1 2nd Review

LY3372993; Remternetug Amyloid beta Human IgG1 Phase 3

Crenezumab Amyloid beta Humanized IgG4 Phase 3

Gantenerumab Amyloid beta Human IgG1 Phase 3

Solanezumab Monomers Humanized IgG1 Phase 3

E2814 Tau protein Humanized IgG1 Phase 2/3

Semorinemab Tau protein Humanized IgG4 Phase 2

BIB092 Tau protein Human mAb Phase 2

ABBV-8E12 Tau protein Human mAb Phase 2

Zagotenemab Tau protein Human mAb Phase 2

JNJ-63733657 Tau protein Human mAb Phase 1

AL002 TREM-2
Receptor Human mAb Phase 1

AL003 SIGLEC-3 Human mAb Phase 1

Frontotemporal Dementia

AL001; Latozinemab Sortilin Human IgG1 Phase 3

Glioblastoma
125I-mAb 425 EGFR Human mAb Phase 2

Depatuxizumab mafodotin EGFR IgG1 ADC Phase 2b/3

[188Re]-labeled Nimotuzumab EGFR Humanized mAb Phase 1

131I-chTNT-1/B MAb
DNA-histone
H1 complex Human mAb Phase 1/2

131I-BC-2 mAb Tenascin Human mAb Phase 2
211At-labeled 81C6 mAb Tenascin Human mAb Phase 1/2

biotin-coupled BC-4 +
Avidin + [90Y]-Biotin Tenascin Human mAb Phase 1/2
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Table 1. Cont.

Alzheimer’s Disease

Name (Brand) Target mAb Type US Approval (Status)

Neuroblastoma

Dinutuximab (Unituxin) GD2 Chimeric IgG1 2015
131I-omburtamab BT-H3 Murine mAb Phase 2/3

Multiple Sclerosis (MS)

Daclizumab (Zinbryta) CD25 Humanized IgG1 2016

Divozilimab (Ivlizi) CD20 Humanized IgG1 2023

Ocrelizumab (OCREVU) CD20 Humanized IgG1 2017

Ublituximab (BRIUMVI) CD20 Humanized IgG1 2022

Alemtuzumab (Lemtrada) CD52 Humanized IgG1 2014

Natalizumab (Tysabri) α4 integrin Humanized IgG4 2014
Adapted from Refs. [19–21].

2.1. Crossing the BCSFB

To measure brain concentrations, researchers often rely on CSF concentrations to act as a
surrogate for widespread brain exposures; however, doing so may produce overestimations of
mAb concentrations within the brain parenchyma. Numerous studies have highlighted that
molecules administered directly into the CSF experience rapid clearance and achieve minimal
penetration into the brain tissue [1–3,30]. As a result, measuring antibody CSF concentrations
may serve as a representation of molecular transport across the BCSFB but may not provide
an accurate prediction of mAb brain deposition and therapeutic efficacy.

Evidence to support the BCSFB crossing of mAbs includes the relative “leakiness” of
the BCSFB compared to the BBB. While the BCSFB and BBB have distinct permeability
profiles based on specific transporter expression on their respective membranes, the BCSFB
has been found to be more permeable compared to the BBB [31]. This increased permeability
manifests as leakage of plasma proteins across the barrier and lower electrical resistance of
the cellular barrier [31,32].

2.2. Non-Specific Endocytosis

In a recent study conducted by Van De Vyver et al., pharmacokinetics in the brains
of healthy rats were modeled to analyze the effects of non-targeting mAbs administered
via intravenous (IV) or intracerebroventricular (ICV) route [33]. Pathway analysis from
their study suggested that antibody exposure in the interstitial fluid (ISF) of the brain is
predominantly mediated by mAbs traversing the BBB rather than entering the ISF directly
from the CSF, regardless of route of administration [33]. While some researchers have
speculated that transcytosis of IgG antibodies may be facilitated by receptors on brain
endothelial cells, such as the neonatal Fc receptor (FcRn), several studies have refuted this
hypothesis [15,16,34]. Alternatively, other researchers have proposed that antibody uptake
across the BBB occurs non-specifically via endocytic vessels in the brain [34,35].

Researchers supporting the non-specific uptake of antibodies across the BBB have
highlighted that the magnitude of circulating mAb uptake into the CNS (0.1–0.3%) is
comparable to other endogenous circulating proteins, such as serum albumin [35,36]. In line
with this notion, several studies have reported that increasing antibody dosage leads to an
increase in CNS exposure in a non-saturating fashion [34,37]. Conversely, an independent
investigation examined the transport of IgG antibodies across human brain microvascular
endothelial cells in an in vitro BBB model and discovered that antibody transport was
saturable and reliant on macropinocytosis [36]. These findings collectively indicate that
the uptake of IgG occurs through non-specific, charge-based adsorption of IgG to the
negatively charged endothelial cell surface, followed by subsequent macropinocytosis. The
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relationship between charge and brain uptake has been demonstrated in other studies for
mAbs [34,38] as well as other macromolecules such as albumin [39].

2.3. Antibody Clearance from the CNS

The administration of most therapeutic mAbs for neurological disorders is performed
intravenously. This is because strategies to bypass the BBB through delivery directly into
the CSF of the CNS have demonstrated that mAbs rapidly efflux from the CSF back into
the serum with limited penetration into the brain parenchyma. This is also true for the
administration of mAbs directly into the brain parenchyma, where rapid clearance half-lives
have been reported and minimal diffusion throughout the whole brain tissue [40,41]. The
rapid clearance of direct CNS delivery, therefore, causes these more invasive administration
methods to have similar mAb exposure profiles as the IV administration. Therefore, it
is imperative to improve our understanding of the potential mAb clearance mechanisms
limiting their brain exposure in order to develop long-acting therapeutics for the brain.

2.4. Neonatal Fc Receptor

The neonatal Fc receptor (FcRn) is a class of Fc receptors recognized for its crucial role in
antibody transport and recycling. FcRn facilitates passive immunity transfer from mother to
young by enabling the transcytosis of IgG antibodies across the placental and intestinal mucosa
barrier. The receptor is expressed on the cell surface of various cell types, including endothe-
lial cells, epithelial cells, and antigen-presenting cells [42]. A study by Schlachetzki et al. [43]
demonstrated that FcRn is expressed on the microvasculature in the brain, raising inquiries
about its involvement in the transport of IgG antibodies across the BBB.

While FcRn may facilitate the bidirectional transport of antibodies across a barrier,
multiple studies have found no evidence of FcRn contributing to the influx of antibodies
from blood to the brain, leading to higher CNS exposure [15,16,34,44]. However, Pardridge
and colleagues have suggested that FcRn may mediate brain-to-blood efflux of IgG and
have demonstrated Fc-dependent elimination of IgG from the brain after intracranial admin-
istration in rats [40,45]. Similar studies by Cooper et al. observed reduced clearance of an
IgG with attenuated FcRn binding following intracranial administration in rats [46]. Addi-
tionally, brain clearance of endogenous amyloid beta following intravenous administration
of anti-amyloid beta (anti-Aβ) mAb was found to be reduced in FcRn−/− mice [47].

While investigations by Balthasar and co-workers have challenged the idea of FcRn-
mediated brain efflux, [15,16] it is important to note that study design differences may
have contributed to these conflicting findings. Balthasar’s studies tracked whole brain con-
centrations following intravenous administration of radiolabeled mAbs in FcRn knockout
mice and observed no difference in brain-to-blood AUC ratios between FcRn−/− mutants
and control animals [15,16]; however, whole-brain concentrations may inaccurately reflect
antibody concentrations in the parenchyma, where FcRn-mediated efflux across the BBB is
speculated to occur and may reflect CSF concentrations from mAb crossing the BCSFB, as
discussed in previous sections.

3. The Glymphatic System and Bulk Convective Flow

The lymphatic vasculature plays a vital role in clearing ISF, along with its constituent
proteins and solutes that are not absorbed across postcapillary venules, while also serving to
maintain hydrostatic pressure [48]. This function is essential for overall tissue homeostasis.
Intriguingly, despite its high metabolic rate and the remarkable sensitivity of neurons
and glial cells to changes in the extracellular environment, the brain lacks a lymphatic
vascular system [48]. To address this disparity, Nedergaard and colleagues proposed an
alternative waste clearance system in the brain, resembling the lymphatic clearance systems
in peripheral tissues [49]. They coined this system the ”glymphatic system”, which serves
as a mechanism for efficient waste clearance in the brain.

The glymphatic system is connected to perivascular space (PVS) and aquaporin-4 (AQP4)
and it operates by utilizing the transport of CSF in the perivascular spaces (PVSs) of the brain
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(Figure 1B). The pial of the artery in parenchyma is connected to the Virchow-Robin spaces
(VRS) that surround the arteries, venules, and capillaries to form donut-like tunnel spaces called
PVS (Figure 1B) [50]. PVS is constructed by a combination of smooth muscle and vascular
endothelial cells at the inner wall while the outer wall is constructed of the astrocyte endfeet.
Arterioles that penetrate the brain parenchyma contain PSV which are finally fused basal lamina
containing extracellular matrix proteins (ECM), including laminin, fibronectin, and collagen.
This allows the CSF to influx along the peri-arterial space. In this case, CSF can enter the brain
parenchyma via PVS to mix with ISF for delivering nutrients or clearing metabolites.

The glymphatic system delivers nutrients to the parenchyma via periarterial CSF influx
as well as removes metabolism waste via perivenous routes for clearance of cell debris and
unwanted large metabolites (i.e., proteins) using AQP4 on astrocytes. These regions consist
of CSF-filled spaces between the basement membranes of brain endothelial cells and the
astrocytic endfeet (Figure 1A). The proposed pathway for fluid flow and waste removal
begins with CSF from the subarachnoid space moving along periarterial spaces into the
brain (Figure 1B). CSF then leaves the periarterial spaces to mix with ISF within the brain
parenchyma before being transported via convective flow to perivenous spaces (Figure 1B).
The CSF in perivenous spaces will then drain into the peripheral lymphatic system. The
functionality of this system relies on the continuous flow of fluid through the brain tissue
extracellular space with the help of aquaporin-4 (AQP4) on the astrocytic endfeet near the
basement membrane of brain endothelial cells (Figure 1A). The bulk flow of convective
movement propels fluid through the brain parenchyma, aiding in the clearance of waste
products into the CSF-filled perivenous spaces for eventual peripheral lymphatic clearance.

Nedergaard’s key experiments that contributed to the discovery of this system in-
volved tracking the movement of fluorescently or radioactively labeled tracer molecules
with various molecular weights following intraparenchymal and intracisternal adminis-
tration. After intracisternal injection, they observed the CSF movement in perivascular
spaces and in the ESC of the parenchyma characteristic of the glymphatic system described
above [49]. Notably, molecules of significant molecular weight differences cleared from the
parenchyma at similar rates, indicating that convective bulk flow, rather than diffusion, is
responsible for their clearance [49]. Additional studies have also provided support for glym-
phatic clearance mechanisms [49,51–55]. The proposed bulk convective flow within the
ECS, as suggested by the glymphatic system, presents a potential mechanism for antibody
clearance after distribution in the parenchyma.

4. Diffusion

The proposed concept of convective flow facilitating clearance from the brain parenchyma,
as suggested by the glymphatic system, faces challenges from several researchers who contend
that molecular transport in the extracellular space (ECS) of the parenchyma is primarily driven
by diffusion. These researchers argue that the ECS of the brain parenchyma is intricately
structured, and characterized by the presence of numerous cell bodies and processes with
diverse sizes and shapes [56]. Additionally, the ECS is composed of a complex solution of
proteins and glycosaminoglycans, imparting gel-like properties to the fluid [57]. Consequently,
these factors lead researchers to assert that convective flow, facilitated by AQP4, would not be
adequate to overcome the substantial hydraulic resistance exhibited by the brain.

Numerous studies provide evidence for the diffusive transfer of solutes through the
ECS of the brain parenchyma. Contrary to the findings of Iliff et al. [49] for supporting the
glymphatic system, experiments conducted in Verkman’s laboratory had demonstrated that
the transfer of fluorescent dextrans in the brain parenchyma was size-dependent and not
dependent on cardiorespiratory rate or AQP4-gene deletion [58]. Similar studies by Pizzo
and colleagues utilized the same infusion rate/site and duration as the key experiments
that established the concepts of the glymphatic system [49,59]. However, they found that
diffusion was the predominant transport process governing distribution into the ECS
following administration into the CSF [59]. If diffusion is indeed the primary mechanism
responsible for waste clearance from the gel-like ECS, the clearance rate of antibodies
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would be affected by a gel filtration effect influenced by factors such as molecular shape,
charge, and size.

5. Antibody Delivery Strategies into the CNS

A comprehensive understanding of the mechanisms governing mAb uptake and
clearance in the brain is pivotal for researchers seeking to optimize delivery and retention
strategies, ultimately maximizing exposure profiles of mAb in the brain. Many researchers
concentrate their efforts on enhancing the permeation of mAbs across the BBB. These
efforts include enhancing mAb delivery through transcellular pathways—often utilizing
receptor-mediated transcytosis (RMT) delivery—or paracellular pathways by disrupting
the tight junction proteins that bind these BBB cells together (Figure 1A). Additionally,
novel approaches are being explored to promote mAb retention, allowing for gradual accu-
mulation within the brain over time. While no delivery method has been used to achieve
FDA approval of antibodies to date, several strategies have demonstrated remarkable
potential. The continued development of these strategies may hold significant implications
for the treatment of neurological disorders.

5.1. Receptor-Mediated Transcytosis (Trojan Horse Method)

Some circulating endogenous proteins are capable of traversing the BBB through specific
receptor transporters on the endothelial cells of the BBB; such as transferrin, insulin, and
leptin [60]. The discovery of these receptor-mediated transport (RMT) systems has led to
so-called “Trojan Horse” delivery systems for antibodies, where antibodies are genetically
modified to bind to an RMT system to induce transfer across the BBB [60]. Initial studies
proved that antibodies targeting the transferrin receptor in rats [61,62], or the human insulin
receptor [63], demonstrated the ability to undergo RMT to increase brain exposure.

Antibodies directed against human insulin receptors (HIRs) or transferrin receptors
(TfRs) have been effectively employed as antibody drug conjugates (ADCs) to facilitate the
transport of smaller peptides or proteins across the highly restrictive BBB. In one study,
a vasoactive intestinal peptide (VIP) was conjugated to an anti-transferrin mAb (OX-26)
via an avidin–biotin linkage [64]. When applied topically to brain surface vessels, VIP
alone is a potent cerebral vasodilator but it is incapable of crossing the BBB independently.
However, the infusion of the OX-26-VIP conjugate in rats resulted in a significant 65%
increase in cerebral blood flow compared to the controls of OX-36 or VIP administered
alone [64]. Another study employed chemical conjugation to link nerve growth factor (NGF) to
OX-26, which, when tested in an extra-cranial anterior eye transplant model, exhibited enhanced
survival rates of both cholinergic and non-cholinergic neurons compared to unconjugated
OX-26 and NGF controls [65]. Additionally, ADCs employing RMT mAbs have been utilized
for diagnostic purposes in a primate study to examine amyloid levels in the brain [66].

Bispecific antibodies targeting the TfR or HIR have also been developed to increase
antibody-BBB penetration and exert potential therapeutic effects. The first antibody engi-
neered of this kind was tetravalent, wherein the carboxyl terminus of a bivalent genetically
engineered antibody against the human insulin receptor (HIR) was fused with two anti-
amyloid β (anti-Aβ) single-chain variable fragments (ScFv) [45]. However, several studies
have indicated that increasing the affinity/avidity of antibodies against transferrin or in-
sulin leads to substantial accumulation and degradation within brain capillary endothelial
cells (BCECs), with limited transport into the brain tissue beyond the capillaries [67–69].
Therefore, Yu et al. investigated the correlation between TfR affinity and brain uptake and
were the first to examine monovalent bispecific antibodies targeting the TfR [70]. Their
research revealed that decreasing the TfR affinity resulted in an increase in brain exposure.
They also demonstrated the increase in BBB transport of a genetically engineered bispecific
antibody targeting TfR and β-secretase (BACE-1) compared to that of a monospecific anti-
BACE-1 mAb [70]. BACE-1 is an enzyme important for processing Aβ peptides associated
with AD. Supporting these findings, monovalent binding of mAb to TfR increased transport
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across the BBB compared to bivalent TfR binding; this monovalent binding influenced
lysosome sorting of the mAb [71].

TfR mAbs and HIR mAbs face several safety concerns for their development. While
these antibodies are developed to target epitopes on receptors separate from iron or insulin
binding locations, [72] they possess the potential for both agonistic and antagonistic effects
on the receptors. For example, hypoglycemia was observed in primates who received
high doses of HIRmAb-IDUA (human α-L-iduronidase) [73]; however, no such effect
was observed at low doses or when infused in humans [74]. Additionally, studies have
indicated that TfR mAbs may lower iron uptake, either through antagonist effects or
through depletion of TfR on cell membranes [75].

These promising findings have sparked hope for the development of effective treat-
ments for CNS diseases, particularly mucopolysaccharidosis type II [76–78] and AD [79].
With the ongoing clinical trials for RG6102 as a novel antibody therapeutic for AD, the
ability of the RMT brain shuttle technology to facilitate the crossing of the blood–brain
barrier and target amyloid plaques in AD mouse models has been demonstrated [71,80].
These advancements hold great potential for the future of CNS disease treatment, paving
the way for improved patient outcomes and enhanced quality of life.

5.2. Osmotic BBB Opening

Experiments in the 1970s demonstrated the reversible opening of the BBB in rab-
bits through intracarotid administrations of hyperosmolar concentrated electrolyte so-
lutions [81,82]. It is believed that the reversible opening of the paracellular pathways
(Figure 1A) of the BBB was a result of the osmotic withdrawal of water from BBB endothe-
lial cells, causing cell shrinkage and tight junction separation. The increase in molecular
permeability to the brain via the paracellular pathways of the BBB has been shown to be size-
dependent, with higher permeability of small molecules compared to larger molecules [83].
In addition, the osmotic BBB opening (OBBBO) or BBB disruption (BBBD) method has
demonstrated the ability to increase the delivery of proteins with large molecular weights,
including albumin, antibodies such as Fab fragments, immunoglobulin G (IgG), and im-
munoglobulin M (IgM) [84–92]. Following BBBD, an increase in the CNS concentration
of endogenous neutralizing IgG was observed in primates that were immunized against
measles; this result demonstrates the potential of BBBD to improve efficacy of immunother-
apy in treating infections in the brain [87]. Additionally, exogenous IgG delivery was
increased with BBBD following intravenous administration of the mAb in rats [86].

There are some safety concerns that have been observed with the BBBD method. BBBD
produces a long-term opening of the BBB to allow circulating large molecules (e.g., albumin
and fibrinogen) to enter the brain and produce toxic effects in the brain tissues [93,94]. One
study found that the nerve damage caused by the uptake of these plasma proteins into the
brain may be irreversible [95]. Preclinical studies in rats have demonstrated that BBBD induces
microglial activation and a sterile inflammatory response in the brain [96], and alters cerebral
blood flow [97]. Additionally, clinical studies using BBBD to deliver oncology agents to patients
found a 13% incidence of seizures associated with the delivery method [95].

5.3. Focused Ultrasound Microbubbles

Focused ultrasound (FUS) is a technique that utilizes acoustic energy to increase
BBB permeability in focal regions of the brain. This method was developed based on the
findings that ultrasound waves can cause cavitation and collapse of tiny gas-filled bubbles
in fluids. In tissues, focused ultrasound (FUS) can cause cavitation within blood vessels,
which can cause various effects based on the frequency and intensity of radiation. The
effects of FUS on the brain have been studied since the 1960s, where the high frequencies
used could induce the BBB opening but also resulted in lesions within the parenchyma [98].
In 1995, studies were conducted to refine the sonication parameters to induce BBB opening
while minimizing tissue damage [99]. It was later discovered that combining FUS with
IV administration of tiny gaseous microbubbles (MB) can drastically lower the acoustic
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parameters needed to facilitate BBB opening without damaging the tissue [100]. MB help
reduce acoustic parameters by acting as cavitation sites under FUS, where the mechanical
forces disrupt endothelial cells of the BBB to allow molecules to enter the brain.

Several studies have investigated the size of the BBB opening from FUS-MB using
fluorescently labeled dextran molecules [101,102]. A constant acoustic pressure of 0.57 MPa
delivered 3 kDa and 70 kDa dextran molecules across the BBB but not 2000 kDa dextran [101].
A parallel study found that increasing the acoustic pressure to 0.84 MPa could facilitate the
delivery of 2000 kDa dextran [102]; however, pressure at 0.84 MPa was found to induce
inertial cavitation and cause microhemorrhages in the brain [102]. When examining the brain
permeability of liposomes of sizes ranging from 55 to 200 nm using FUS-MB, increasing
the MB dose from 0.1 µL/g to 0.5 µL/g significantly enhanced the delivery of the 200 nm
liposomes. These results indicate that the extent of BBB opening with FUS-MB is determined
by both the acoustic parameters and the injected dose (ID) of MB.

A combination of modulating the ID of MB and acoustic parameters has allowed
researchers to deliver mAbs to the brain using FUS-MB. Numerous preclinical studies
in mice demonstrate the ability of FUS-MB to effectively deliver antibodies to the brain
with minimal tissue damage, including an anti-HER2 mAb [103] and a mAb against the
dopamine D4 receptor [104]. Antibody delivery with FUS-MB has shown promise in
enhancing the therapeutic efficacy of mAbs for brain diseases. For example, FUS-MB
resulted in a 5.5-fold increase in delivery of anti-pyroglutamate-3 anti-Aβ mAb to the brain
of APP/PS1dE9 mice, a model for AD, and improved spatial learning and memory in the
animals at a faster rate [105]. In a xenograft mouse model of high-grade glioma from a
patient, FUS-MB increased the delivery of a tumor-targeting antibody to localized tumor
regions of the brain. Due to the success of preclinical studies, several clinical safety studies
have been evaluated in humans for brain tumors [106] and AD [107]. These clinical safety
studies have demonstrated FUS-MB to be a well-tolerated potential delivery method in
humans, making this a promising approach for treating CNS disorders with mAbs.

5.4. BBB-Modulating Peptides

One approach to improve the paracellular permeability of the BBB is by disrupting
protein–protein interactions between the BBB endothelial cells using small cadherin-derived
BBB modulator (BBBM) peptides. These peptides block cadherin–cadherin interactions,
temporarily increasing the porosity of the BBB to enable the transport of molecules from the
blood into the brain. In vitro studies have demonstrated BBBM activity of these peptides
by inhibiting calcium-dependent reaggregation [108], lowering transepithelial electrical
resistance (TEER) [109,110], and increasing paracellular transport of 14C-mannitol in tight
junction-forming cell monolayers [110]. Additionally, BBBMs in animal models (mice
and rats) have demonstrated increased in vivo brain delivery of small molecules (i.e.,
anticancer agents [111,112], mannitol [111,113], gadopentetic acid [113–115]), medium-sized
peptides [116], and large molecules, including Brain-Derived Neurotrophic Factor (BDNF)
(13 kDa) [117,118], IRDye800CW PEG (25 kDa) [114,115], albumin (67 kDa) [116,119], and
IgG mAb (150 kDa) [119,120]. Successful in vivo delivery of molecules has been detected
with Magnetic Resonance Imaging (MRI), Near-IR Fluorescence (NIRF) imaging, mass
spectrometry, and radioactivity counts.

Co-dosage of an IgG mAb with BBBM peptides in mice resulted in a significant 2–4-
fold increase in mAb deposition within the brain compared to the administration of mAb
alone [119,120]. The extent of increase varied depending on the specific BBBM peptide
used, with cyclic BBBM peptides demonstrating higher enhancement compared to linear
counterparts [120]. Multiple injections of BBBM after one administration of mAb can
significantly enhance mAb brain deposition compared to only one administration of BBBM
along with mAb. While studies have demonstrated the improved therapeutic efficacy
of BDNF through enhanced brain deposition using BBBM peptides in mouse models of
multiple sclerosis (MS) and Alzheimer’s disease (AD) [117,118], no investigations have
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been conducted to determine the therapeutic impact of enhanced antibody brain deposition
achieved with these peptides.

To date, no safety concerns have been reported with the BBBM peptides. Repeat
administration of peptides in mice did not result in weight loss or change in locomotive
activity [121]. In addition, this study also showed no astrogliosis and inflammation in
the brains of mice treated with BBBM [121]. Unlike other methods such as BBBD, BBBM
enhanced paracellular permeability and did not alter cerebral blood flow [114]. Notably,
although BBBMs have the ability to increase albumin brain deposition [116,119], which can
be toxic to the brain [93], minimal toxicity has been observed. One potential reason for the
minimal toxicity is that the opening of the BBB by BBBM peptides is transient and reversible.
The BBB opening was observed between 1 and 4 h for a small molecule [113,114] (Gd-DTPA,
MW~500 Da) and less than 40 min for a large molecule (Galbumin, MW ~65 kDa) [116].
Furthermore, BBBMs create the opening with a molecular size limit; they enhance the
permeation of 150 kDa IgG mAb across the BBB but not 220 kDa fibronectin [119]. The
duration time of the BBB opening by BBBM was short and the brain deposition was
dependent on the size of the delivered molecule. Therefore, it limits the penetration of
unwanted proteins in the blood from entering the brain. However, further safety assessment
may be necessary through dose escalation studies conducted over extended periods of time.
Overall, these findings highlight the potential of BBBM peptides as a promising strategy
for enhancing the delivery of therapeutic agents across the BBB; however, further research
is needed to fully evaluate their therapeutic impact and long-term safety.

5.5. Enhancing Antibody Retention

IgG mAbs have been observed to undergo rapid efflux after delivery into the CNS [1–3].
To increase the brain exposure of mAbs, one potential approach is to improve their retention
once delivered. Although there has been limited scientific exploration of brain retention
approaches for mAbs, one group has demonstrated that mAb binding to neural molecules
within the CNS matrix can significantly enhance brain exposure [122]. In this study, the
brain exposure of anti-MOG mAb targeting myelin oligodendrocyte glycoprotein (MOG),
which is a brain-specific target, was compared to anti-TfR mAbs (known to cross the BBB
through RMT) and a non-targeting control mAb. While the anti-TfR mAb exhibited higher
brain concentrations at shorter time periods (4 days), the anti-MOG mAb demonstrated a
significantly higher brain concentration as well as a longer brain exposure (10 days) compared
to control mAbs. This finding can be explained by the fact that while the anti-TfR mAb rapidly
accumulates in the brain, it is rapidly cleared from systemic circulation due to the widespread
distribution of TfR throughout the body. In contrast, the anti-MOG mAb does not accumulate
rapidly in the brain due to the restrictive CNS barriers. However, it has a much longer plasma
half-life and binds strongly to its neuronal target due to its retention upon binding to target
MOG protein in the brain. This target engagement allows the small amounts of mAb that
access the brain from the systemic circulation to evade efflux and accumulate over time. These
results highlight the potential for enhancing brain exposure by increasing mAb retention as a
promising avenue for mAb treatment of brain disorders.

5.6. Brain Delivery Using Nanoparticles

Various nanoparticles have been developed for brain delivery of small drugs and
macromolecules (e.g., mAbs) [123–125], including extracellular vesicles (EVs) [126], solid
lipid nanoparticles [127], exosomes [128–130], nanobubbles [131,132], nanocages [133],
leukocyte biomimetic nanoparticles [124], and recombinant adeno-associated viruses
(rAAVs) [134–136]; however, these methods have not yet been successfully utilized in
the clinic for delivering mAbs into the brain. Nonetheless, these methods could help in
delivering mAbs as therapeutic and diagnostic agents for brain diseases.
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5.7. Intranasal Brain Delivery of Proteins and Peptides

Intranasal brain delivery method has been explored to deliver peptides (e.g., oxy-
tocin) and proteins (e.g., insulin) to the brain and some of them have reached clinical
trials for treating neurodegenerative diseases (e.g., Alzheimer’s disease, autism spectrum
disorder (ASD)) [137]. Nasal delivery of peptides has been shown to be more effective
than IV and intraperitoneal (IP) administrations because it avoids peptide degradation in
the blood [138–140]. The delivered molecules have to cross the nasal epithelial layer and
cribriform plate for diffusion to the olfactory bulb as well as the trigeminal nerve; thus, sev-
eral intranasal delivery enhancers were investigated such as tight junction disruptors (i.e.,
carnitines and ultrasound), CPP, receptor-mediated transport, and nanoparticles [138,139].
Although some of these methods have been approved or are undergoing clinical trials,
many of these are still under investigation in the preclinical setting. If successful, these
methods will help to treat patients with CNS disorders.

6. Conclusions

The progress in developing mAb therapeutics for brain disorders has been slow due
to their limited CNS exposure and potential safety concerns with increasing permeation
across CNS barriers. Understanding the potential mAb uptake mechanisms can give insight
into potential delivery strategies for increasing mAb penetration across the BBB. Many
methods have focused on this idea and have shown promise in safely facilitating this
delivery. Additionally, knowledge of mAb clearance from the brain also aids in efforts to
improve the exposure of antibodies. While many methods have been explored and shown
promise for enhancing mAb brain exposure, there has been limited success in utilizing
these methods in patients with CNS diseases that resulted in FDA approvals. Therefore,
there is still a current need for expanding research and development in this research area.
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