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Abstract: In Nature, metal ions play critical roles at different levels, and they are often found in
proteins. Therefore, metal ions are naturally incorporated in hydrogen-bonded systems. In addition,
the combination of metal coordination and hydrogen bonds have been used extensively to develop
supramolecular materials. However, despite this win-win combination between coordination and
hydrogen bonds in many supramolecular systems, the same combination remains scarce in the field
of coordination-driven self-assemblies. Indeed, as illustrated in this mini-review, only a few discrete
supramolecular metalla-assemblies combining coordination and hydrogen bonds can be found in the
literature, but that figure might change rapidly.
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1. Introduction

The preparation and characterization of discrete metal-based assemblies have been the focus
of several research groups. Such metalla-assemblies are obtained by combining metal ions and
multidentate ligands in a pre-designed and controlled manner [1–5]. These supramolecular
metalla-assemblies can be used as sensors [6–8], anticancer agents [9,10], hosts for guest
molecules [11,12], drug carriers [13], mesogens [14,15], or molecular flasks [16,17]. About 40 years ago,
the first coordination-driven metal-based squares (Figure 1), composed of linear diphosphine ligands
and tetracarbonyl metal ions (Cr, Mo, W), were synthesized [18].
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Figure 1. Molecular structure of the first coordination-linked metalla-squares [18]. 

A few years later, the field really took off with the introduction of 90° square-planar palladium 
ions, which are versatile building blocks in supramolecular chemistry [19]. Nowadays, all kind of 

Figure 1. Molecular structure of the first coordination-linked metalla-squares [18].

A few years later, the field really took off with the introduction of 90◦ square-planar palladium ions,
which are versatile building blocks in supramolecular chemistry [19]. Nowadays, all kind of transition
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metal ions with different coordination geometries have been introduced in metalla-assemblies, and the
field is flourishing.

Like the field of coordination-driven self-assemblies, hydrogen-bonded self-assembled systems
have received for many years a great deal of attention [20–25]. The directionality, stability, reversibility,
and biological importance of hydrogen bonds have encouraged research groups to use hydrogen-bonded
motifs to construct supramolecular assemblies. An appropriate selection of donor and acceptor groups,
in a pre-organized fashion, can control the strength and geometry of the designed supramolecular
structures, and accordingly, allow the formation of two-dimensional and three-dimensional assemblies.
Nowadays, the degree of sophistication has reached an incredible level, far beyond the simple
DNA helices, and beautiful examples are published at a regular pace with different applications
in mind [20–25].

In the field of materials science, coordination and hydrogen bonds have been joint to generate
polymers, dendrimers, and other supramolecular assemblies [26–32]. An early example of such
materials comes from the group of Reinhoudt, in which a barbituric acid entity was coupled to
palladium-based metallo-dendrons to generate metallo-dendrimers [33]. In these systems, the barbituric
acid residue forms a rosette type structure via hydrogen bonds, while the supramolecular network
is further extended by the dendritic arms: The two functions are linked together by coordination
chemistry. Following this pioneer report, similar combinations have been used to develop coordination
and hydrogen-bonded materials [26–35].

Surprisingly, despite this relative popularity, the combination of coordination and hydrogen
bonds to form discrete supramolecular metalla-assemblies remains scarce. Most examples are limited
to cyclic and planar entities (one and two dimensions), and only recently, systems showing cavities and
cage-like structures (three dimensions) have appeared in the literature. These hybrid self-assembled
systems involving coordination chemistry and hydrogen-bonded interactions to form discrete entities
are presented and discussed in this short review, thus showing the great potential of combining
coordination and hydrogen bonds to develop new supramolecular metalla-assemblies.

2. Planar and Macrocyclic Assemblies Exploiting Coordination and Hydrogen Bonds

In crystal engineering, the combination of metal ions and hydrogen bonds has been extensively
explored [36], and the first examples of discrete coordination and hydrogen-bonded systems were
probably inspired by solid-state chemistry. Joining several metal-based chromophores is needed for
the preparation of light-harvesting systems, however, to better understand the electronic pathway and
metal-metal communications involved in such systems, having a dinuclear compound can be more
appropriate. With that in mind, the groups of Ward and Barigelletti have studied the electronic energy
transfer process between metal-polypyridyl complexes linked by complementary hydrogen-bonded
groups [37,38]. Bispyridyl ligands functionalized with nucleobases were synthesized and used to
connect two metal ions, see Figure 2.

Chemistry 2020, 2, x 2 

 

transition metal ions with different coordination geometries have been introduced in metalla-
assemblies, and the field is flourishing. 

Like the field of coordination-driven self-assemblies, hydrogen-bonded self-assembled systems 
have received for many years a great deal of attention [20–25]. The directionality, stability, 
reversibility, and biological importance of hydrogen bonds have encouraged research groups to use 
hydrogen-bonded motifs to construct supramolecular assemblies. An appropriate selection of donor 
and acceptor groups, in a pre-organized fashion, can control the strength and geometry of the 
designed supramolecular structures, and accordingly, allow the formation of two-dimensional and 
three-dimensional assemblies. Nowadays, the degree of sophistication has reached an incredible 
level, far beyond the simple DNA helices, and beautiful examples are published at a regular pace 
with different applications in mind [20–25]. 

In the field of materials science, coordination and hydrogen bonds have been joint to generate 
polymers, dendrimers, and other supramolecular assemblies [26–32]. An early example of such 
materials comes from the group of Reinhoudt, in which a barbituric acid entity was coupled to 
palladium-based metallo-dendrons to generate metallo-dendrimers [33]. In these systems, the 
barbituric acid residue forms a rosette type structure via hydrogen bonds, while the supramolecular 
network is further extended by the dendritic arms: The two functions are linked together by 
coordination chemistry. Following this pioneer report, similar combinations have been used to 
develop coordination and hydrogen-bonded materials [26–35]. 

Surprisingly, despite this relative popularity, the combination of coordination and hydrogen 
bonds to form discrete supramolecular metalla-assemblies remains scarce. Most examples are limited 
to cyclic and planar entities (one and two dimensions), and only recently, systems showing cavities 
and cage-like structures (three dimensions) have appeared in the literature. These hybrid self-
assembled systems involving coordination chemistry and hydrogen-bonded interactions to form 
discrete entities are presented and discussed in this short review, thus showing the great potential of 
combining coordination and hydrogen bonds to develop new supramolecular metalla-assemblies. 

2. Planar and Macrocyclic Assemblies Exploiting Coordination and Hydrogen Bonds  

In crystal engineering, the combination of metal ions and hydrogen bonds has been extensively 
explored [36], and the first examples of discrete coordination and hydrogen-bonded systems were 
probably inspired by solid-state chemistry. Joining several metal-based chromophores is needed for the 
preparation of light-harvesting systems, however, to better understand the electronic pathway and 
metal-metal communications involved in such systems, having a dinuclear compound can be more 
appropriate. With that in mind, the groups of Ward and Barigelletti have studied the electronic energy 
transfer process between metal-polypyridyl complexes linked by complementary hydrogen-bonded 
groups [37,38]. Bispyridyl ligands functionalized with nucleobases were synthesized and used to 
connect two metal ions, see Figure 2.  

 
Figure 2. Cationic hydrogen-bonded dinuclear systems showing metal-metal energy transfer [37]. Figure 2. Cationic hydrogen-bonded dinuclear systems showing metal-metal energy transfer [37].



Chemistry 2020, 2 567

The relatively high binding constant of the nucleotide base pairs and the nature of the
dinuclear systems have suggested that the energy transfer occurs, even in solution (CH2Cl2), via the
hydrogen-bonded interface.

A similar bis-rhodium complex has been synthesized [39], and a single crystal X-ray structure
analysis has confirmed the dimeric nature of the system (Figure 3). Interestingly, upon coordination
to the rhodium pentamethylcyclopentadienyl unit, the hydrogen bond pairing between two
7-diphenylphosphino-1H-quinolin-2-one ligands is not disturbed. Diffusion-ordered NMR spectroscopy
in CD2Cl2 shows that the dimeric structure is stable in aprotic solvents.
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Other dinuclear systems have been prepared, in which a combination of coordination and
hydrogen-bonded interactions were used. For instance, a platinum-based dimer has been prepared in
view to synthesize higher nuclearity systems [40]. Unfortunately, the self-complementary quinolone
hydrogen bonds were too weak compared to the π-stacking interactions of the ligands, thus forming in
solution a coordination macrocycle instead of a hydrogen-bonded tetranuclear system (Scheme 1).
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system (bottom) [40].

Quinolone-based ligands were also used with octahedral metal center. Indeed, a dinuclear
rhodium-based complex was obtained by reacting [Cp*RhCl2]2 (Cp* = pentamethylcyclopentadienyl)
with 7-diphenylphosphino-1H-quinolin-2-one in a 1:2 stoichiometry [39]. The cationic dinuclear
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complex (Figure 4) is stable in solution (CD2Cl2), and NMR studies suggest that no dynamic behavior
(assembly-disassembly) is occurring at room temperature in aprotic solvent. As emphasized in
Figure 4, strong π-π stacking interactions take place, which increases the stability of the macrocyclic
structure. Analogous dinuclear systems were obtained by reacting [(para-cymene)RuCl2]2 with
1-(4-oxo-6-undecyl-1,4-dihydropyrimidin-2-yl)-3-(pyridine-4-ylethyl)urea (UPy-L) in a 1:2 fashion [41].
The neutral complex (Figure 5) is stable under ESI-MS (electro-spray ionization–mass spectrometry)
conditions. The dinuclear complexes were also incorporated in tetranuclear systems, in which the
UPy-L units were parallel to each other to generate metalla-rectangles [42].
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Figure 5. A dinuclear complex incorporating piano-stool complexes and derived-ligands allowing
hydrogen-bonded assemblies [41].

Two-dimensional assemblies with more than two metal ions have also been synthesized, using
for example square-planar complexes. Tetranuclear and hexanuclear platinum-based metalla-cycles
were prepared by Rendina and his coworkers [43]. The nicotinic acid pair acts as a 120◦ bridging
ligand, and upon coordination to trans-bis(diphenylphosphine)platinum units, it forms a dinuclear
sub-unit that can be coupled to other bidentate ligands. In combination with a 180◦ bidentate
spacer (4,4′-biphenyl), a hexanuclear metalla-cycle is obtained (Figure 6A), while in combination
with a 120◦ bidentate ligand (4,4′-benzophenone), a tetranuclear metalla-cycle is isolated (Figure 6B).



Chemistry 2020, 2 569

When iso-nicotinic acid is used instead, oligomeric and polymeric species are formed, demonstrating
the importance of ligands and metal ions geometry for the preparation of discrete metalla-assemblies.
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Figure 6. Hexanuclear (A) and tetranuclear (B) metalla-cycles built from nicotinic acid and square-planar
platinum ions [43].

Hydrogen-bonded dimers of para-pyridyl-substituted 2-ureido-4-1H-pyrimidinone and cis-coordinated
palladium complexes have been combined to afford a tetranuclear metalla-cycle [44]. In solution (CDCl3),
a mixture of a metalla-square (Figure 7) and a metalla-triangle was observed. At low concentrations (1 mM),
the triangular assembly is favored, while at higher concentrations, the amount of the square-like structure
is increasing significantly. This study confirms that the nature of metalla-cycles can be controlled by steric
factors, by the solubility of the final entity, and by the geometry of the different building blocks.
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The same para-pyridyl-substituted 2-ureido-4-1H-pyrimidinone hydrogen-bonded dimer was
used to construct tetranuclear arene ruthenium metalla-rectangles [42]. NMR spectroscopy and
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DFT calculations showed that the formation of the hydrogen-bonded assembly results in an
energy gain of ∆E = −146.8 kJ mol−1, thus confirming the stability in solution of these multiple
hydrogen-bonded assemblies.

The melamine–cyanuric acid (barbituric acid) pairing is among the most studied hydrogen-bonded
system [45–48]. Rosette-type and tapelike structures can be achieved by the controlled functionalization
of the sub-units [49,50]. Steric groups will favored the formation of discrete rosette-type structures,
while small and highly soluble groups will increase tapelike structures. Therefore, in view to obtain
discrete metal-coordinated rosette-type systems, a series of pyridyl-functionalized cyanuric acid [51]
and melamine [52] derivatives were synthesized. Coordination of arene ruthenium complexes to the
pyridyl groups has generated trinuclear (Figure 8A) and hexanuclear (Figure 8B) rosette-type assemblies.
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The use of metalated nucleobases has been another approach in supramolecular chemistry that
combines coordination chemistry and hydrogen bonds [53–59]. In such systems, the natural pairing of
nucleic acids is replaced by metal-mediated base pairs, which allows the generation of hybrid DNA
structures. Various applications have been foreseen for these derivatives (sensing, expending the
genetic code, forming nanoclusters or nanowires, DNA technology) and they have been the subject of
many reviews [53–59]. Therefore, this abundant literature will not be covered here, and the readers who
are interested in that particular area are encouraged to refer to these reviews to complete the discussion.

3. Cage-Like Assemblies Exploiting Coordination and Hydrogen Bonds

Several supramolecular capsules built by a combination of two functionalized C2 symmetrical
calix[4]arene cavitands have been synthesized by Yamanaka and his coworkers [60–62]. In these
systems, the two capsules are linked by two metal ions and two pairs of hydrogen bonds (Figure 9).
The size of the calix[4]arene and the length of the functional groups (hydrogen-bonded derivatives and
pyridyl groups) dictate the size of the cavity. In some cases, the cavity is filled by an anion, while in
other systems, a guest molecule is trapped. The guest exchange dynamics are linked to the nature of
the anions used, and their ability to generate conformational changes by disrupting the intramolecular
hydrogen-bonded system.
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The conical-shape of calix[4]arene was also used to generate giant uranyl-based cages [63].
In these systems, hydrogen bond interactions are exploited to ensure that the calixarene carboxylate
ligands adopt a stable and symmetrical conformation, which ultimately forces the carboxylate anion
to coordinate to the uranyl cation (UO2

2+) in a controlled manner. This strategy has allowed the
formation of several discrete icosahedral cage-like structure (Figure 10), in which the metals are not
located at the corners or edges of the assemblies, and for which the cavity of the large anionic capsule
is relatively well shielded.

The cooperative action of coordination bonds and quadruple hydrogen-bonded interactions has
allowed the synthesis of tetrahedron cage-like structures [64]. The symmetry, size, and nature of the
assembly are linked to the flexibility of the ligands, the choice of the metal ions (Hg2+, Fe2+, Zn2+) and
the conditions used (solvent polarity, concentration, anion, temperature). In the iron(II) derivatives,
the quadruple hydrogen-bonded units are linked to 2,2′-bipyridyl group, to produce a tetrahedron
cage-like structure (Figure 11). Stability studies have showed that protic solvents (DMSO, H2O) initiate
the disassembly of the cage-like structure. However, some derivatives show remarkable stability in
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polar solvents, and even in the presence of coordinating competing agents, thus suggesting that these
capsules can be used as reactors for catalytic reactions.Chemistry 2020, 2, x 8 
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The nature of the metal ion was also a critical point when dealing with these quadruple
hydrogen-bonded units linked to 2,2′-bipyridyl ligand [64]. Replacing Zn2+ or Fe2+ with Hg2+ not only
modified the stability, but also the overall geometry. The large ionic radius of Hg2+ provides a wider
separation of the coordinated 2,2′-bipyridyl ligands, thus allowing the quadruple hydrogen-bonded
units to stack on top of each other and to form a triple decker system (Figure 12). The helicate structure
is less stable than the tetrahedron systems, as the coordination energy of 2,2′-bipyridyl to Hg2+ remains
relatively weak compared to Fe2+.
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4. Conclusions 

As pointed out here, as well as in several reviews and publications [26–35], allowing two or more 
non-covalent interactions to take place simultaneously can be quite challenging (orthogonality 
concept) [30]. To be successful, a compatibility between the hydrogen-bonded and coordination 
interactions is essential, as individually they show different solubility, different flexibility and 
different stability. Moreover, to form a discrete supramolecular metalla-assembly, the ligands and 
the hydrogen bonded units should not compete for the metal ions, and they should cooperate. 
Therefore, it is not so surprising that so far the number of discrete metalla-assemblies combining 
coordination and hydrogen bonds remains limited. Nevertheless, we can assume that considering 
recent progress in the understanding on how such orthogonal concepts can be applied to 
supramolecular systems, and how innovative strategies have recently emerged in the field, that soon, 
we will see more of these discrete supramolecular metalla-assemblies. 
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4. Conclusions

As pointed out here, as well as in several reviews and publications [26–35], allowing two or
more non-covalent interactions to take place simultaneously can be quite challenging (orthogonality
concept) [30]. To be successful, a compatibility between the hydrogen-bonded and coordination
interactions is essential, as individually they show different solubility, different flexibility and different
stability. Moreover, to form a discrete supramolecular metalla-assembly, the ligands and the hydrogen
bonded units should not compete for the metal ions, and they should cooperate. Therefore, it is
not so surprising that so far the number of discrete metalla-assemblies combining coordination and
hydrogen bonds remains limited. Nevertheless, we can assume that considering recent progress in the
understanding on how such orthogonal concepts can be applied to supramolecular systems, and how
innovative strategies have recently emerged in the field, that soon, we will see more of these discrete
supramolecular metalla-assemblies.
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