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Abstract: The antitumor indole–indoline alkaloids of the evergreen Catharanthus roseus—namely
vinblastine and vincristine—are widely used in chemotherapy of cancer. Many efforts were made to
synthesize more efficient derivatives with less side-effect. The 14,15-cyclopropane derivative of vinblastine
was synthesized successfully by a five-step procedure starting from vindoline. Vincristine, vinorelbine and
several derivatives condensed with a cyclopropane ring were synthesized. Various hybrid molecules were
prepared by the coupling reaction of vindoline and methyl ester of tryptophan, which were conjugated
by carrier peptides of octaarginine. Studying the halogenation reactions of vindoline and catharanthine
some fluorine derivatives were obtained which showed promising antitumor activity on various tumor
types. The synthesis of the Aspidospermane alkaloid bannucine and 5′-epibannucine were carried out
using N-acyliminium intermediates. The same intermediate was also applied in the first synthesis of
sessiline. The research group have synthesized of flavonoid alkaloids: dracocephins A and B. Further
three flavonoid alkaloids, namely 8-(2”-pyrrolidinon-5′′-yl)quercetin, 6-(2′′-pyrrolidinon-5′′-yl)-(−)-
and 8-(2′′-pyrrolidinon-5′′-yl)-(−)-epicatechin were prepared by acid-catalyzed regioselective Mannich
reaction starting from the corresponding flavonoid precursor. Vindoline was also coupled to synthetic
pharmacophores, such as triphenylphosphine and various N-heterocycles. Some of these hybrid molecules
showed significant antitumor activity. Furthermore, 7-OH and 7-NH modified flavonoid derivatives
were synthesized by a regioselective alkylation followed by Smiles rearrangement and hydrolysis.

Keywords: Vinca alkaloids; cyclopropane condensed derivatives; hybrid molecules; N-acyliminium;
flavone alkaloids

1. Introduction, Therapy and Previous Results

Studies dealing with natural organic compounds of biologic activity can be divided into four main
groups: (i) the first is the isolation of the molecule in question from the given plant, (ii) the investigation
of the biosynthetic pathways, (iii) elaboration of the total synthesis for preparing the biologic effective
structure and (iv) synthesis of new derivatives by modification of the original structure for obtaining
more efficient, more selective and less toxic molecules.

(−)-Vindoline (1) and (+)-catharanthine (2) are Vinca alkaloids containing an indole skeleton, coupled
together forming the dimer alkaloids (+)-vinblastine (3) and (+)-vincristine (4). Vincristine (4) differs
from vinblastine (3) in position 1; vincristine (4) contains on the indole nitrogen atom a formyl group
(Figure 1) instead of a methyl group as is in the vinblastine (3). These compounds can be classified as
Vinca alkaloids, which were isolated first in the 1950s from the periwinkle Catharanthus roseus being native
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to Madagascar. These compounds are antitumor agents and are used in anticancer therapy. During cell
division they act as inhibitors of tubulin polymerization thus blocking the formation of mitotic spindle.
In the cancer cells they also inhibit the DNS repairing mechanism and the synthesis of RNS, inhibiting the
DNS-dependent RNS polymerase. In anticancer therapy, these types of compounds are used especially
against leukemia and lymphoma.
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Flavonoids are secondary plant metabolites containing numerous low-molecular-weight
members [5,6]. Their general structure consists of a 15-carbon skeleton with a heterocyclic (pyran) ring
(C) between two phenyl rings (A and B) (Figure 2). Flavonoids have a broad-spectrum of biologic
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2. Research on Vinca Alkaloids

2.1. Derivatives Condensed the Three-Membered Rings

It was observed recently that the saturation of the carbon–carbon double bond in position 14,15
of vinblastine (3) by catalytic hydrogenation decreased the biologic effect almost with two orders of
magnitude [14]. Considering the drastic change in the biologic activity of this rather large molecule was
caused by a minor structural modification; it can be concluded that this C=C double bond has an important
role in the biologic effect. Since that, these compounds can be seen appropriate for cyclopropanation, the
question is coming up, how the biologic activities change in the case of replacing this double bond with
cyclopropane ring having a similar electron structure. This was the reason to propose the synthesis of
new vinblastine derivatives condensed with cyclopropane ring in position 14,15.

Cyclopropane skeletons can be found in several molecules—as well as in natural organic compounds
in a condensed form or as substituents [15]. Nevertheless, the cyclopropane ring has specific properties
thanks to its unique structure. Based on the NMR spectra of the different cyclopropane derivatives,
it can be concluded that the C–H bond in the cyclopropane ring has larger s-character than in other
hydrocarbons. This is the reason, however, that the C–C bonds have larger p-character. It was calculated
that the s-character of these C–C bonds is not more than 17%, so that it corresponds to the special sp5

hybrid state. This is supported by the C–C coupling constants measured in the 13C-NMR spectra of
cyclopropane derivatives [16].

The 1H-NMR shifts of some cyclopropane derivatives are also interesting [17,18]. It can be observed
that the chemical shift is slightly increased in the case of the possibility of conjugation, however,
development of an aromatic character causes an enormous increase in the chemical shift, e.g., the value of
cyclopentadiene-spiro-cyclopropane changes almost fourfold compared to the saturated cyclopentane-spiro-
cyclopropane. Thus, one of cyclopropane ring can give two electrons to form the aromatic delocalized
electron sextet.

X-ray crystallographic investigations confirmed that the C–C bonds in cyclopropane are shorter
than usual in the normally saturated analogs and show slight diffraction because of the large strain of
the cyclopropane ring [19]. Therefore, the classical valence theories in the case of cyclopropane can be
hardly used. Moreover, how it changes the biologic activity?

Many methods can be offered for the preparation of cyclopropane derivatives. Of these, the classic
Simmons–Smith reaction exceeds, in which the carbene unit is given by diethyl zinc [20].

At first, the direct cyclopropanation of vinblastine (3) was tried. However, it failed using known
procedures. Then the monomer vindoline (1) was treated with diethylzinc and diiodomethane,
protecting the position 10 of vindoline (1) with a bromine substituent for avoiding the dimerization
reaction taking place through the diiodomethane. Hence, thus, we succeeded in the synthesis of the
desired 14,15-cyclopropanovinblastine (10) in an indirect way by a 5-step synthesis [4,21–23].

In the first step vindoline (1) was brominated by N-bromosuccinimide in the position 10 (Figure 3)
then in the second reaction step, the cyclopropane ring was formed into the position 14,15. Following
the bromo atom was hydrogenated from C-10 by sodium borohydride in the presence of a
palladium catalyst on charcoal. Then the obtained 14,15-cyclopropanovindoline (8) was coupled
with catharanthine (2) resulting in the 14,15-cyclopropanoanhydrovinblastine (9) [21,24]. The last step
was the hydration of the 15′-20′ carbon–carbon double bond obtaining the 14,15-cyclopropanovinblastine
(10). The 14,15-cyclopropanovincristine (11) was prepared by the CrO3 oxidation of cyclopropane
derivative (10) of vinblastine (3) [21,25].

On the base of our results, further dimer alkaloids condensed with cyclopropane ring were
synthesized [22]. The cyclopropane derivative (12) of vinorelbine was obtained from the ring contraction
reaction of 14,15-cyclopropanoanhydrovinblastine (9) (Figure 4).
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Synthesis of 14,15-cyclopropanovinorelbine (12) gave the possibility to prepare two further
cyclopropanovinorelbine derivatives, the 1-N-formyl-14,15-cyclopropanovinorelbine (13) and the
5′-demethylene–vinblastine cyclopropane derivative (14). The 13 N-formyl derivative was obtained by
CrO3 oxidation reaction of cyclopropanovinorelbine (12), compound 14 was formed by the hydration
of the 15′-20′ carbon–carbon double bond also of 12.
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Dimer alkaloids condensed with a cyclopropane ring synthesized by us were investigated by
the National Institute of Health (NIH, Bethesda, MD, USA) on 60 different cell lines of 9 different
tumor types.

The cytostatic activity of compounds 14,15-cyclopropanovinblastine (10) and 14,15-cyclopropanovincristine
(11)slightlydiffersfromvinblastine(3)andvincristine(4)usedintherapyasanticancermedicines; thecyclopropane
analogs are more effective inhibitors for the cell proliferation, respectively and destroy the tumorous cells with
more efficiency. The 14,15-cyclopropanovinblastine (10) shows excellent anticancer activity in the case of leukemia,
non-small cell lung cancer, colon cancer, melanoma and breast cancer, the vincristine derivative (11) is outstanding
against colon cancer, melanoma, ovarian cancer and prostate cancer. From the vinorelbine derivatives, the
14,15-cyclopropanovinorelbine (12) has the most significant effect in the case of non-small cell lung cancer, colon
cancer, central nervous system cancers, melanoma and breast cancer.

The 1-N-formyl-14,15-cyclopropanovinorelbine (13) shows an important activity and significant
selectivity on COLO-205 colon cancer cell line [23].

2.2. Vinca Hybrid Molecules Containing Amino Acid Esters

In the last few years, there was great interest in the hybrid molecules. Among anticancer compounds,
some hybrid molecules were built by coupling an antiproliferative structural part with another pharmacophore.
From our compounds at first vindoline (1) was coupled with amino acid esters [26].

10-bromovindoline (6) was treated with hydrazine resulting in 15a hydrazide derivative and
the latter was coupled with (l)- and (d)-tryptophan methyl ester, respectively, by means of azide
coupling method known in peptide chemistry (Figure 5). Different derivatives of vindoline (1) were
used: 14,15-dihydro-, 14,15-cyclopropanovindoline, moreover, the derivatives not containing a bromo
substituent at position 10 were also synthesized. The cytostatic activity of the prepared compounds
(17a–l) was investigated on HL-60 leukemia cells. It was established, that the most effective molecule
was compound 17f, which has hydrogen atom at C–10 and is coupled with (l)-tryptophan methyl ester
at position 16. Derivatives of vinblastine (3) coupled also with (l)-tryptophan methyl ester, conjugated
with N-terminal of octaarginine carrier peptide after hydrolysis of the ester to the corresponding
carboxylic acid showed substantially larger activity [27].

2.3. Vinca Hybrid Molecules Containing Steroid Vectors

The conjugation of Vinca alkaloids with (l)- and (d)-tryptophan methyl ester proved that the cytotoxic
effect of vindoline (1) can be promoted by coupling this monomer with suitable pharmacophores. As a
continuation of our work we aimed to synthesize vindoline (1) steroid hybrids presuming that the
lipophilic steroid vector can facilitate Vinca alkaloids to pass through the cell membranes and reach
higher bioavailability. Accordingly, 5α-dihydrotestosterone and 19-nortestosterone were connected to
vindoline (1) in positions 10 and 17 through succinate linkers. From the successfully synthesized four new
hybrid derivatives, the most efficient one was compound 18, where 19-nortestosterone was coupled with
vindoline (1) in position 17 (Figure 6) [28]. According to the in vitro biologic evaluations of NIH (USA),
compound 18 displayed increased cell growth inhibition than vindoline (1), furthermore, it showed a
higher antitumor effect on several cell lines even than vinblastine (3) sulfate used in therapy.

2.4. Vinca Hybrid Molecules Containing Synthetic Pharmacophores

After the encouraging results derived from the conjugation of natural pharmacophores (amino acid
esters and steroids) and Vinca alkaloids, our next research project was to combine vindoline (1) with
well-known synthetic pharmacophores for example triphenylphosphine and certain N-heterocycles such
as morpholine, piperazine and N-methylpiperazine. These moieties are widely used pharmacophores in
modern drug discovery and proved to be efficient structural units of several drugs on market [29,30].
Our main purpose was still the same: producing new vindoline hybrid molecules which could have
potential anticancer activity. First, vindoline (1) was O-acylated with 4-bromobutyric acid, after hydrolysis
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in position 17. After this step, the linker-containing vindoline derivative (19) was successfully coupled with
the mentioned synthetic pharmacophores to give the expected hybrid molecules (20–23) (Figure 7) [31–33].Chemistry 2020, 2, x 6 
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Figure 7. (20–23) Synthesized Vinca alkaloid hybrids by the conjugation of (1) vindoline and the chosen
synthetic pharmacophores.

The new compounds (20–23) were tested on 60 different human tumor cell lines in vitro (NIH,
Bethesda, MD, USA). The results showed that the linker, the morpholine, and the N-methylpiperazine
moieties could not improve the anticancer activity of vindoline (1). However, the 20 phosphonium-salt
and the 22-vindoline dimer (containing piperazine) represented outstanding cytotoxic activities. These
derivatives (20, 22) were more potent than vinblastine (3) sulfate itself on several cell lines. The anticancer
investigation (NIH, USA) of these compounds (19–23) confirmed our hypothesis suggesting vindoline (1)
can become an effective anticancer drug by conjugating it with suitable pharmacophores.

2.5. Halogenation Reactions of VINCA Alkaloids

The mechanism of the cyclopropanation reaction of vinblastine (3) presented in chapter 2.1. was
investigated and established the reason for forming the N-methyl quaternary salt of vinblastine instead
of cyclopropanation in the course of Simmons–Smith reaction [34].

Halogenation reactions of monomer indole alkaloids vindoline (1) and catharanthine (2) were
studied in detail, first of all the introduction of fluorine atom was investigated (Figure 8). In both cases
the reactions resulted in unexpected products. Thus, in the case of vindoline (1) the fluoro containing
quinone derivative (24) was formed and, in the case of catharanthine (2) a fluoro substituted indolenine
(25) could be isolated [35].
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Previously in our department, serious research was followed on the flavonoid chemistry. On the
base of these results, the synthesis of flavones coupled with a heterocyclic ring was investigated.
dracocephin A (32) and its regioisomer B (33) as a mixture of four stereoisomers were isolated in China
from Dracocephalum rupestre in 2008 by Ren and coworkers [41]. A mixture of dracocephin A (32) and
B (33) in a ratio of 43:57 was prepared in a one-step reaction from (±)-naringenin (31) and separated
by analytical chiral HPLC, the absolute configuration was identified by HPLC–ECD measurements
and by using TDDFT–ECD (Time-dependent density functional theory electronic circular dichroism)
calculations (Figure 11). The physicochemical parameters and biologic activities of the compounds
were also studied.
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The products (45–52) were tested on 60 different human tumor cell lines in vitro (NIH, MD, USA) 
and three of the hydrolyzed Smiles products (50–52) showed prominent antitumor effect on several 
cell lines [49]. 
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