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Abstract: A mathematical framework for the quantitative description of site density dependence of
catalytic data (activity and selectivity) was developed considering that changes in the electrostatic
contribution to the Gibbs energy of an elementary reaction on the acid sites in zeolites depend on
the proximity of these sites. For the two-step sequence with the most abundant surface intermediate,
an expression for turnover frequency explicitly containing the acid site density was derived. The
treatment was extended to linear sequences of elementary reaction and analysis of the acid site
density on selectivity in parallel and consecutive reactions, allowing to quantitatively relate the ratio
between products for such reactions. Experimental data on Prins condensation of isopulegol with
acetone and transformations of syngas over mesoporous H-ZSM-5 supported cobalt nanoparticles to
a mixture of iso- and normal hydrocarbons were used as a show case.
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1. Introduction

Solid Brønsted acid catalysts, such as zeolites, are of immense importance for oil
refining and transformations of chemicals [1–3]. Significant efforts have been made on the
development of novel materials and mechanistic interpretation of catalytic data. Several
parameters, including the structure, morphology and the Si/Al ratio, presence of various
ions, etc., can be used to fine-tune the number, nature, strength and distribution of acid
sites [4–7].

Kinetic analysis of catalytic reactions over zeolites often is limited by only considering
the acid sites as isolated and noninteracting with each other, allowing to apply the clas-
sical approaches of heterogeneous catalytic kinetics [8–10]. On the other hand, there is a
little doubt that active sites in zeolitic materials possess different acid strength and thus
activity, which is manifested by analysis of acidity with ammonia or pyridine [11–13] or
calorimetry [14].

One of the descriptors, which can be used to reflect the complexity of catalytic reactions
over zeolites, is the acid site density [15,16], as the dependence of turnover frequency (TOF)
as a function of this parameter indicates a structure sensitivity similar to the dependence of
TOF vs. the metal dispersion in the case of catalysis over supported metals. Recently, it was
demonstrated that TOF calculated per proton can be independent of the acid site density,
decrease, or even pass through the maximum [15,17–19]. Moreover, in [19], it was shown
that for the Prins cyclization of (-) isopulegol with acetone, also selectivity, expressed as the
ratio of products, depends on the acid site concentration.

2. Site Density Dependence for Adsorption

An explanation proposed for the maxima in TOF vs. the acid site density was re-
lated [17] to changes in the ionic strength depending itself on the volumetric densities
of hydronium ions, and thus on the concentration of Brønsted acid sites. The general
applicability of the Debye–Hückel or the semi-empirical Truesdell–Jones equations to the
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nanoconfined space of zeolites might be questionable [20], and thus an alternative approach
to account for the spatial constraints in such a nanoconfined space was proposed [21].

More precisely, along the nonelectrostatic contribution to the Gibbs energy of the solid
surface with acid sites, also the electrostatic one was considered:

∆Ges =
NAZH+ZH+ e2

4πε0εdave,H+−H+
=

ϕZH+ZH+

dave,H+−H+
(1)

where ZH+ is the charge of acid sites/hydronium ions, dave,H+−H+ is the average dis-
tance between these ions/acid sites, ε0 is the permittivity in vacuum, ε dielectric con-
stant, e is the charge of the electron, NA is Avogadro’s number, and ϕ is lumped constant
ϕ = NAe2/4πε0ε.

Changes in the electrostatic contribution to the Gibbs energy upon adsorption on the
acid sites with a partial donation of protons to the adsorbate were expressed [21] as

∆Gads = ∆G0
ads,nes + δZH+

ϕ

dave,H+−H+
(2)

where δZH+ is the increment of the electrostatic contribution to the Gibbs energy upon
adsorption on the acid sites. From Equation (2), changes in the electrostatic contribution de-
pend on proximity of sites or the average distance between the acid sites dave,H+−H+ . From
the relationship between the Gibbs energy and the equilibrium constant the equilibrium
constant for adsorption can be easily expressed:

Kads,0 = e−
∆G0

ads
RT e−δZH+ ϕ/dave,H+−H+ (3)

Further linking the rate constant k with the equilibrium constants K through the linear
free energy relationship [22] the rate constant of adsorption takes the form

k = gKα = k0e−αδZH+ ϕ/dave,H+−H+ (4)

where α is the Polanyi parameter (0 < α < 1). The average distance between acid sites can
be calculated through the density of acid sites ρH+ (mol/g) defined via the overall surface
area divided by the effective area around the surface site. This effective area in the simplest
case is taken as a circle with the diameter equal to the average distance between acid sites
giving, thus,

ρH+ =
SN2

πd2
ave,H+−H+

4 NA

(5)

and subsequently

dave,H+−H+ =

√
4SN2

πρH+ NA
(6)

Finally, the rate of adsorption can be expressed via the Brønsted acid site density:

k = k0e
−αϕδZH+

√
πρH+ NA

4SN2 = k0e−αϕ′
√

ρH+ (7)

where

ϕ′ = ϕδZH+

√
πNA
4SN2

=
δZH+ NAe2

4πε0ε

√
πNA
4SN2

(8)
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3. Two-Step Sequence

Quite often, heterogeneous catalytic kinetics is expressed by the two-step mechanism
with two kinetically significant steps [23,24], and one most abundant surface intermediate I:

1. * + A1 ↔ *I + B1
2. *I + A2↔ * + B2
A1 + A2 ↔ B1 + B2

(9)

where A1 and A2 are reactants, B1, and B2 are products, * is the surface vacant site, and I is
an adsorbed intermediate.

The reaction rate for this mechanism being well-known is presented below for turnover
frequency per acid site [25]:

TOF[H+ ] =
k+1CA1 k+2CA2 − k−1CB1 k−2CB2

k+1CA1 + k+2CA2 + k−1CB1 + k−2CB2

(10)

where CA1, etc., are concentrations of reagents, and ki is the rate constants.
The rate constant for the first step in mechanism (9) directly follows from

Equation (7), namely,
k+1(H+) = k+1e−α1 ϕ′

√
ρH+ (11)

where α1 is the Polanyi parameter of the first step. Similarly, for the backward reaction of
the second step, one obtains

k−2(H+) = k−2e−α2 ϕ′
√

ρH+ (12)

The rate constant for the backward reaction of the first step is obtained from Equation (11)
and the acid site density dependence of the adsorption equilibrium constant:

KH+ = K0eϕ′
√

ρH+ (13)

leading to
k−1(H+) = k−1e(1−α1)ϕ′

√
ρH+ (14)

Analogously, it holds for the forward reaction of the second step:

k+2(H+) = k+2e(1−α2)ϕ′
√

ρH+ (15)

The TOF per acid site can be expressed subsequently:

TOFH+ =
(k+1CA1 k+2CA2 − k−1CB1 k−2CB2)e

(1−α2−α1)ϕ′
√

ρH+

k+1CA1 e−α1 ϕ′
√

ρH+ + k+2CA2 e(1−α2)ϕ′
√

ρH+ + k−1CB1 e(1−α1)ϕ′
√

ρH+ + k−2CB2 e−α2 ϕ′
√

ρH+
(16)

When both steps are irreversible, Equation (16) can be transformed into

TOFH+ =
k+1CA1 k+2CA2 e(1−α1−α2)ϕ′

√
ρH+

k+1CA1 e−α1 ϕ′
√

ρH+ + k+2CA2 e(1−α2)ϕ′
√

ρH+
(17)

Or

TOFH+ =
k+2CA2 e(1−α2)ϕ′

√
ρH+

1 +
k+2CA2
k+1CA1

e(1−α2+α1)ϕ′
√

ρH+

=
ω+2e(1−α2)ϕ′

√
ρH+

1 + ω+2
ω+1

e(1−α2+α1)ϕ′
√

ρH+
(18)
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where ω+2 is the acid site density independent frequency of steps [25]:

ω+1 = k+1CA1 ; ω+2 = k+2CA2 ; (19)

It can be demonstrated that Equation (18) exhibits a maximum of TOF as a function of
the acid site density. To illustrate this, a minimum of the reciprocal value of TOF can be
determined by taking d(1/TOF)/d ρH+ atmax equal to zero:

d(1/TOFH+)′ = (
e(α2−1)ϕ′

√
ρH+

ω+2
+

eα1 ϕ′
√

ρH+

ω+1
)′ = 0 (20)

Giving then

1
ω+2

e(α2−1)ϕ′(
√

ρH+ )max
(α2 − 1)ϕ′

2(
√

ρH+)max
+

1
ω+1

e(α1)ϕ′(
√

ρH+ )max
α1 ϕ′

2(
√

ρH+)max
= 0 (21)

Equation (21), after some manipulations, is

α2 − 1
ω+2

e(α2−1)ϕ′(
√

ρH+ )max +
α1

ω+1
eα1 ϕ′(

√
ρH+ )max = 0 (22)

e(α2−α1−1)ϕ′(
√

ρH+ )max =
α1ω+2

(1− α2)ω+1
(23)

and
(α2 − α1 − 1)ϕ′(

√
ρH+)max = ln

α1ω+2

(1− α2)ω+1
(24)

can rewritten in a form allowing to obtain an explicit expression for the acid site density at
which the maximum in TOF is observed:

(ρH+)max =

[
ln α1ω+2

(1−α2)ω+1

(α2 − α1 − 1)ϕ′

]2

(25)

When the Polanyi parameters of the steps are equal to each other, Equation (25) can
be simplified:

(ρH+)max =

 ln (1−α)ω+1
αω+2

ϕ′

2

(26)

Figure 1 illustrates that the value of the acid site density at which maxima in the TOF
are observed depends on the values of the Polanyi parameter and the frequencies of steps.
The latter implies that not only the rate constants vary depending on the catalyst, but also
the concentrations of reagents can have an impact on the experimentally observed values
of the acid site density corresponding to the maxima in TOF. For high values of the Polanyi
parameter (e.g., 0.75), such dependence will be less pronounced.

Comparison of the experimental data for reactions occurring over catalysts with dif-
ferent acid site density is typically performed at the same values of the reaction parameters
(i.e., temperature and concentration of reagents). The current theoretical analysis highlights
that the acid site density, at which TOF exhibits a maximum, is a function not only on the
catalyst, but the process parameters as well. This apparently urges a detailed experimental
exploration of this hypothesis.
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4. Christiansen Sequence

An extension of the reaction mechanism discussed above is a Christiansen sequence
containing a linear step of isomerization in the adsorbed state [26]:

1.* +A1 ↔ *I1 + B1
2.* I1 ↔ *I2

3. * I2 + A2↔ * + B2
A1 + A2 ↔ B1 + B2

(27)

Such a type of generic mechanism can be relevant in the context of skeletal isomeriza-
tion, cracking or alkylation reactions. In a simplified treatment of this reaction mechanism,
it can be assumed that δZH+ or the increment of the electrostatic contribution to the Gibbs
energy upon adsorption on the acid sites is the same for both intermediates I1 and I2.

The equilibrium constant of the first step is then

K1 = k+1e−α1 ϕ′
√

ρH+ /k−1e(1−α1)ϕ′
√

ρH+ = K1,0e−ϕ′
√

ρH+ (28)

For the third step of Equation (27), it can be written as

K3 = k3e(1−α3)ϕ′
√

ρH+ /k−3e−α3 ϕ′
√

ρH+ = K3,0eϕ′
√

ρH+ (29)

As the overall constant K = K1K2K3 does not depend on the acid site density, it is
apparently clear that for the isomerization step 2 in (27), the equilibrium constant does not
depend on the acid site density either.
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An expression for the three-step Christiansen sequence with linear steps is well-
known [25,27]:

TOF =
ω+1ω+2ω+3 −ω−1ω−2ω−3

ω+2ω+3 + ω−3ω+2 + ω−3ω−2 + ω+3ω+1 + ω−1ω+3 + ω−1ω−3 + ω+1ω+2 + ω−2ω+1 + ω−2ω−1
(30)

With the frequencies of steps in the particular case of the three-step reaction on
acid sites,

ω+1 = k+1e−α1 ϕ′
√

ρH+ CA1 ; ω−1 = k−1e(1−α1)ϕ′
√

ρH+ CB1 ;
ω+2 = k+2; ω−2 = k−2;

ω+3 = k+3e(1−α3)ϕ′
√

ρH+ CA2 ; ω−3 = k−3e−α3 ϕ′
√

ρH+ CB2

(31)

When in the reaction mechanism all steps are irreversible Equation (30) can be further
simplified to

TOFH+ =
k+1k+2k+3e(1−α3−α1)ϕ′

√
ρH+ CA1 CA2

k+2k+3e(1−α3)ϕ′
√

ρH+ CA2 + k+1k+3e(1−α3−α1)ϕ′
√

ρH+ CA1 CA2 + k+1k+2e−α1 ϕ′
√

ρH+ CA1

(32)

Often, the value of the Polanyi parameter is equal to 0.5 [25], implying that
α1 = α3 = α = 0.5 and

TOFH+ =
k+1k+2k+3CA1 CA2

k+2k+3e(1−α)ϕ′
√

ρH+ CA2 + k+1k+2e−αϕ′
√

ρH+ CA1 + k+1k+3CA1 CA2

(33)

The acid site density can be determined in a similar fashion as for the two-step
sequence (Equation (20)), giving

d(1/TOFH+)′ = (
e(1−α)ϕ′

√
ρH+

ω+1
+

e−αϕ′
√

ρH+

ω+3
)′ = 0 (34)

Thus,
(1− α)

ω+1
e(1−α)ϕ′(

√
ρH+ )max − α

ω+3
e−αϕ′(

√
ρH+ )max = 0 (35)

leading to an expression of the acid site density at the maximum TOF when the Polanyi
parameters are equal to 0.5.

ρH+max =

[
ln αω+1

(1−α)ω+3

ϕ′

]2

=

[
ln ω+1

ω+3

ϕ′

]2

(36)

Similar to the treatment above, the acid site density, at which TOF exhibits a maximum,
depends on the frequencies of steps and thus process parameters.

The treatment above considered that the increment of the electrostatic contribution to
the Gibbs energy of adsorbed species is the same, which should not be necessarily the case
upon adsorption on the acid sites for both intermediates I1 and I2.

In such an instance, instead of Equation (8), the relevant expressions for intermediates
I1 and I2 will be

ϕI1
′ = (δZH+ )I1

NAe2

4πε0ε

√
πNA
4SN2

; ϕI2
′ = (δZH+ )I2

NAe2

4πε0ε

√
πNA
4SN2

(37)
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resulting in the expressions for turnover frequencies of steps 1 and 3 of the reaction
mechanism (27):

ω+1 = k+1e−α1 ϕI1
′√ρH+ CA1 ; ω−1 = k−1e(1−α1)ϕI1

′√ρH+ CB1 ;
ω+3 = k+3e(1−α3)ϕI2

′√ρH+ CA2 ; ω−3 = k−3e−α3 ϕI2
′√ρH+ CB2

(38)

Considering the modified equilibrium constant of these steps,

K1 = K1,0e−ϕI1
′√ρH+ ; K3 = K3,0eϕI2

′√ρH+ (39)

An expression for the equilibrium constant of the second step is

K2 = K/K1K3 = Ke(ϕI1
′−ϕI2

′)
√

ρH+ /(K1,0K3,0) = K2,0e(ϕI1
′−ϕI2

′)
√

ρH+ (40)

Implying that

ω+2 = k+2e(1−α2)(ϕI1
′−ϕI2

′)
√

ρH+ ; ω−2 = k−2e−α2(ϕI1
′−ϕI2

′)
√

ρH+ (41)

For the three-step catalytic sequence of all irreversible steps, it holds that

TOFH+ =
k+1k+2k+3CA1 CA2 e(−α1 ϕI1

′+(1−α3)ϕI2
′+(1−α2)(ϕI1

′−ϕI2
′))√ρH+

k+2k+3CA2 e((1−α2)(ϕI1
′−ϕI2

′)+(1−α3)ϕI2
′)√ρH+ + k+3k+1CA1 CA2 e((1−α3)ϕI2

′−α1 ϕI1
′)√ρH+ + k+1k+2CA1 e(−α1 ϕI1

′+(1−α2)(ϕI1
′−ϕI2

′))√ρH+
(42)

which for α1 = α2 = α3 = α = 0.5 is simplified to

TOFH+ =
k+1k+2k+3CA1 CA2

k+2k+3CA2 e0.5ϕI1
′√ρH+ + k+3k+1CA1 CA2 e0.5(ϕI2

′−ϕI1
′)
√

ρH+ + k+1k+2CA1 e(−0.5ϕI2
′)
√

ρH+
(43)

Apparently, Equation (43) also exhibits a maximum in TOF as a function of the acid site
density, the determination of which requires solving the following rather
complex equation:

d(1/TOFH+)′ = (
e(0.5)ϕI1

′√ρH+

ω+1
+

e0.5(ϕI2
′−ϕI1

′)
√

ρH+

ω+2
+

e(−0.5ϕI2
′)
√

ρH+

ω+3
)′ = 0 (44)

5. Parallel Reactions: Coupling between Cycles

The conceptual ideas in the analysis above can be applied to elucidation of the influ-
ence of acid site density on selectivity in parallel and consecutive reactions.

First, the case of kinetic coupling between catalytic cycles will be considered with a
joint reaction intermediate:

1.* + A1 ↔ * I1 + B1 1 1
2. * I1 + A2 ↔ * + B2 1 0
3. * I1 + A3↔ * + B3 0 1

N(1) A1 + A2 ↔ B1 + B2; N(2) A1 + A3 ↔ B1 + B3

(45)

The reaction scheme in Equation (47) reflects two reaction routes, N(1) and N(2), taking
place simultaneously. On the right-hand side of the equations for the steps, the respective
stoichiometric (Horiuti) numbers are given, which should be multiplied by the equations
of steps to yield the chemical equations along the different routes. For example, after
multiplying the equations of the first and the second steps in Equation (45) by unity and
the third step by zero and summing up all concentrations on the left and right sides,
concentrations of the surface species are cancelled, giving the equation for the first route,
i.e., A1 + A2 ↔ B1 + B2.
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A chemical example of such a mechanism can be the formation of carbocations in
the first step with the subsequent splitting of different carbon–carbon bonds. For the sake
of simplicity, just the irreversible steps in Equation (45) are considered. It can be easily
demonstrated using the steady-state approximation,

dI1/dt = 0 (46)

that
r1 = r2 + r3 (47)

leading subsequently to

rB2 =
ω+1ω+2

ω+1 + ω+2 + ω+3
=

k+1CA1 k+2CA2

k+1CA1 + k+2CA2 + k+3CA3

(48)

rB3 =
ω+1ω+3

ω+1 + ω+2 + ω+3
=

k+1CA1 k+3CA3

k+1CA1 + k+2CA2 + k+3CA3

(49)

The overall rate is

− rA1 =
ω+1(ω+2 + ω+3)

ω+1 + ω+2 + ω+3
(50)

Selectivity to a product B2 can be easily obtained from Equations (48) and (49), giving

SB2 =
rB2

rB2 + rB3

=
k+2CA2

k+2CA2 + k+3CA3

(51)

Analogously, it holds for the forward reaction of the second and third steps similar to
Equation (15) that

k+2(H+) = k+2e(1−α2)ϕ′
√

ρH+ ; k+3(H+) = k+3e(1−α3)ϕ′
√

ρH+ (52)

Dependence of selectivity on the acid site density for the simplified case of three
irreversible steps is thus

SB2 =
k+2e(1−α2)ϕ′

√
ρH+ CA2

k+2e(1−α2)ϕ′
√

ρH+ CA2 + k+3e(1−α3)ϕ′
√

ρH+ CA3

=
1

1 +
k+3CA3
k+2CA2

e(α2−α3)ϕ′
√

ρH+

(53)

while the ratio between the products is defined as

rB3

rB2

=
k+3CA3

k+2CA2

e(α2−α3)ϕ′
√

ρH+ (54)

The latter equation can be linearized as

ln
rB3

rB2

= ln
k+3CA3

k+2CA2

+ (α2 − α3)ϕ′
√

ρH+ (55)

allowing to relate the rates and subsequently the ratios between products with the square
root of the acid site density. Figure 2 illustrates the successful implementation of
Equation (55) to treat the experimental ratio of 4R and 4S chromenols obtained from
the Prins cyclization of (-)isopulegol with acetone [19] as a function of the square root of
the total acid site density.
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Figure 2. The ratio of reaction products in the Prins condensation of isopulegol with acetone as a 

function of the total concentration of acid sites. Points—experimental data from [19], calculations—

Equation (55). The calculated values of 
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0.50338 ± 0.46502 and 0.13566 ± 0.03495. 

6. Parallel Reactions: Separate Cycles 

The mechanism given by Equation (45) represents an example of a catalytic sequence 

with a joint edge connecting the nodes of the graph (Figure 3a) using the formalism of the 

graph theory [27]. One route shown in Figure 3 comprises steps 1 and 2, while in the sec-

ond route besides step 1 common for both routes, step 3 is involved.  

Figure 2. The ratio of reaction products in the Prins condensation of isopulegol with acetone as a
function of the total concentration of acid sites. Points—experimental data from [19], calculations—
Equation (55). The calculated values of ln(k+3CA3 /k+2CA2 ) and (α2 − α3)ϕ′ are respectively
0.50338 ± 0.46502 and 0.13566 ± 0.03495.

6. Parallel Reactions: Separate Cycles

The mechanism given by Equation (45) represents an example of a catalytic sequence
with a joint edge connecting the nodes of the graph (Figure 3a) using the formalism of
the graph theory [27]. One route shown in Figure 3 comprises steps 1 and 2, while in the
second route besides step 1 common for both routes, step 3 is involved.

On the contrary, in the mechanism with two parallel routes featured in Figure 3b, there
is only one common node corresponding to the vacant acid site and separate cycles with
stepss 1, 2 and 3, 4. Subsequently, in the most general case, the reaction mechanism can be
written in the following way:

1.* + A1 ↔ * I1 + B1 1 0
2. *I1 + A2 ↔ * + B2 1 0
3.* +A1 ↔ * I2 + B3 0 1
4. *I2 + A3↔ * + B4 0 1

N(1): A1 + A2 ↔ B1 + B2; N(2): A1 + A3 ↔ B3 + B4

(56)

There are obviously many variations of the mechanism in Equation (56), such as the
cases when A2 is the same as A3 reflecting for example different adsorption modes through
different functional groups, or when B1 is the same as B3. The corresponding equations can
be easily derived from a more general consideration.
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where 0  is the coverage of vacant site and 
1I

 , 
2I

  are coverages of respective inter-
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The ratio between the rates along different routes is thus 
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Figure 3. Mechanisms of parallel reactions: (a) with kinetic coupling and a joint edge, (b) with one
joint node. A1,A2,A3,A4—reactants, B1,B2,B3,B4—products.

For the sake of simplicity, steps 2 and 4 are considered irreversible, giving

θI1 =
k+1CA1

k−1CB1 + k+2CA2

θ0; θI2 =
k+3CA1

k−3CB3 + k+4CA3

θ0 (57)

where θ0 is the coverage of vacant site and θI1 , θI2 are coverages of respective intermediates.
The rates along different routes can be calculated considering the site balance resulting this in

rN(1) = r+2 =
k+1CA1 k+2CA2

k−1CB1 + k+2CA2

1
D

; rN(2) = r+4 =
k+3CA1 k+4CA3

k−3CB3 + k+4CA3

1
D

(58)

with

D = 1 +
k+1CA1

k−1CB1 + k+2CA2

+
k+3CA1

k−3CB3 + k+4CA3

(59)

The ratio between the rates along different routes is thus

rN(1)

rN(2)
=

k+1k+2CA2

k−1CB1 + k+2CA2

k−3CB3 + k+4CA3

k+3k+4CA3

(60)

The expressions for the rate constants as a function of the site density follow from the
general considerations discussed above, giving

k+1 = k′+1e−α1 ϕI1
′√ρH+ ; k−1 = k′−1e(1−α1)ϕI1

′√ρH+ ; k+2 = k′+2e(1−α2)ϕI1
′√ρH+ ;

k+3 = k′+3e−α3 ϕI2
′√ρH+ ; k−3 = k′−3e(1−α3)ϕI2

′√ρH+ ; k+4 = k′+4e(1−α4)ϕI2
′√ρH+

(61)
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The ratio of rates takes a relatively complicated form:

rN(1)

rN(2)
=

k′+1k′+2e(1−α2−α1)ϕI1
′√ρH+ CA2

k′+3k′+4e(1−α4−α3)ϕI2
′√ρH+ CA3

k′−3e(1−α3)ϕI2
′√ρH+ CB3 + k′+4e(1−α4)ϕI2

′√ρH+ CA3

k′−1e(1−α1)ϕI1
′√ρH+ CB1 + k′+2e(1−α2)ϕI1

′√ρH+ CA2

(62)

An expression similar to Equation (54) can be obtained when all steps are irreversible
with, however, different dependencies on the concentration of substrates:

rN(1)

rN(2)
=

k′+1

k′+3
e(α3−α1)ϕI1

′√ρH+ (63)

Equation (63) can be also linearized in the same way as Equation (55).

7. Consecutive Reactions

The last example is related to a network of consecutive reactions as visualized in
Equation (64):

1.* + A ≡ * A 1 1 0
2. * A→ * B 1 1 0

3. * B ≡ B + * 1 0 −1
4. * B→ * C 0 1 1
5. * C ≡ *+ C 0 1 1

N(1): A↔ B; N(2): A↔ C; N(3): B↔ C

(64)

To make the illustration more apparent, only two products are considered and more-
over steps 1, 3 and 5 are considered to be at quasi-equilibria and steps 2 and 4 are assumed
to be irreversible. The expressions for the rate and equilibrium constants naturally follow
from the considerations above:

K1 = K
′
1e−ϕA

′√ρH+ ; K3 = K
′
3eϕB

′√ρH+ ; K5 = K
′
5eϕC

′√ρH+

k+2 = k′+2e(1−α2)(ϕA
′−ϕB

′)
√

ρH+ ; k+4 = k′+4e(1−α4)(ϕB
′−ϕC

′)
√

ρH+
(65)

It should be noted that the routes N(1) to N(3) are not independent ones, as route N(3)

can be obtained by the subtraction of route N(1) from the route N(2) as discussed previously
in the literature for similar reaction networks [28]. Subsequently, the reaction network can
be described with just two routes having the reaction rates

rN(1)
=

k+2K1CA

K1CA + K−1
3 CB + K−1

5 CC
, rN(2)

=
k+4K−1

3 CB

K1CA + K−1
3 CB + K−1

5 CC
(66)

which should be solved together with the generation equations for the components

− 1
ρcat

dCA
dt

= rN(1)
;

1
ρcat

dCB
dt

= rN(1) − rN(2)
(67)

where ρcat is the catalyst bulk density. Subsequently, selectivity toward the product B can
be obtained

SB =
rN(1) − rN(2)

rN(1) = 1−
k+4K−1

3 CB

k+2K1CA
= 1− CB

CA

k′+2(K
′
3)
−1

e(1−α2)(ϕA
′−ϕB

′)
√

ρH+ e−ϕB
′√ρH+

k′+4K′1e(1−α4)(ϕB ′−ϕC
′)
√

ρH+ e−ϕA
′√ρH+

(68)
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Or,

SB = 1− CB
CA

k′+2(K
′
3)
−1

k′+4K′1
e((1−α2)(ϕA

′−ϕB
′)−(1−α4)(ϕB

′−ϕC
′)+(ϕA

′−ϕB
′))
√

ρH+ (69)

which can be written in the following way:

SB = 1−Meλ
√

ρH+
CB
CA

= 1−M′
CB
CA

(70)

With the expressions for constants,

M′ =
k′+2(K

′
3)
−1

k′+4K′1
eλ
√

ρH+ = Meλ
√

ρH+ (71)

λ = ((1− α2)(ϕA
′ − ϕB

′)− (1− α4)(ϕB
′ − ϕC

′) + (ϕA
′ − ϕB

′)) (72)

Equation (70) gives a possibility to describe dependence of selectivity to the reactant B
concentration as a function of conversion derived previously in the literature for a similar
case [29]:

SB =
1

1−M′
1
δ

[
(1− δ)M′ − (1− δ)

]
(73)

where δ is the conversion. Equation (73) can be presented in a more explicit form:

SB =
1

1−Meλ
√

ρH+

1
δ

[
(1− δ)Meλ

√
ρH+

− (1− δ)

]
(74)

As visible from Figure 4, selectivity declines with an increase in the value of M, which
reflects in essence how fast the second route is compared to the first one. At the same level
of conversion, a higher acid site density will apparently result in low selectivity.
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Figure 4. Dependence of selectivity vs. conversion according to Equation (73) for different values 

of M’. 
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Figure 4. Dependence of selectivity vs. conversion according to Equation (73) for different values of M’.

An analytic expression for the concentration of the intermediate product B in a con-
secutive reaction network of the type presented in Equation (64) was derived in the litera-
ture [29]:

CB =
1

1−M′
(

CM′
A

(C0
A)

M′−1 − CA) (75)
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where C0
A is the initial concentration of the reactant A. If the initial concentrations of

B and C are equal to zero, the concentration of the component C easily follows from the
reaction stoichiometry:

CB + CC = C0
A − CA (76)

giving thus an expression for the ratio between the final and the intermediate products:

CC
CB

=

C0
A − CA − 1

1−M′ (
CM′

A

(C0
A)

M′−1 − CA)

1
1−M′ (

CM′
A

(C0
A)

M′−1 − CA)
= −1 +

(1−M′)δ

(1− δ)M′ − (1− δ)
(77)

Equation (77) presents a dependence of the ratio between the final and the intermediate
products as a function on conversion δ and can be used in a more explicit form illustrating
a dependence on the acid site density:

CC
CB

= −1 +
(1−Meλ

√
ρH+ )δ

(1− δ)Meλ
√

ρH+

− (1− δ)
(78)

As an example of Equation (78) utilization to treat the experimental data, the ratio
of iso to normal hydrocarbons obtained in transformations of syngas over mesoporous
H-ZSM-5 supported cobalt nanoparticles [30] is considered. In that study, the materials
were prepared with a different degree of proton exchange, which serves as a proxy for the
acid site density. Obviously, the reaction network is much more complicated, but for the
illustration properties, the iso compounds can be considered the final, while the normal
hydrocarbons the intermediate, products. The experimental data in [30] were reported
at the same conversion of ca. 30%, thus allowing to probe directly the applicability of
Equation (78). The calculations along with the experimental data are presented in Figure 5,
clearly confirming that an equation of type (78) can explain the distribution of products in
a consecutive reaction in a quantitative way with high precision.
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