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Abstract: Chiral hydroxamic acid (HA) and bis-hydroxamic acid (BHA) ligands have made significant
contributions to the field of asymmetric synthesis, particularly in the synthesis of natural products.
These ligands possess unique molecular structures that allow for exceptional stereochemical control,
leading to their widespread use in catalytic systems. This review highlights the advancements
made in asymmetric synthesis using chiral hydroxamic acid and bis-hydroxamic acid ligands and
their impact on the synthesis of complex natural products. This discussion encompasses their
role in enantioselective C–C bond formation, the functionalization of C–H bonds, the asymmetric
transformations involving heteroatoms, and their application in the total synthesis of natural products.
The versatility and efficiency of chiral hydroxamic acid ligands and bis-hydroxamic acid ligands make
them invaluable tools for synthetic chemists working towards the efficient and selective synthesis of
natural products. This review provides a comprehensive overview of their contributions, showcasing
their potential to expand the boundaries of chemical synthesis and access the diverse array of natural
product scaffolds.

Keywords: chiral hydroxamic acid ligands; chiral bishydroxamic acid ligands; asymmetric synthesis;
natural products

1. Introduction

The synthesis of natural products has long been a captivating pursuit in organic
chemistry, spurred by the remarkable structural complexity and diverse array of biological
activities exhibited by these compounds. Serving as a wellspring of inspiration, natural
products are integral to the development of novel drugs, agrochemicals, and materials [1].
Asymmetric synthesis, geared toward accessing enantiomerically pure compounds, plays
a pivotal role in constructing complex natural product scaffolds with the desired stereo-
chemistry crucial for their biological activities. Over the years, the evolution of efficient
chiral ligands has revolutionized asymmetric synthesis, enabling chemists to achieve high
selectivity and efficiency in their synthetic endeavors [2]. These ligands act as molecular
tools influencing the stereochemical outcome of reactions, facilitating the precise control of
stereocenters. This breakthrough not only facilitates the synthesis of natural products, but
also opens new avenues for the design and creation of chiral molecules tailored for diverse
applications, emphasizing the profound impact of asymmetric synthesis and chiral ligand
development on the continued exploration and utilization of natural products in various
scientific and industrial domains.

Among the various classes of chiral ligands, hydroxamic acids have emerged as
versatile tools for asymmetric synthesis. Hydroxamic acids possess a distinctive molecular
structure characterized by a hydroxylamine (–NOH) functional group attached to a carbonyl
group. This arrangement imparts them with a unique set of properties that make them
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highly effective ligands in coordination chemistry. The hydroxamic acid moiety can form
coordination complexes with transition metal catalysts, leading to the formation of chiral
catalysts that are capable of inducing asymmetric transformations [3].

Chiral hydroxamic acid (HA) and bis-hydroxamic acid (BHA) ligands have gained
significant attention and found widespread application in asymmetric synthesis due to their
ability to provide exceptional stereochemical control. The design and development of these
ligands have been driven by the need to achieve high enantioselectivity, regioselectivity,
and stereoselectivity in a variety of synthetic transformations. The inherent flexibility
and modifiability of hydroxamic acid ligands allow for the fine-tuning of their properties,
enabling chemists to tailor them to specific reactions and target molecules [4,5].

In the realm of natural product synthesis, chiral hydroxamic acid ligands have made
remarkable contributions, offering elegant solutions to challenging synthetic problems.
Their effectiveness in accessing enantiopure compounds has enabled chemists to con-
struct complex natural product architectures, reproduce their biological activities, and
explore structure–activity relationships. By harnessing the power of these ligands, syn-
thetic chemists have achieved impressive advancements in various aspects of asymmetric
synthesis pertaining to natural products [6,7].

One area where chiral hydroxamic acid ligands have demonstrated exceptional utility
is in enantioselective carbon-carbon (C–C) bond formation. The formation of C–C bonds is
a key step in constructing the carbon framework of natural products [6]. Chiral hydroxamic
acid ligands have been successfully employed in asymmetric allylation reactions, aldol
reactions, Mannich reactions, and other important C–C bond-forming transformations.
Through careful ligand design and optimization, chemists have achieved high levels of
enantioselectivity, enabling the synthesis of complex natural product motifs with precise
stereochemistry [7].

In addition to C–C bond formation, the functionalization of carbon-hydrogen
(C–H) bonds represents an important strategy in natural product synthesis. Direct C–
H functionalization allows chemists to access molecular complexity efficiently by utilizing
unactivated carbon-hydrogen bonds as functional handles. Chiral hydroxamic acid ligands
have been instrumental in developing transition metal-catalyzed C–H activation reactions
with high enantioselectivity. These reactions have enabled the selective formation of chiral
centers in the target molecules, thus providing access to diverse natural products that were
previously challenging to synthesize [3]. Furthermore, chiral hydroxamic acid ligands have
demonstrated their efficacy in asymmetric transformations involving heteroatoms. Natural
products frequently contain heterocyclic motifs that contribute to their biological activities.
Chiral hydroxamic acid ligands have been successfully employed in asymmetric amination
reactions, amidation reactions, and epoxidations, enabling the controlled formation of chiral
heterocycles with high enantioselectivity. The ability to selectively introduce heteroatoms
into complex natural product scaffolds expands the synthetic possibilities and provides
access to a broader range of natural product structures (Figure 1).

Moreover, the impact of chiral HA and BHA ligands extends beyond their application
in specific transformations. These ligands have played a pivotal role in the total synthesis
of numerous natural products, showcasing their versatility and efficiency. By strategi-
cally incorporating chiral hydroxamic acid ligands in key steps, synthetic chemists have
successfully achieved the total synthesis of complex alkaloids, polyketides, terpenoids,
and other structurally intricate natural products. These achievements not only facilitate
the acquisition of biologically active compounds but also deepen our understanding of
complex relationships [8,9].

In this review, we aim to provide a comprehensive overview of the remarkable con-
tributions of chiral hydroxamic acid and bis-hydroxamic acid ligands in the asymmetric
synthesis of natural products. Natural products have long captivated the attention of
organic chemists due to their intricate structural complexity and diverse biological activ-
ities. Asymmetric synthesis, which enables access to enantiomerically pure compounds,
has played a pivotal role in the construction of complex natural product scaffolds with
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precise stereochemistry. Within this context, chiral hydroxamic acid and bis-hydroxamic
acid ligands have emerged as versatile tools, offering unique properties that facilitate high
selectivity and efficiency in synthetic endeavors. By examining key examples from the
literature, we aim to explore the pivotal role of these ligands in the synthesis of natural
products, highlighting their impact on enantioselective carbon–carbon bond formation, the
functionalization of carbon-hydrogen bonds, heteroatom-based transformations, and their
contribution to total synthesis efforts. Through this review, we aim to shed light on the
versatility and potential of chiral HA and BHA ligands as valuable tools in the asymmetric
synthesis of natural products.
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2. Total Synthesis of Natural Compounds

In this section, we explore the meticulous craft of total synthesis, a pursuit that entails
the precise recreation of intricate molecular structures inherent in natural compounds. This
endeavor serves as an intellectual challenge, offering profound insights into the strategic
arrangement of chemical transformations. Notably, we focus on the noteworthy contribu-
tions of HA and BHA ligands, highlighting their pivotal role as a key step in various total
synthesis projects. Our investigation will unveil strategic synthetic approaches, showcasing
how HA and BHA ligands have been instrumental in achieving high selectivity and effi-
ciency, thereby contributing significantly to the construction of natural product scaffolds.
Through a detailed examination of specific examples, we aim to unravel breakthroughs in
total synthesis, illuminating the symbiotic relationship between chemistry and the nuanced
world of natural products.

2.1. Total Synthesis of α-Bisabolol

The total synthesis of (−)-α-bisabolol, a fragrance compound derived from (S)-limonene 1,
was successfully achieved through the utilization of hydroxamic acid ligands L1, as demon-
strated by Yamamoto in 2003. The synthetic route involved several key steps starting
with the hydroxymethylation of (S)-limonene 1, resulting in the formation of (S)-alcohol 2.
Diastereoselective epoxidation utilizing hydroxamic acid ligand L1 proved highly effective,
yielding epoxy alcohol 3 with a good overall yield of 84% and a high diastereomeric excess
of 90% (de). A subsequent reduction in epoxy alcohol 3 produced diol, which was further
subjected to tosylation and coupling with isopropenyl magnesium bromide, ultimately
leading to the synthesis of (−)-(4S,8S)-α-bisabolol 4. The overall yield from (S)-limonene
was reported to be 21%. Additionally, this study explored the use of hydroxamic acid
ligand L1, resulting in the synthesis of (−)-(4S,8R)-epi-α-Bisabolol 5 (Scheme 1). These
findings underscore the remarkable efficiency of hydroxamic acid ligands in controlling di-
astereoselectivity and achieving high yields in the synthesis of complex molecules, thereby
providing a practical and promising approach for accessing natural products such as (−)-α-
bisabolol [10]. α-Bisabolol is a significant monocyclic sesquiterpene derived from essential
oils of various edible and ornamental plants. It possesses diverse biological activities,
including anticancer, antimicrobial, and anti-inflammatory properties. Its therapeutic po-
tential and natural occurrence in essential oils make α-bisabolol an intriguing target for
total synthesis and the development of synthetic strategies using hydroxamic acid ligands.
The utilization of hydroxamic acid ligands offers a practical approach to accessing natural
products like α-bisabolol, further enabling the exploration of its therapeutic applications,
and expanding our knowledge of its biological activities [11].
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2.2. Total Synthesis of Florfenicol

The total synthesis of Florfenicol 9, as reported by Chen in 2011, involved a concise
and efficient route with a significant emphasis on the utilization of a chiral bishydroxamic
acid (BHA) ligand L2 [12]. Florfenicol, a fluorinated analog of thiamphenicol, is a broad-
spectrum antibiotic widely used in aquaculture species as well as various livestock species,
including bovine, porcine, and chicken, for the treatment of infections.

The synthetic pathway commenced with the transformation of 4-methylthiobenzaldehyde
6, leading to the formation of allylic alcohol 7 in three sequential steps. The subsequent crit-
ical focus was directed toward the synthesis of the pivotal intermediate (2S,3S)-epoxide 8.
While the initial consideration was the Sharpless epoxidation protocol employing an-
hydrous tert-butyl hydroperoxide (TBHP), its limitations for scale-up necessitated an
alternative strategy. Consequently, the authors employed a modified procedure involving
1.5 equivalents of 70% aqueous TBHP and Yamamoto’s vanadium catalyst L2-V at 0 ◦C for
72 h [8]. This innovative approach successfully furnished (2S,3S)-epoxide 8 with a yield
of 75% and an enantiomeric excess of 90%. Recrystallization enhanced further the enan-
tiomeric excess to 95%. Subsequently, an additional nine steps were executed to achieve
the desired product, Florfenicol 9, with an overall yield of 37% [12]. The successful total
synthesis of Florfenicol demonstrates the significant contribution of chiral BHA ligands
in the synthesis of important pharmaceutical compounds. The broad-spectrum antibiotic
properties and widespread applications of Florfenicol highlight the importance of efficient
synthetic methodologies to access such valuable compounds (Scheme 2) [13].
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2.3. Total Synthesis of (−)-Ophiodilactones A and B

In a study conducted by Hatakeyama in 2014 [14], the total synthesis of (−)-ophiodilactones
A and B was achieved using a chiral bishydroxamic acid (BHA) ligand. The synthesis
involved several key steps, including Stille coupling and asymmetric epoxidation. Pre-
vious reports have shown low enantioselectivity in the epoxidation step, prompting the
researchers to employ a method developed by Yamamoto and co-workers [8]. By utilizing
tert-butyl hydroperoxide and a vanadium catalyst in the presence of a BHA ligand, they
successfully obtained epoxy alcohol 12 with an improved enantioselectivity of 79%. Subse-
quently, a sequence of 11 steps led to the synthesis of ophiodilactone A 13. The synthesis
involved various transformations, including Swern oxidation, a Grignard reaction, and
hydrogenation, culminating in the desired compound 13. Furthermore, ophiodilactone
B 14 was obtained via the direct oxidative coupling reactions of C–H and Ar–H bonds
of ophiodilactone A. The strategic use of the BHA ligand in the asymmetric epoxidation
step played a pivotal role in improving the enantioselectivity and enabling the synthesis
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of ophiodilactones A and B. The use of the BHA ligand in the asymmetric epoxidation
step played a crucial role in improving the enantioselectivity of the synthesis. By imple-
menting the method developed by Yamamoto and co-workers, the researchers achieved
higher enantioselectivity in the formation of epoxy alcohol 12. This success enabled the
subsequent transformations, leading to the synthesis of γ-lactones 13 and 14 and ultimately
facilitating the synthesis of ophiodilactone A 13 (Scheme 3) [15].
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2.4. Synthesis of the Side Chain of Amphidinolide C

In the synthesis of the side chain of amphidinolide C, a complex natural product with
potent antineoplastic activity, the epoxidation of allylic alcohol 16 played a crucial role in
achieving the desired structure and functionality. However, the commonly used Sharpless
epoxidation method did not provide the required enantioselectivity for the formation of
epoxy alcohol 17. To overcome this challenge, Fenneteau et al. (2015) turned to the use of a
BHA ligand, specifically the L3-Vanadium complex, which is known for its ability to control
stereoselectivity in reactions. By incorporating the BHA ligand into the epoxidation reaction,
the researchers aimed to enhance the enantioselectivity and obtain the desired epoxy alcohol
17 with the desired stereochemistry. The BHA ligand, in conjunction with the Vanadium
catalyst, proved highly effective in improving the enantioselectivity of the epoxidation
reaction, resulting in a remarkable enantiomeric excess of 94% and a yield of 92%. This
successful application of the BHA ligand demonstrates its versatility and effectiveness
in achieving challenging synthetic goals, particularly in the synthesis of complex natural
products. The synthesis of the side chain of amphidinolide C continued with six additional
steps, ultimately yielding the desired side chain 18 (Scheme 4) [16]. Amphidinolide C
is, the first twenty-five-membered macrocyclic lactone with potent antineoplastic activity.
Its complex structure and biological activity make it an intriguing target for synthesis.
The utilization of the BHA ligand in the synthesis of the side chain of amphidinolide C
highlights its importance in controlling the stereochemistry and achieving the desired
structural features [17].



Chemistry 2023, 5 2706
Chemistry 2023, 5, FOR PEER REVIEW 8 
 

 

 

Scheme 4. Synthesis of the side chain of amphidinolide C. 

2.5. Partial Synthesis of (+)-Fusarisetin A 

In their study, Kohyama et al. (2015) utilized a novel methodology in the partial syn-

thesis of (+)-fusarisetin A, a pentacyclic fungal metabolite known for its intriguing biolog-

ical properties, including its role as an acinar morphogenesis inhibitor [18]. The research-

ers specifically focused on the transformation of  homoallylic alcohol 20, employing the 

conditions described by Yamamoto and coworkers [8]. By utilizing chiral bishydroxamic 

acid ligand L2, Zn(OtBu)4, and DMPU, they successfully formed the corresponding epox-

ide 21 with an impressive enantiomeric excess of 84% and a yield of 88%. Furthermore, 

through an additional twelve steps, the desired compound 22 was obtained, representing 

a significant milestone in the synthesis of (+)-fusarisetin A. These steps involved various 

transformations, including functional group manipulations, ring formations, and stereo-

chemical control, enabling the construction of the intricate pentacyclic structure of (+)-

fusarisetin A. Notably, this study revealed the critical role of the metal core in controlling 

the enantioselectivity of the reaction, with chiral BHA ligands L2 and hafnium catalyst 

leading to improved enantiomeric excesses (Scheme 5) [19]. The successful application of 

this methodology in the partial synthesis of (+)-fusarisetin A not only enhanced our un-

derstanding of the compound’s synthetic pathway but also highlighteds its potential for 

the efficient synthesis of complex natural products and other valuable compounds. 

Scheme 4. Synthesis of the side chain of amphidinolide C.

2.5. Partial Synthesis of (+)-Fusarisetin A

In their study, Kohyama et al. (2015) utilized a novel methodology in the partial
synthesis of (+)-fusarisetin A, a pentacyclic fungal metabolite known for its intriguing
biological properties, including its role as an acinar morphogenesis inhibitor [18]. The
researchers specifically focused on the transformation of homoallylic alcohol 20, employing
the conditions described by Yamamoto and coworkers [8]. By utilizing chiral bishydrox-
amic acid ligand L2, Zn(OtBu)4, and DMPU, they successfully formed the corresponding
epoxide 21 with an impressive enantiomeric excess of 84% and a yield of 88%. Furthermore,
through an additional twelve steps, the desired compound 22 was obtained, representing
a significant milestone in the synthesis of (+)-fusarisetin A. These steps involved var-
ious transformations, including functional group manipulations, ring formations, and
stereochemical control, enabling the construction of the intricate pentacyclic structure of
(+)-fusarisetin A. Notably, this study revealed the critical role of the metal core in controlling
the enantioselectivity of the reaction, with chiral BHA ligands L2 and hafnium catalyst
leading to improved enantiomeric excesses (Scheme 5) [19]. The successful application
of this methodology in the partial synthesis of (+)-fusarisetin A not only enhanced our
understanding of the compound’s synthetic pathway but also highlighteds its potential for
the efficient synthesis of complex natural products and other valuable compounds.
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2.6. Total Synthesis of 19,20-Epoxydocosapentanoic Acid

The total synthesis of fatty acids is a challenging task, especially when large quantities
of materials are required for biological assays. Within this context, the synthesis of specific
unsaturated fatty acids containing an epoxide group is of particular importance as they
play crucial roles as endogenous lipids [20]. To address this challenge, Cinelli et al. reported
the total synthesis of 19,20-epoxydocosapentanoic acid (19,20-EDP), which is a significant
compound with biological relevance. Previous synthetic routes for fatty acids do not
offer a direct method for the epoxidation of alcohols, resulting in poor outcomes. In their
study, the researchers focused on the transformation of homoallylic alcohol 24 into the
corresponding epoxy alcohols (S,R) and (R,S)-25. They employed L2 and ent-L2 ligands
in conjunction with Hf(OtBu)4 as the catalyst. Although the yield and enantioselectivity
achieved were modest and lower than the reported values, this study represented the
first report of utilizing BHA ligands in the total synthesis of these exciting compounds.
Scheme 6 illustrates the key steps involved in the total synthesis of 19,20-EDP. Despite
the challenges faced in achieving high yields and enantioselectivity, this work showcased
the potential of BHA ligands in the total synthesis of complex fatty acids, expanding
the synthetic scope and paving the way for the efficient synthesis of important bioactive
compounds (Scheme 6) [21].
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3. Asymmetric Epoxidation of Natural Products

In this section, we explore the role of hydroxamic acid (HA) and bis hydroxamic acid
(BHA) ligands, not only in the synthesis of natural products, but also in the enantiose-
lective epoxidation of key natural compounds. The application of HA and BHA ligands
extends beyond mere synthesis; it offers a strategic avenue for modifying the structures
of essential natural products. Through enantioselective epoxidation, these ligands enable
precise structural modifications, presenting opportunities to tailor the biological activities
of the resulting molecules. By examining three examples reported until now, we highlight
how HA and BHA ligands contribute not only to the construction of natural product
scaffolds, but also to the nuanced modification of their structures, thereby influencing their
biological properties.

3.1. Epoxidation of Phorbol Esters

In a pivotal study conducted in 2015, Wender et al. delved into the intricate realm
of diterpene epoxidation, focusing specifically on daphnanes and tiglianes at the C6–C7
position. The investigation meticulously probed the diastereoselectivity of the reaction,
strategically manipulating the steric size of the ligand to unveil its impact. The researchers
chose phorbol ester 27 as a test substrate, and the outcomes underscored the profound
influence of ligand selection on diastereoselectivity. Scheme 7 visually encapsulates this
influence, revealing that the utilization of V(V)-ligand L4 resulted in a diastereoselectivity
ratio of 89:11, favoring the formation of the 28-α-epoxide. This compelling observation
serves as a testament to the adept modulation of diastereoselectivity achieved by judiciously
varying the steric size of the ligand. In essence, this study contributes significantly to the
understanding of ligand design’s pivotal role in dictating the stereochemistry of epoxidation
reactions, particularly in the synthesis of diterpenes (Scheme 7) [22].
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3.2. Epoxidation of Squalene

In the intricate synthetic pathway illustrated in Scheme 8, the foundational biogenetic
precursor squalene 29, integral in the synthesis of steroids and polycyclic terpenoids, under-
went a transformation under specified conditions. This synthetic experiment culminated in
the formation of 2,3-epoxysqualene 30, showcasing a remarkable enantioselectivity of 76%.
Squalene, classified as a triterpene hydrocarbon, plays a pivotal role as an intermediate
in the biosynthesis of diverse biologically active molecules. To strategically introduce an
epoxide group at a specific position within the squalene molecule, the researchers metic-
ulously tailored reaction conditions conducive to this transformation. The optimization
of these conditions yielded the desired 2,3-epoxysqualene 30, demonstrating a substantial
enantioselectivity of 76%. This heightened enantioselectivity serves as a clear indicator of
the successful application of the chosen ligand or catalyst system in precisely controlling
the stereochemistry of the reaction (Scheme 8) [23].
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3.3. Epoxidation of Farnesol Derivatives

The regioselective synthesis of compounds featuring multiple olefin and alcohol
moieties stands as a formidable challenge in organic chemistry. In a seminal study by
Wang et al. in 2014, the potential of two farnesol derivatives, 31 and 33, as precursors
for such intricate compounds was systematically explored using a meticulously designed
catalyst system. Through the application of this catalyst system, the desired products
were obtained with striking regioselectivity. The synthetic approach involved the strategic
functionalization of specific positions on the farnesol derivatives, resulting in the creation of
compounds adorned with multiple olefin and alcohol moieties. The notable regioselectivity
achieved in this transformation underscores the efficiency and precision of the catalyst
system, unveiling novel avenues for the synthesis of complex molecules characterized by
diverse functionalities (Scheme 9) [24].
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4. Discussion

The application of hydroxamic acid (HA) and bishydroxamic acid (BHA) ligands in
total natural product synthesis signifies a realm teeming with possibilities for advancing
efficient synthetic methodologies. Ongoing research places a pronounced emphasis on
the design and refinement of BHA ligands, seeking to enhance catalytic properties and
broaden substrate scope. Structural modifications and the incorporation of diverse func-
tional groups stand as avenues for exploration, offering valuable insights into the factors
influencing reactivity and selectivity. These progressive strides aim to enrich the synthetic
toolbox, empowering chemists to access a broader array of natural product scaffolds with
heightened efficiency.

A promising trajectory for future research involves the exploration of alternative
metal catalysts in tandem with BHA ligands. While current attention revolves around
vanadium-based catalysts, delving into other transition metals holds the potential for
manipulating stereochemistry and achieving distinctive reactivity profiles. Initiatives to
develop more sustainable and readily available metal catalysts are underway, aligning with
the overarching objective of augmenting the practicality and scalability of BHA-mediated
transformations [5].

Beyond the realms of ligand and catalyst development, overcoming challenges associ-
ated with scalability and practicality is imperative for the widespread industrial adoption
of BHA ligands. Directing efforts towards formulating scalable and cost-effective synthetic
methodologies compatible with large-scale production is paramount. This involves metic-
ulous optimization of reaction conditions, catalyst loading, and purification strategies to
ensure consistently high yields and product purity.

An equally crucial avenue for future exploration involves the integration of BHA
ligands into multistep syntheses, applying them in the total synthesis of complex natural
products. Streamlining synthetic routes becomes pivotal, enabling the construction of
intricate natural product structures with precise stereochemical control. The synergistic
utilization of BHA ligands alongside other potent synthetic tools, such as Organocataly-
sis [25,26] and other transition metal-catalyzed enantioselective epoxidations [27], holds
substantial potential for unveiling novel synthetic strategies and expanding the horizons of
chemical synthesis.

Furthermore, the continuous pursuit of novel BHA designs aligns with the overarching
goal of adapting these ligands to alternative metal catalysts and sustainable synthetic
methodologies [5,28]. By fine-tuning ligand structures, researchers aspire to enhance metal–
ligand interactions, influencing catalytic outcomes and opening avenues for the use of
different transition metals. This evolution in ligand design not only broadens the scope of
potential applications, but also contributes to the development of more environmentally
friendly and economically viable synthetic processes.

The outlook for BHA ligands in total natural product synthesis is promising, present-
ing opportunities for advancements in ligand design, the exploration of alternative metal
catalysts, scalability optimization, and integration into multistep syntheses. Addressing
these challenges remains pivotal for propelling synthetic methodologies forward, facili-
tating the efficient and sustainable synthesis of complex natural products with significant
biological activities. The evolving landscape of BHA ligands continues to carve a path
toward innovative synthetic strategies, promising a future marked by breakthroughs in
total natural product synthesis.

5. Conclusions

In conclusion, the exceptional contributions of chiral hydroxamic acid (HA) ligands,
especially bis-hydroxamic acid (BHA) ligands, have emerged as indispensable catalysts in
the field of asymmetric synthesis, particularly in the synthesis of natural products. Their sig-
nificance lies in their unique ability to act as catalysts for enantioselective epoxidation, a key
step in the synthesis of complex molecules found in nature. Enantioselective epoxidation is
pivotal as it introduces oxygen functionality with precise stereochemistry, a critical feature
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often present in biologically active compounds. BHA ligands, with their distinctive molec-
ular structures and exceptional stereochemical control, provide a powerful tool for organic
chemists to achieve high levels of enantioselectivity, contributing to the synthesis of natural
products with well-defined stereochemical architectures. The versatility of BHA ligands
extends beyond their catalytic role in enantioselective epoxidation. Through numerous
case studies, it has become evident that these ligands play a multifaceted role, catalyzing
a range of transformations crucial for natural product synthesis. Their impact includes
improved reaction yields, heightened enantioselectivity, and more streamlined synthetic
routes. As research and development in this field progress, BHA ligands are poised to
continue shaping the landscape of asymmetric synthesis, with their role in facilitating
enantioselective epoxidation remaining central to the pursuit of efficient and selective
synthesis of natural products. The enduring importance of BHA ligands underscores their
potential for further innovations and groundbreaking contributions to the synthesis of
complex molecular architectures.
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