
Citation: Lee, M.; Suh, Y.; Jeon, M.

Item Response Analysis of a

Structured Mixture Item Response

Model with mirt Package in R. Psych

2024, 6, 377–400. https://doi.org/

10.3390/psych6010023

Academic Editor: Shenghai Dai

Received: 11 January 2024

Revised: 23 February 2024

Accepted: 4 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Item Response Analysis of a Structured Mixture Item Response
Model with mirtmirtmirt Package in RRR

Minho Lee 1,† , Yon Soo Suh 2,† and Minjeong Jeon 1,*

1 Department of Education, University of California, 457 Portola Avenue, Los Angeles, CA 90024, USA;
leemino72@ucla.edu

2 NWEA, 121 NW Everett Street, Portland, OR 97209, USA; yon.soo.suh@nwea.org
* Correspondence: mjjeon@ucla.edu
† These authors contributed equally to this work.

Abstract: Structured mixture item response models (StrMixIRMs) are a special type of constrained
confirmatory mixture item response theory (IRT) model for detecting latent performance differences
in a measurement instrument by characteristic item groups, and classifying respondents according
to these differences. In light of limited software options for estimating StrMixIRMs under existing
frameworks, this paper proposes reparameterizing it as a confirmatory mixture IRT model using
interaction effects between latent classes and item groups. The reparameterization allows for eas-
ier implementation of StrMixIRMs with multiple software programs that have mixture modeling
capabilities, including open-source ones. This widens the accessibility to these models to a broad
range of users and thus can facilitate research and applications of StrMixIRMs. This paper serves
two main goals: First, we introduce StrMixIRMs, focusing on the proposed reparameterization
based on interaction effects and its various extensions. Second, we illustrate use cases of this novel
reparameterization within the mirt 1.41 package in R by employing two empirical datasets. Detailed
R code with notes are provided for the applications along with an interpretation of the outputs.

Keywords: structured mixture item response model; mixture item response model; item response
data; latent classes; differentiation parameters; item groups; confirmatory method; interaction effects;
mirt package

1. Introduction

Mixture item response theory (IRT) models are among a family of models that combine
latent class analysis (LCA) with IRT [1–3] in order to account for systematic heterogeneity
in item response behaviors to measurement instruments. They assume that a population
being measured is comprised of discrete latent subpopulations or latent classes, with each
of them responding to an instrument in a qualitatively different way. This is realized by
allowing each latent class of respondents to have different item parameters as well as ability
distributions. That is, an IRT model is assumed to hold for each latent class, but the specific
IRT model varies across the classes. Mixture IRT models have both the advantages of LCA
and IRT, where individuals are not only classified into different latent groups with their
respective item parameters, but can also be located on a continuous latent ability scale
within a class. Thus, they can serve the dual purpose of diagnosis and comparison across
individuals [4–8].

Mixture IRT models have been utilized in psychological and educational settings,
predominantly in an exploratory fashion with no a priori assumptions about the source
or type of discrepancies in individuals’ responses. The purpose is the detection of la-
tent classes, typically by starting with a single-class solution to which more classes are
sequentially added until the best-fitting model is determined using various fit indices [6,9].
Such exploratory models only provide the most suitable (i.e., most different) set of latent
subpopulations, and thus, require the latent classes to be characterized after their extraction
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(e.g., [7]). Furthermore, in the process, exploratory mixture IRT models allow all item
parameters to differ across classes, leading to potential difficulties in model estimation and
interpretation. To address this, techniques such as regularization have been proposed in
order to induce some structure to the models and alleviate the burden (e.g., [10,11]).

1.1. Confirmatory Mixture Item Response Models

Contrarily, when the number and nature of latent classes can be pre-specified accord-
ing to theory or hypotheses (e.g., [5,12–14]), mixture IRTs can be used in a confirmatory
manner to verify their existence and characteristics. Often, these confirmatory models
are accompanied by additional constraints befitting the research question(s) at hand prior
to data analysis. Although the confirmatory approach is less common in mixture IRT
modeling, we point out that confirmatory applications are actually very commonplace, as
seen in confirmatory factor analysis and diagnostic classification models (DCMs) [15]. The
confirmatory nature coupled with added constraints makes these mixture IRT models more
interpretable than their exploratory counterparts that are solely data dependent [16].

In this paper, we focus on a specific type of constrained confirmatory mixture IRT
models [17–20], originating in the Saltus model by Wilson [19]. This model was initially
developed to detect discontinuities in performance depending on Piagetian developmental
stages [19,21,22]. The Saltus model is confirmatory in that it has a predetermined number
of latent classes and utilizes preset item groups designed to differentiate the latent classes
in line with theory. The latent classes are identified by performance differences on item
groups that are modeled to shift together, and in equal amounts, for each latent class. This
is achieved through Saltus or leap parameters, which impose additional constraints on item
parameters based on prior information on items and item–class relationships. In this way,
the Saltus model can provide nuanced, fine-grained information about respondents that
goes beyond their latent trait levels. The theory-driven approach in a Saltus model assumes
that the latent subpopulations are structured in some way, which are realized by the use
of corresponding item groups that place a specific structure on the model. Additional
constraints to item parameters on the basis of this structure across latent classes lead to
reduction in the number of parameters to be estimated compared to traditional mixture IRT
models. These two features make the Saltus model distinct from other existing confirmatory
mixture IRT models.

The theory-based nature and parsimony afforded by the Saltus model allows for testing
various hypotheses regarding structural differences between subpopulations of individuals,
which need not be limited to cognitive developmental settings [23]. The Saltus model can be
utilized to analyze any assessment data where a set of items (or item groups) are constructed
to elicit discrepant behaviors that illuminate structural differences between presumed
latent classes. The model can be useful, for example, for diagnostic classifications and
differential learning progression of individuals in cross-sectional and longitudinal contexts.
In addition, since its conception, various extensions have been proposed, including non-
Rasch models, polytomous item types, inclusion of person predictors and multiple latent
traits of interest [17,18], which have further widened the potential of the Saltus model.
However, the term “Saltus model” carries with it the connotation of cognitive growth. To
highlight the generalizability of Saltus models and their distinctive features, we instead
refer to the models from here on as structured mixture item response models (StrMixIRMs).
In addition, we refer to the Saltus parameters as differentiation parameters since the latent
classes are differentiated by the parameter values.

1.2. Implementation Challenges

Despite the potential utilities and benefits, StrMixIRMs have been underutilized in
applied research, exacerbated by difficulties in model estimation and implementation.
Researchers have shown that the StrMixIRM can be estimated without specialized software
but with general latent variable modeling programs [17,18,24]. For example, Jeon [17,18]
showed how StrMixIRMs and their various extensions can be fit using Mplus [25]. The
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main idea was to formulate the StrMixIRM as a confirmatory mixture IRT model with linear
constraints where differentiation parameters are defined by using equality constraints on
the differences in item intercept parameters across latent classes. This approach opened
up a new opportunity to employ StrMixIRMs and their extensions via a widely utilized,
general-purpose software program. Nonetheless, it is not without limitations. For example,
using equality constraints becomes somewhat cumbersome when a large number of items
and latent classes are involved. In addition, not many software programs allow for linear
equality constraints on item parameters, limiting its accessibility to a broader user group.

The current study aims to introduce an alternative parameterization of the StrMixIRM
that overcomes the software limitations by defining the differentiation parameters as
interaction effects in a two-way ANOVA context, where latent classes are the first factor and
the item groups are the second factor. We note that class memberships are unknown and
thus must be estimated in the model. More details of the proposed parameterization are
provided in the subsequent sections. This alternative parameterization is implementable in
many software programs that support mixture IRT models. In addition, conceptualizing
the StrMixIRM as a logistic linear regression with interaction effects may help readers who
are familiar with regression and ANOVA understand the model better. In order to promote
the use of StrMixIRMs, we demonstrate how the novel parameterization of the StrMixIRM
can be easily estimated in R [26], a freely available, open-source environment for statistical
computing and graphics. Specifically, we utilize the R package mirt [27] in this paper.

The rest of the paper is organized as follows: We begin with an introduction to Str-
MixIRMs with focus on the proposed reparameterization based on interaction effects,
followed by its demonstration using mirt [27] in R. Two empirical datasets are used with
the dual purpose of elaborating on the specifics of the StrMixIRM as well as showcasing
the different uses of the StrMixIRM. We provide detailed R codes centered around unidi-
mensional StrMixIRMs. Attention is also paid to hypothesis setting and interpretation of
results using the empirical datasets. We conclude the paper with a summary and discus-
sion on contributions, limitations and possible extensions. We also provide additional R
code (e.g., multidimensional applications) in the Supplemental Materials and the Github
repository (https://github.com/ysuh09/StrMixIRM, accessed on 10 January 2024). The
latter also includes Mplus implementations following the reparameterization as well as
Jeon’s [17,18] parameterization using linear equality constraints. They are used to confirm
the mirt results and verify the equivalence of our reparameterization with Jeon’s [17,18].

2. Theoretical Background

In this section, we introduce the StrMixIRM and its parameterization using linear
constraints. We then propose the new parameterization using interaction effects and show
its equivalence to the existing parameterization, along with potential extensions of the
StrMixIRM afforded by this new parameterization. For consistency of illustration, we focus
on the case with three latent classes and three item groups. However, the model can be
applied to more or less and/or non-equal number of latent classes and item groups.

2.1. Introduction to Structured Mixture Item Response Models
2.1.1. Mixture Item Response Models

The original StrMixIRM, proposed by Wilson [19], is based on the Rasch model, which
we also follow for the sake of simplicity. Let us begin with a mixture Rasch model [3] with
H latent classes. A mixture model consists of a measurement model, pertaining to the item
response probabilities, and a structural model, consisting of latent classes probabilities. The
measurement model for a mixture Rasch model is given by

logit(P(Yij = 1|θih)) = θih − β jh, (1)

where Yij is a dichotomous response of respondent i (i = 1, · · · , N) to item j (j = 1, · · · , J).
P(Yij = 1|θih) is the conditional probability of correct response by an individual i with
ability θih to item j. θih represents the latent trait of respondent i nested within latent class h

https://github.com/ysuh09/StrMixIRM
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(h = 1, · · · , H) with θih ∼ N(µh, σ2
h ) and β jh is the item i’s difficulty in latent class h. For

model identification, all µhs are fixed to 0. When H = 3, the linear predictors for classes
(dictating item response probabilities) are θi,h=1 − β j,h=1 for Class 1 (h = 1), θi,h=2 − β j,h=2
for Class 2 (h = 2), and θi,h=3 − β j,h=3 for Class 3 (h = 3), respectively.

Equation (1) is a conditional model given a respondent’s latent class. Since respondent
i’s latent class membership is unknown, the marginal probability of respondent i’s item
responses is given by

P(yi) =
H

∑
h=1

πh[
∫

θih

J

∏
j=1

P(Yij = 1|θih)
yij(1 −P(Yij = 1|θih))

1−yij N(µh, σ2
h )dθih], (2)

where πh is the latent class probability, yij is the realization of an item response, and
yi = (yi,j=1, · · · , yi,j=J)

′ is the item response vector of respondent i.

2.1.2. Structured Mixture Item Response Models

Compared to the mixture IRT model above, the StrMixIRM actively utilizes pre-
specified K item groups that are expected to differentiate respondents into H latent classes.
The item groups can be knowledge domains, cognitive skills, or item design factors for
which unobserved sub-populations of individuals are hypothesized to show differential
performance beyond their general proficiency on a test.

We assume item j belongs to one of K item groups. The StrMixIRM can then be
formulated as follows:

logit(P(Yijk = 1|θih)) = θih − β jk + τhk, (3)

where Yijk is an item response of respondent i to item j (j = 1, ..., Jk) within item group k
(k = 1, · · · , K), and β jk is the item location or difficulty of item j within item group k. As
before, θih represents a latent trait of respondent i in latent class h. However, this time, only
the first latent class’ mean (i.e., the reference class) is fixed at 0 (i.e., µh=1 = 0), while the
other µhs are freely estimated.

Here τhk is the differentiation parameter, which is the key parameter of the StrMixIRM.
The differentiation parameter represents the differential performance of latent class h (i.e.,
a focal latent class) from the reference class on item group k given latent trait θih. For model
identification, τhks for the first latent class (h = 1) and the first item group (k = 1) are
fixed at 0: τh=1,k = τh,k=1 = 0. In the case of H = 3 and K = 3, we have a total of four
differentiation parameters that are estimated. The linear predictors in Equation (3) can be
written for each latent class and item group as in Table 1. Based on the resulting latent trait
distributions and the differentiation parameters, researchers can test their hypotheses about
the subpopulations of interest. For example, if τh=2,k=2 in Table 1 is positive, it indicates
Class 2 has additional advantages in endorsing items in the second item group compared
to Class 1 beyond the general proficiency θih. Specific use case scenarios and detailed
interpretations are provided in Section 3.

Table 1. Linear predictors in the StrMixIRM for H = 3 and K = 3.

Item Group 1 (k = 1) Item Group 2 (k = 2) Item Group 3 (k = 3)

Class 1(h = 1) θi,h=1 − β j,k=1 θi,h=1 − β j,k=2 θi,h=1 − β j,k=3
Class 2 (h = 2) θi,h=2 − β j,k=1 θi,h=2 − β j,k=2 + τh=2,k=2 θi,h=2 − β j,k=3 + τh=2,k=3
Class 3 (h = 3) θi,h=3 − β j,k=1 θi,h=3 − β j,k=2 + τh=3,k=2 θi,h=3 − β j,k=3 + τh=3,k=3

Note. All τhks relating the first row and column are fixed to 0 for model identification.

Jeon [17] described τhk as the difference in the item group k’s item difficulty between
a focal latent class and the reference latent class. Here item difficulties are parameterized
using linear constraints, such that τhk = β jk(h)− β jk(h=1) where β jk(h) is the item j’s difficulty
for latent class h and h = 1 is the reference class. The differences are constrained to be
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equal across all j items in item group k, in order to estimate the differentiation parameters.
Jeon [17] demonstrated how this parameterization can be implemented in Mplus.

This approach, however, has the limitations mentioned previously. For example,
in mirt, one needs to specify custom codes within the package to enable constrained
optimization with equality constraints to define the differentiation parameters as constant
differences in item difficulties between item groups across latent classes. Such a set-up can
be challenging [28], especially when a large number of items and item groups are involved.
Even then, standard errors are not estimated for all model parameters in mirt.

2.2. Reparameterization: StrMixIRMs Using Interaction Effects between Latent Classes and
Item Groups

We propose a new parameterization of the StrMixIRM where the differentiation pa-
rameters (τhks) are treated as interaction effects between latent classes and item groups.
To do this, additional discrete latent variables for the interactions are introduced, and the
corresponding regression coefficient parameters are defined as the differentiation param-
eters. This new parameterization can be best understood in a two-way ANOVA context,
where latent classes are the first factor and the item groups are the second factor. Dummy
variables are used to indicate latent class and item group pairs, and the differentiation
parameters (regression coefficients) indicate their interaction effects. The main difference
with a conventional two-way ANOVA is that the dummy variables are latent because class
memberships are unknown and must be estimated with the model.

2.2.1. Mixture Item Response Models

Let us define binary latent variables aih such that aih = 1 if respondent i is nested
within latent class h, and aih = 0 otherwise. With this, we first reformulate the traditional
mixture Rasch model (i.e., Equation (1)) as,

logit(P(Yij = 1|θih, aih)) = θih − β j + λjhaih, (4)

where λjh is the regression coefficient of the binary latent variable aih. For model iden-
tification, we set ai,h=1 = 0 and λj,h=1 = 0. By setting β jh = β j − λjhaih, Equation (4) is
equivalent to the mixture Rasch model in Equation (1).

To explain this equivalence, with H = 3, the linear predictors for each class are
θi,h=1 − β j, θi,h=2 − β j + λj,h=2, and θi,h=3 − β j + λj,h=3 for Classes 1, 2, and 3, respectively.
First, we can see that θih is equal in both equations for all classes. Second, for Class 1
(h = 1), β j,h=1 in Equation (1) equals β j in Equation (4). Third, for other classes (h ̸= 1), β jh
in Equation (1) equals β j − λjh in Equation (4).

Readers familiar with multiple linear regression may notice that aih is the indicator
of the interaction effect (represented by λjh) between latent class h and item j, and −β j is
the intercept for item j. Assuming latent class membership as known for all respondents
when H = 3, Table 2 shows the values of aih with the linear predictors. As defined in
Table 2, aih can only be 1 when involved with latent classes that are not Class 1 (i.e., h ̸= 1).
Thus, λj,h=2 and λj,h=3 are the interaction effects between latent classes and item j. The
interpretation is consistent with that of linear regression. β j is the item difficulty of Class
1 (intercept in the conventional linear regression), and λjh is the additional difference of
Class h (h ̸= 1) from Class 1 over the main effects of class and item. As class membership is
unknown in advance, however, ai,h=2 and ai,h=3 (more generally aih for h ̸= 1) are binary
latent variables that need to be estimated from the data.
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Table 2. Dummy variables (aih) for the linear predictors in the mixture Rasch model for Item j.

Latent Class Logit
aih for λjh

λj,h=2 λj,h=3

h = 1 θi,h=1 − β j 0 0
h = 2 θi,h=2 − β j + λj,h=2 1 0
h = 3 θi,h=3 − β j + λj,h=3 0 1

2.2.2. Structured Mixture Item Response Models

With this in mind, we can derive the StrMixIRM based on the parameterization in
Equation (4) by introducing K item groups and reformulating Equation (3). We reiterate
that the parameters of interest are interaction effects between latent class h and item group
k (i.e., τhks). The measurement model of Equation (3) is reformulated as

logit(P(Yijk = 1|θih, aihk)) = θih − β jk + λjhkaihk, (5)

where aihk is a binary latent variable of respondent i within latent class h on item group k.
aihk = 1 if respondent i is nested within latent class h and responds to an item within item
group k, and aihk = 0 otherwise. λjhk is the regression coefficient of item j on aihk with an
equality constraint such that λhk = λjhk = λj′hk for all items j and j′ within item group k
(j ̸= j′). aihk and λjhk regarding h = 1 and k = 1 are fixed to 0 for model identification. The
equally constrained λhk is equivalent to the differentiation parameter τhk in Equation (3).

Table 3 presents the linear predictors for H = 3 and K = 3 of the StrMixIRM in
Equation (5). By comparing it with Table 1, we can see that λhk = τhk.

Table 3. Linear predictors in the StrMixIRM for H = 3 and K = 3 with the new parameterization.

Item Group 1 (k = 1) Item Group 2 (k = 2) Item Group 3 (k = 3)

Class 1 (h = 1) θi,h=1 − β j,k=1 θi,h=1 − β j,k=2 θi,h=1 − β j,k=3
Class 2 (h = 2) θi,h=2 − β j,k=1 θi,h=2 − β j,k=2 + λh=2,k=2 θi,h=2 − β j,k=3 + λh=2,k=3
Class 3 (h = 3) θi,h=3 − β j,k=1 θi,h=3 − β j,k=2 + λh=3,k=2 θi,h=3 − β j,k=3 + λh=3,k=3

Note. All λhks relating the first row and column are fixed to 0 for model identification. λhk = τhk .

Presenting Equation (5) by means of linear regression helps us understand the differ-
entiation parameter, τhk, as the interaction effect between latent class h and item group k.
Assuming class membership are known, Table 4 presents linear predictors of latent class
and item group pairs when H = 3 and K = 3. The last four columns in the table indicate
the values of aihk, which is essentially the same as the dummy variables of the interaction
effects in linear regressions for a two-way ANOVA. For instance, the column λh=2,k=3 only
consists of 1 for the second latent class (h = 2, the first factor) and the third item group
(k = 3, the second factor). As a result, θihs relate the sum of the main effect and residual
of latent class h (more specifically θih = µh + residual), β jks relate the main effect of item j
in item group k, and λhk = τhks are the interaction effects between latent class h and item
group k. Again, aihks are treated as latent because class membership is unknown.

Employing the new parameterization in existing software programs or packages
requires the following steps:

• First, introduce additional binary latent variables corresponding to item group k (aihk).
In mirt and Mplus, it is possible to set the Gaussian quadrature points to 1 for all aihk.
In Mplus, this can be achieved by constraining the mean and variance of a factor to
be 1 and 0, respectively. Example syntax for Mplus is provided in the Supplemental
Document (Listing S1).

• Second, impose equality constraints on the regression coefficients corresponding to
each aihk. Equality constraints on the regression coefficients are more commonly



Psych 2024, 6 383

available in existing software programs or packages, compared to equality constraints
on item difficulty differences.

• Third, set µh for h ̸= 1 to be freely estimated. In Section 3, we provide a step-by-step
illustration using mirt with detailed R codes and descriptions about the codes.

The steps above might seem complicated, but this approach is more flexible than the
linear constraint approach proposed previously. At a minimum, this new approach can be
employed with the mirt package in R, free of charge. We will also show below how many
extensions of the StrMixIRM can be estimated with the proposed implementation with the
mirt package.

Table 4. Dummy variables (aihk) for the linear predictors in the StrMixIRM for H = 3 and K = 3.

Latent Class Item Group Logit
aihk for λhk

λh=2,k=2 λh=2,k=3 λh=3,k=2 λh=3,k=3

h = 1
k = 1 θi,h=1 − β j,k=1 0 0 0 0
k = 2 θi,h=1 − β j,k=2 0 0 0 0
k = 3 θi,h=1 − β j,k=3 0 0 0 0

h = 2
k = 1 θi,h=2 − β j,k=1 0 0 0 0
k = 2 θi,h=2 − β j,k=2 + λh=2,k=2 1 0 0 0
k = 3 θi,h=2 − β j,k=3 + λh=2,k=3 0 1 0 0

h = 3
k = 1 θi,h=3 − β j,k=1 0 0 0 0
k = 2 θi,h=3 − β j,k=2 + λh=3,k=2 0 0 1 0
k = 3 θi,h=3 − β j,k=3 + λh=3,k=3 0 0 0 1

Note. All λhk = τhk .

2.3. Extensions and Coverage in mirt

Several extensions of the StrMixIRM have been proposed since Wilson [19] first intro-
duced the Rasch form of the model with dichotomously scored items. Extensions include
(a) 2PL IRT models (e.g., with slope differentiation parameters) [17], (b) models for polyto-
mous item responses [17,22] and (c) multidimensional IRT models [18]. We briefly describe
such extensions and then discuss the coverage of the various StrMixIRMs in the mirt
package. The model presentation makes use of the new parameterization proposed in
Section 2.2.

2.3.1. Two-Parameter Logistic IRT Models

Jeon [17] suggested a two-parameter logistic (2PL) version of the StrMixIRM, where
item slopes on θih are introduced. The measurement model is given by

logit(P(Yijk = 1|θih, aihk)) = αjkθih − β jk + τhkaihk, (6)

where αjk is the item slope of item j within item group k. As item slopes are introduced,
θih for the first latent class follows a standard normal distribution, N(0, 12). Means and
variances for other classes are freely estimated as in Equation (5). This model applies in
cases where researchers hypothesize items have different weights.

Jeon further extended Equation (6) by introducing slope differentiation parameters
that allow latent classes to differ in item slopes depending on item groups in addition to
item difficulty parameters. The measurement model is

logit(P(Yijk = 1|θih, aihk)) = (αjk + sτhk)θih − β jk + τhkaihk, (7)

where sτhk is the slope differentiation parameter of item group k on latent class h. This
model will be useful if researchers hypothesize, for example, that some item groups would
differentiate (better or worse) respondents with a higher latent trait from those with a lower
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latent trait. An alternative form of a Rasch version with slope differentiation parameters
can be written as

logit(P(Yijk = 1|θih, aihk)) = (1 + sτhk)θih − β jk + τhkaihk, (8)

where αjk is replaced with 1 because it is the Rasch StrMixIRM. Like Equation (5), the only
constraint is regarding the mean of the reference latent class (i.e., µ1 = 0), while others are
freely estimated. Hereafter, we call Equations (5)–(8) Rasch StrMixIRM, 2PL StrMixIRM,
2PL StrMixIRM with sτhk, and Rasch StrMixIRM with sτhk, respectively.

2.3.2. Polytomous Item Responses

Draney [22] and Jeon [17] expanded StrMixIRMs to their polytomous forms using
partial credit models (PCM) [29] and graded response models (GRM) [30]. Our novel
parameterization can also accommodate polytomous item types. For example, the GRM
with the Rasch StrMixIRM is given by

logit(P(Yijk ≥ m|θih, aihk)) = θih − β jkm + τhkaihk, (9)

where m is the m + 1th category (m = 0, ..., M − 1), and β jkm is the m + 1th category’s
threshold parameter in the cumulative logit function (β jk0 = −∞).

2.3.3. Multidimensionality

Jeon [18] also extended the StrMixIRM to incorporate multidimensional latent traits
with dimension-specific differentiation parameters, where the classification of respondents
can be made based on (a) the dimensions as a whole (single-membership) or (b) each dimen-
sion (mixed-membership). For example, the measurement model of single-membership
models with D dimensions is given by

logit(P(Yijk = 1|θidh, aidhk)) = θihd − β jk + τdhkaidhk, (10)

where θidh is the latent trait of respondent i within latent class h on dimension d
(d = 1, · · · , D), τdhk is the differentiation parameter of latent class h and item group k on
dimension d, and aidhk is the discrete latent indicator variable of respondent i within latent
class h for item group h on dimension d. The latent trait vector θih = (θi1h, · · · , θidh, · · · , θiDh)

′

follows a multivariate normal distribution, MVN(µh, Σh), where µh and Σh are the mean
vector and covariance matrix of θih, respectively. For model identification, µh = 0. In-
terested readers can refer to Jeon [18] for more in-depth discussion and Jeon, Draney, Wilson,
and Sun [31] for an application to adolescents’ developmental stages in deductive reasoning.

2.3.4. Coverage of StrMixIRM Extensions in mirt

The mirt package can handle a myriad of variations of the StrMixIRM using the
new parameterization in Section 2.2. Table 5 summarizes the package’s capabilities for
handling the aforementioned extended models. We note that the 2PL StrMixIRM with
sτhk (Equation (7)) can be fit in mirt, but the slope differentiation parameters have to be
defined as constant differences between item slopes across latent classes. This requires
additional codes similar to the parameterization using linear equality constraints. There-
fore, we limit the scope of our demonstration to the remaining three models: Rasch Str-
MixIRM (Equation (5)), Rasch StrMixIRM with sτhk (Equation (8)), and 2PL StrMixIRM
(Equation (6)). Interested readers can refer to the GitHub repository (https://github.com/
ysuh09/StrMixIRM, accessed on 10 January 2024) for codes and analysis results.

https://github.com/ysuh09/StrMixIRM
https://github.com/ysuh09/StrMixIRM
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Table 5. Possible StrMixIRMs in the mirt package.

Basis Model
Response Type Multidimensionality

Dichotomous Polytomous Single Mixed

Rasch Yes GRM and PCM Yes Yes
Rasch with sτhk Yes GRM and PCM Yes Yes

2PL Yes GRM and PCM Yes Yes
2PL with sτhk Yes GRM and PCM Yes Yes

Note. We removed StrMixIRM for simplicity. For the 2PL with sτhk, additional custom codes are required, and
standard errors are not calculated. “Yes” indicates that fitting the models is available, and “GRM and PCM”
indicates both GRM and PCM type models are available for polytomous items.

3. StrMixIRM in RRR Using mirtmirtmirt

In this section, we illustrate how to fit various StrMixIRMs using the mirt package.
For simplicity and clarity, we focus on the unidimensional counterparts of the first three
models in Table 5: Rasch, Rasch with sτhk, and 2PL StrMixIRMs. For multidimensional
models, interested readers can refer to the Supplemental Document (Listings S2–S4).

In mirt, estimation of mixture IRT models uses the main function multipleGroup

with "mixture-H" in the argument, where H is the number of latent classes. It is impor-
tant to take heed that since mixture IRT models are prone to local maxima, multiple random
starting values are highly recommended to ensure convergence at the global maximum [32].
In this paper, we run each model with 15 randomly generated multiple starting values and
choose the replication with the largest log-likelihood as our final result.

Furthermore, obtaining standard errors from mixture models with more than two
latent classes may result in a fatal error in the current version of mirt 1.41. Although this
issue has been resolved [33] (see Issue #247), users must directly install the updated version
from the mirt GitHub website [33]. Without standard errors, the model is readily estimated
with more than two latent classes in the current version. The default argument in the
multipleGroup function is to not calculate standard errors.

We use two datasets for demonstration: the Examination for the Certificate of Profi-
ciency in English (ECPE) data [34] from the GDINA [35] package and the verbal aggression
data [36] from the lme4 [37] package. The two datasets serve to show different contexts to
which the StrMixIRM can be applied. The ECPE data are used to fit the unidimensional
models for dichotomous item responses with three latent classes. The verbal aggression
data are used to fit the unidimensional models for polytomous item responses with two
latent classes.

3.1. Dichotomous Responses: ECPE Data Analysis

The ECPE data, widely used in DCMs [15,38–40], consist of item responses from
2922 respondents to 28 items measuring three skills or attributes: morphosyntactic, cohesive,
and lexical rules. Templin and Bradshaw [41] used the ECPE data to model attribute
hierarchies. More specifically, they hypothesized a linear attribute hierarchy where lexical
rules must be mastered to master cohesive rules, which in turn must be mastered before
mastering morphosyntactic rules.

To define item groups, we follow this argument about the hierarchical nature of the
attributes and refer to the Q-matrix used in Templin and Bradshaw [41]. The Q-matrix
is a matrix indicating item-attribute incidence; if an item measures certain attributes,
corresponding cells are indicated by 1, and 0 otherwise [15]. We define three item groups:
the lexical rules as the reference item group (k = 1), and the others as focal item groups in
which the cohesive rules constitute the second item group (k = 2) and the morphosyntactic
rules form the third item group (k = 3). In the case when an item measures multiple
attributes, the item group is set to the attribute furthest down the hierarchy. For example,
Item 1 measures both cohesive and morphosyntactic rules and is thus placed within the
morphosyntactic item group.
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The results from Templin and Bradshaw imply that solving cohesive and morphosyn-
tactic rules requires respondents to have additional cognitive skills beyond their overall
English proficiency. For the StrMixIRM analyses, we hypothesize there are three sub-groups
of respondents: (a) the highest performing class where respondents have all additional
required skills relative to the other two classes, (b) moderate performing class with respon-
dents lacking one or more additional skills (i.e., cohesive and/or morphosyntactic rules)
compared to the highest performing class but having more of one or more of these skills
relative to the lowest performing class, and (c) the lowest performing class where respon-
dents are lacking in all additional required skills compared to the other two classes. Beyond
overall English proficiency, we hypothesize that performance on cohesive and morphosyn-
tactic rules successfully differentiates respondents into these three latent classes. Examining
the latent trait distribution and differentiation parameters will help us understand the
extent to which lower-performing respondents show additionally lower performance on
the additional skill domains when compared to higher-performing respondents.

The below Listing 1 shows data loading and item group information.

Listing 1. ECPE: load data.

1 library(GDINA) # From GDINA package
2

3 ecpe <- GDINA::ecpe$dat # loading ECPE data
4

5 # Item group
6 # 1 - lexical: items 4, 5, 6, 9, 15, 18, 19, 22, 26, and 28
7 # 2 - cohesive: items 2, 8, 17, 23, and 24
8 # 3 - morphosyntactic: items 1, 3, 7, 10-14, 16, 20, 21, 25, and 27

3.1.1. Model Specification Using mirt.model Syntax

As StrMixIRMs are confirmatory mixture IRT models, more detailed model specifica-
tion is required using the mirt.model syntax. We first present the model syntax for the
Rasch StrMixIRM with detailed notes on what each component refers to. For subsequent
model syntaxes of the Rasch StrMixIRM with sτhk and 2PL StrMixIRM, we provide the
model syntax with notes focused on lines that differ from the Rasch StrMixIRM. Model
syntaxes are realizations of Equations (5), (6) and (8). Listing 2 presents the input model
syntax of the Rasch StrMixIRM.

• Lines 5 to 7 indicate items loaded on the latent variables. F1 , T2 , and T3 indicate
θih, aih2, and aih3, respectively. The corresponding slopes can be found in subsequent
lines as a1 , a2 , and a3 , following the order of the input latent variables.

• Line 9 constrains item intercepts to be equal across latent classes (β jk).
• Lines 11 and 12 fix the slope of F1 to be 1 as defined in the Rasch StrMixIRM. In

the case of the two other models, this part will be replaced (see below). MIXTURE_1
indicates the first latent class (reference class), and MIXTURE_2 and MIXTURE_3 are
the respective focal latent classes.

• Lines 14 and 15 fix the slopes of T2 and T3 for the reference latent class to be 0 for
model identification, leading to their differentiation parameters being 0.

• Lines 17 to 18 constrain the slopes of T2 and T3 for the focal classes to be equal across
the loaded items within latent classes. This leads to the differentiation parameters for
the focal classes.

• Lines 20 to 22 model the latent trait distributions. In mirt, the default setting is
a standard normal distribution for each latent variable with covariances between
latent variables set to 0. Per order of input latent variables, the mean and variance
are represented by MEAN_F and COV_FF where F indicates the Fth latent variable.
Covariances between the Fth and F’th latent variables are represented by COV_FF’ . In
the context of this paper, mean and variance regarding θih are only specified (i.e., F1 ).
For the discrete latent variables, we can leave them at the default setting and only
need to define quadrature points in Section 3.1.2.
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• Line 20 specifies the latent trait distribution of the reference class. For model iden-
tification, µ1 = 0 so that only the variance is freely estimated: FREE [MIXTURE_1]
= (GROUP, COV_11) . In the case of the 2PL StrMixIRM, this line is removed.

• Lines 21 and 22 specify the distribution of the focal classes. Both mean and variance
are freely estimated.

Listing 2. ECPE: Rasch StrMixIRM syntax.

1 # load the package
2 library(mirt)
3

4 # mirt model syntax for Rasch model
5 mod.syn <- "F1 = 1-28
6 T2 = 2,8,17,23,24
7 T3 = 1,3,7,10,11,12,13,14,16,20,21,25,27
8

9 CONSTRAINB = (1-28, d)
10

11 START [MIXTURE_1,MIXTURE_2,MIXTURE_3] = (1-28, a1, 1)
12 FIXED [MIXTURE_1,MIXTURE_2,MIXTURE_3] = (1-28, a1)
13

14 START [MIXTURE_1] = (2,8,17,23,24, a2, 0),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3, 0)

15 FIXED [MIXTURE_1] = (2,8,17,23,24, a2),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3)

16

17 CONSTRAIN [MIXTURE_2] = (2,8,17,23,24, a2),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3)

18 CONSTRAIN [MIXTURE_3] = (2,8,17,23,24, a2),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3)

19

20 FREE [MIXTURE_1] = (GROUP , COV_11)
21 FREE [MIXTURE_2] = (GROUP , MEAN_1), (GROUP , COV_11)
22 FREE [MIXTURE_3] = (GROUP , MEAN_1), (GROUP , COV_11)"

For the Rasch StrMixIRM with sτhk (Equation (8)), Lines 11 and 12 should be replaced
as in Listing 3 since the model introduces slope differentiation parameters.

Compared to Lines 11 and 12 in Listing 2, Lines 8 to 15 in Listing 3 show that

• Slope parameters are fixed to 1 for the reference item group for all latent classes (Lines
8 and 9),

• Slope parameters are fixed to 1 for the focal item groups in the reference latent class
(Lines 11 and 12),

• Slope parameters are freely estimated for the focal item groups in the focal latent
classes but constrained to be equal within latent classes and item groups (Lines 14 and
15) to produce the slope differentiation parameters.

The 2PL StrMixIRM (Equation (6)) introduces item slopes and constrains them to
be equal across latent classes, so the first latent class’ latent distribution must be N(0, 12)
for model identification. For this, Lines 11–12 in Listing 2 become Line 7, and Line 20 is
removed as in Listing 4.

Elaborating, compared to Lines 11, 12, and 20 in Listing 2, Listing 4 shows that

• Slope parameters are freely estimated but constrained to be equal between latent
classes (Line 7),

• Line 20 of Listing 2 is removed, meaning that the latent trait distribution of the
reference latent class is N(0, 12).
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Listing 3. ECPE: Rasch StrMixIRM with sτhk syntax.

1 # mirt model syntax for Rasch model with slope differentiation parameters
2 mod.syn <- "F1 = 1-28
3 T2 = 2,8,17,23,24
4 T3 = 1,3,7,10,11,12,13,14,16,20,21,25,27
5

6 CONSTRAINB = (1-28, d)
7

8 START [MIXTURE_1,MIXTURE_2,MIXTURE_3] = (4,5,6,9,15,18,19,22,26,28, a1, 1)
9 FIXED [MIXTURE_1,MIXTURE_2,MIXTURE_3] = (4,5,6,9,15,18,19,22,26,28, a1)

10

11 START [MIXTURE_1] = (2,8,17,23,24,1,3,7,10,11,12,13,14,16,20,21,25,27, a1,
1)

12 FIXED [MIXTURE_1] = (2,8,17,23,24,1,3,7,10,11,12,13,14,16,20,21,25,27, a1)
13

14 CONSTRAIN [MIXTURE_2] = (2,8,17,23,24, a1),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a1)

15 CONSTRAIN [MIXTURE_3] = (2,8,17,23,24, a1),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a1)

16

17 START [MIXTURE_1] = (2,8,17,23,24, a2, 0),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3, 0)

18 FIXED [MIXTURE_1] = (2,8,17,23,24, a2),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3)

19

20 CONSTRAIN [MIXTURE_2] = (2,8,17,23,24, a2),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3)

21 CONSTRAIN [MIXTURE_3] = (2,8,17,23,24, a2),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3)

22

23 FREE [MIXTURE_1] = (GROUP , COV_11)
24 FREE [MIXTURE_2] = (GROUP , MEAN_1), (GROUP , COV_11)
25 FREE [MIXTURE_3] = (GROUP , MEAN_1), (GROUP , COV_11)"

Listing 4. ECPE: 2PL StrMixIRM syntax.

1 # mirt model syntax for 2PL model
2 mod.syn <- "F1 = 1-28
3 T2 = 2,8,17,23,24
4 T3 = 1,3,7,10,11,12,13,14,16,20,21,25,27
5

6 CONSTRAINB = (1-28, d)
7 CONSTRAINB = (1-28, a1)
8

9 START [MIXTURE_1] = (2,8,17,23,24, a2, 0),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3, 0)

10 FIXED [MIXTURE_1] = (2,8,17,23,24, a2),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3)

11

12 CONSTRAIN [MIXTURE_2] = (2,8,17,23,24, a2),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3)

13 CONSTRAIN [MIXTURE_3] = (2,8,17,23,24, a2),
(1,3,7,10,11,12,13,14,16,20,21,25,27, a3)

14

15 FREE [MIXTURE_2] = (GROUP , MEAN_1), (GROUP , COV_11)
16 FREE [MIXTURE_3] = (GROUP , MEAN_1), (GROUP , COV_11)"

3.1.2. Model Estimation

Listing 5 shows code for running the StrMixIRMs with 15 random starting points.
These codes do not differ depending on the StrMixIRMs defined above.
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Listing 5. ECPE: Calibration.

1 # Quadrature points: 145s for the latent trait [-8, 8] / 1 for two discrete
latent variables

2 quad <- cbind(seq(-8, 8, length.out = 145), 1, 1)
3

4 # Analysis with multiple random starting points (15)
5 ecpe.out <- vector(mode = "list", length = 15)
6 ecpe.ll <- NULL
7 set.seed (2023)
8 for(r in 1:15){
9 # running model with mirt

10 ecpe.out[[r]] <-
11 mirt:: multipleGroup(data = ecpe , # response data object
12 model = mod.syn , # mirt model syntax
13 SE=TRUE , # calculate standard errors
14 dentype = "mixture -3", # mixture IRT for 3 classes
15 technical = list(customTheta = quad , # specified

quadratures
16 NCYCLES = 2000) , # max number of

iterations
17 GenRandomPars = TRUE) # random starting values
18

19 # save log -likelihood at convergence
20 ecpe.ll <- c(ecpe.ll, mirt:: extract.mirt(ecpe.out[[r]], what="logLik"))
21 }

• Line 2 manually defines the quadrature points for the primary latent trait θih (column
1) and discrete latent variables aihk (columns 2 and 3). Because mirt does not allow
adaptive quadrature by iterations, we set a wide range and large number of quadrature
points to guarantee a sufficient level of precision for estimating means and variances,
in particular for the case that focal classes’ mean and variance parameters are large.
Users can change the range and number of quadrature points as needed. By setting
the second and third columns (i.e., aih2 and aih3) to have only one quadrature point,
the standard EM algorithm [42] only evaluates the one quadrature point, resulting in
the discrete latent variables.

• Lines 5 to 20 estimate the StrMixIRMs using the mirt::multipleGroup function.
Because of the possibility of local maxima, we fit the model with 15 starting points.

• Lines 11 to 17 include the function arguments for the mirt::multipleGroup func-

tion. data = ecpe is the item response data (Line 11). model = mod.syn is the

mirt model syntax (Line 12). SE=TRUE is to obtain standard errors of estimates
(Line 13). The default is Oakes’ method [43,44]. dentype = "mixture-3" indicates
the estimated model is a mixture IRT model with three latent classes (Line 14).

• Lines 15 to 16 include the technical argument. customTheta = quad commands

mirt to use the quadrature points specified in Line 2 (Line 15). NCYCLES = 2000 sets
the number of iterations to be 2000 (Line 16); the default setting is 500, but we increase
it to promote convergence.

• Line 17, GenRandomPars = TRUE , refers to randomly generated starting values.
• Line 20 stores the log-likelihood value at convergence for each replication. The

replication with the highest log-likelihood is selected as the output.

Once model estimation is completed, the results can be printed using Listing 6.
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Listing 6. ECPE: Model output.

1 # result with the highest log -likelihood
2 highest <- which(ecpe.ll == max(ecpe.ll))
3

4 # select the best output
5 out <- ecpe.out[[ highest ]]
6

7 # model information
8 mirt:: extract.mirt(out , what="nest") # the number of unique parameters
9 mirt:: extract.mirt(out , what="logLik") # log -likelihood

10 mirt:: extract.mirt(out , what="AIC") # AIC
11 mirt:: extract.mirt(out , what="BIC") # BIC
12 mirt:: extract.mirt(out , what="SABIC") # SABIC
13

14 # Estimates and SE
15 out.coef <- mirt::coef(out , printSE=T)
16

17 # item slope (in the case of 2PL)
18 slope <- NULL
19 for(i in 1:28){
20 slope <- rbind(slope , out.coef[["MIXTURE_1"]][[i]][, "a1"])
21 }
22

23 # item intercept (a negative of item difficulty)
24 int <- NULL
25 for(i in 1:28){
26 int <- rbind(int , out.coef[["MIXTURE_1"]][[i]][, "d"])
27 }
28

29 # Intercept Tau parameter
30 out.coef[["MIXTURE_2"]][[2]][ , "a2"] # tau22
31 out.coef[["MIXTURE_2"]][[1]][ , "a3"] # tau23
32 out.coef[["MIXTURE_3"]][[2]][ , "a2"] # tau32
33 out.coef[["MIXTURE_3"]][[1]][ , "a3"] # tau33
34

35 # Slope Tau parameter (in the case of slope differentiation parameters)
36 out.coef[["MIXTURE_2"]][[2]][ , "a1"] # stau22
37 out.coef[["MIXTURE_2"]][[1]][ , "a1"] # stau23
38 out.coef[["MIXTURE_3"]][[2]][ , "a1"] # stau32
39 out.coef[["MIXTURE_3"]][[1]][ , "a1"] # stau33
40

41 # Latent trait distribution
42 out.coef[["MIXTURE_1"]][[28+1]] # for the class 1 (reference)
43 out.coef[["MIXTURE_2"]][[28+1]] # for the class 2 (focal 1)
44 out.coef[["MIXTURE_3"]][[28+1]] # for the class 3 (focal 2)
45

46 # class probability
47 exp(c(out.coef[["MIXTURE_1"]][[28+1]][1 , "PI"],
48 out.coef[["MIXTURE_2"]][[28+1]][1 , "PI"],
49 out.coef[["MIXTURE_3"]][[28+1]][1 , "PI"]))/
50 sum(exp(c(out.coef[["MIXTURE_1"]][[28+1]][1 , "PI"],
51 out.coef[["MIXTURE_2"]][[28+1]][1 , "PI"],
52 out.coef[["MIXTURE_3"]][[28+1]][1 , "PI"])))

• Lines 2 and 5 select the output of the iteration with the highest log-likelihood.
• Lines 8 to 12 print the number of estimated parameters and model fit indices (e.g., AIC,

BIC, and SBIC).
• Line 15 provides the model parameter estimates with standard errors.
• Lines 18 to 21 give the slope estimates. This is meaningful when the 2PL StrMixIRM

is fit.
• Lines 24 to 27 produce the intercept estimates (i.e., −β jk).
• Lines 30 to 33 give the differentiation parameters. Item groups 2 and 3 are related to

the second latent variable ( "a2" ) and the third latent variable ( "a3" ), respectively.
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• Lines 36 to 39 provide the slope differentiation parameters. “est − 1” results in the
slope differentiation parameters (see Equation (8)). Standard errors are not affected by
subtraction.

• Lines 42 to 44 are to obtain the estimates for the latent trait distributions. The estimates
are stored in the last element (the number of items + 1). The only parameters of interest
are MEAN_1 , COV_11 , and PI . PI is the coefficient for the class probability on the
multinomial logit model.

• Lines 46 to 52 give the latent class probabilities, πhs.

Table 6 summarizes the final estimated results of the three models. For simplicity, only
structural parameters (i.e., latent class probabilities, latent trait distribution parameters,
and differentiation parameters) are included. Item parameter estimates are located in the
Supplemental Document (Tables S2 and S5).

Table 6. ECPE: Model parameter estimates.

Rasch Rasch with sτhk 2PL

1. Model fit Value Value Value

N.par 39 43 66
Log-lik −42,635.12 −42,629.41 −42,463.00

AIC 85,348.25 85,344.83 85,058.00
BIC 85,581.47 85,601.97 85,452.68

SBIC 85,457.55 85,465.34 85,242.97

2. Model parameters EST SE EST SE EST SE

Class
probabilities

π1 0.56 - 0.54 - 0.49 -
π2 0.32 - 0.30 - 0.33 -
π3 0.12 - 0.17 - 0.19 -

Latent
trait
distributions

µ1 0.00 - 0.00 - 0.00 -
σ2

1 0.34 0.01 0.57 0.02 1.00 -
µ2 0.43 0.04 −0.66 0.03 1.04 0.10
σ2

2 1.09 0.05 0.85 0.03 3.85 0.23
µ3 −1.60 0.02 0.34 0.07 −3.49 0.05
σ2

3 0.19 0.01 1.71 0.11 0.81 0.03

Differentiation
parameters

τ22 0.03 0.15 0.52 0.20 −0.40 0.17
τ23 0.88 0.08 −0.55 0.11 0.64 0.11
τ32 0.99 0.13 0.89 0.19 1.28 0.17
τ33 0.89 0.08 1.04 0.14 1.23 0.13
sτ22 - - −0.27 0.10 - -
sτ23 - - −0.57 0.05 - -
sτ32 - - −0.42 0.13 - -
sτ33 - - −0.07 0.11 - -

Note. For the 2PL StrMixIRM, the original analysis seemed to converge at a local maximum; the largest log-
likelihood is substantially smaller than that of Mplus. Therefore, we re-analyzed the data by utilizing the output
from the Rasch StrMixIRM as the starting values (see the GitHub repository). The presented output are the results
of re-analysis.

Interpretation of results is discussed using the Rasch StrMixIRM result as an example.
To determine the meaning of the latent classes, we should look at the latent trait distri-
butions and differentiation parameters together rather than examining each parameter
separately. Examining the means of the latent classes, Class 2 shows the highest overall
performance (µ̂2 = 0.43), while Class 3 shows the lowest overall performance (µ̂3 = −1.60)
on the test. Differentiation parameters for cohesive rules item group (k = 2) suggest that
given θih, Class 2 performs similarly to Class 1 (τ̂22 = 0.03) whereas Class 3 has better
performance than Class 1 (τ̂32 = 0.99). Differentiation parameters on morphosyntactic
rules (k = 3) suggest that both focal classes (i.e., Class 2 and Class 3) demonstrate better
performance on corresponding items (τ̂23 = 0.88 and τ̂33 = 0.89) given θih.
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Solely relying on the size and direction of the differentiation parameters leads to
incorrect results because it ignores the overall performance represented by µh. For instance,
Class 3 has positive differentiation parameters on both domains but also has a negative
latent mean. Therefore, it is necessary to compare the sum of µh and τhk so that the latent
classes are accurately evaluated. Table 7 and Figure 1 present each latent class’ average
performance on each of the three item groups. The ordering of latent classes from highest
to lowest performance is equal in every item group: Class 2, followed by Class 1, and
lastly, Class 3. Comparing Class 1 to Class 2, the relative outperformance of Class 2 over
Class 1 is similar in the lexical and cohesive rules (on average, 0.43 and 0.46, respectively)
and remarkable in morphosyntactic rules (1.31). This implies that Class 1 respondents
mastered the lexical and cohesive rules but did not master morphosyntactic rules, which
are indicated to be the most difficult skill to master.

Table 7. ECPE: Average performance of latent classes on each domain, µ̂h + τ̂hk.

Item Group

Lexical Cohesive Morphosyntactic

Class 1 0.00 0.00 0.00
Class 2 0.43 0.46 1.31
Class 3 −1.60 −0.61 −0.71
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Figure 1. ECPE: Average performance of latent classes on each domain, µ̂h + τ̂hk. Red, green, and
blue lines are of Classes 1, 2, and 3, respectively.
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Inspecting the model parameter results, our hypotheses are confirmed. Respondents
are clearly separated into the three latent classes based on their performance on cohesive
and morphosyntactic rules: the highest (Class 2), moderate (Class 1), and lowest (Class 3)
performing classes. Respondents from Classes 2 and 3 show consistent performance
across all domains; they seem to have mastered (Class 2) or not mastered (Class 3) all the
additional skills. Respondents from Class 1 show high performance in the lexical and
cohesive rules compared to Class 3 but somewhat low performance in the morphosyntactic
rules in comparison to Class 2.

3.2. Polytomous Responses: Verbal Aggression Data

The verbal aggression data has widely been used in IRT model applications [36,45,46]
that employ mixture IRT models [5,17,18]. A total of 316 individuals responded to 24 items
nested within three crossed factors: situation types (‘Self-to-lame’ and ‘Other-to-blame’)
in four situations (‘Bus’, ‘Train’, ‘Store’, and ‘Operator’); behavior types (‘Curse’, ‘Scold’,
and ‘Shout’); and behavior modes (‘Want’ and ‘Do’). Each item has three categories: ‘No’
(0), ‘Perhaps’ (1), and ‘Yes’ (2). Among these factors, Jeon [17] hypothesizes ‘Do’ behavior
would highlight additional differences in verbal aggression between respondents beyond
their overall tendency because ‘Do’ behavior can cause more serious damage than ‘Want’
behavior. We follow Jeon’s [17] hypothesis that the focal item group of ‘Do’ items can
differentiate latent classes and use their polytomous item responses for illustration of the
aforementioned three models using GRMs (Equation (9)) in mirt. Listing 7 presents the
loading data and item information.

Listing 7. Verbal Aggression: load data.

1 library(lme4)
2 data(VerbAgg)
3

4 colnames(VerbAgg)
5 # Anger: Anger score -> person covariate
6 # Gender: Gender -> person covariate
7 # item: item name
8 # resp: subject response -> polytomous no (0) < perhaps (1) < yes (2)
9 # id: respondent id

10 # btype: behavior type -> item covariate (curse , scold , shout)
11 # situ: situation type -> item covariate (other , self)
12 # mode: behavior mode -> item covariate (want , do)
13 # r2: dichotomous item responses -> N (0), Y(1)
14

15 # use only polytomous item responses
16 verb <- VerbAgg[, c("id", "item", "resp")]
17

18 # recode polytomous item responses
19 verb$resp <- ifelse(verb$resp == "no", 0,
20 ifelse(verb$resp == "perhaps", 1, 2))
21

22 # long to wide
23 verb.wide <- reshape(verb , idvar = "id", timevar="item", direction="wide")
24 verb.wide <- verb.wide[,-1] # remove id column
25 colnames(verb.wide)
26

27 # Item group
28 # ig1 (want items): 1-12
29 # ig2 (do items): 13-24

3.2.1. Model Specification

The mirt.model syntax for model specification and running models resembles that of
the ECPE data example (Section 3.1). Therefore, we underscore changes for the polytomous
item response analyses by focusing on Listing 8 that presents model syntax code for the
Rasch StrMixIRM.
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Listing 8. Verbal aggression: Rasch StrMixIRM syntax.

1 # mirt model syntax for Rasch model
2 mod.syn <- "F1 = 1-24
3 T2 = 13-24
4

5 CONSTRAINB = (1-24, d1)
6 CONSTRAINB = (1-24, d2)
7

8 START [MIXTURE_1, MIXTURE_2] = (1-24, a1, 1)
9 FIXED [MIXTURE_1, MIXTURE_2] = (1-24, a1)

10

11 START [MIXTURE_1] = (13-24, a2, 0)
12 FIXED [MIXTURE_1] = (13-24, a2)
13

14 CONSTRAIN [MIXTURE_2] = (13-24, a2)
15

16 FREE [MIXTURE_1] = (GROUP , COV_11)
17 FREE [MIXTURE_2] = (GROUP , MEAN_1), (GROUP , COV_11)"

• Lines 2 and 3 indicate the name of the latent variable and items loaded on that
latent variable.

• Lines 5 and 6 constrain item intercepts to be equal across latent classes. We note that
for both PCMs and GRMs, mirt denotes intercepts corresponding to the second and
third categories as d1 and d2 , respectively.

• The rest of the lines are similar to that of ECPE model syntax (Listing 2). As this
analysis assumes two latent classes, we only have MIXTURE_1 and MIXTURE_2 .

• For the Rasch with sτhk and 2PL StrMixIRMs, the model syntaxes mimic those of the
ECPE example (refer to Listings 3 and 4).

3.2.2. Model Estimation

Listing 9 displays how to run models with a specified model syntax (e.g., Listing 8).

Listing 9. Verbal aggression: calibration.

1 # Quadrature points: 145s for the latent trait [-8, 8] / 1 for one discrete
latent variable

2 quad <- cbind(seq(-8, 8, length.out = 145), 1)
3

4 # Analysis with multiple random starting points (15)
5 verb.out <- vector(mode = "list", length = 15)
6 verb.ll <- NULL
7 set.seed (2023)
8 for(r in 1:15){
9 # running model with mirt

10 verb.out[[r]] <-
11 mirt:: multipleGroup(data = verb.wide , # response data object
12 model = mod.syn , # mirt model syntax
13 SE=TRUE , # calculate standard errors
14 #itemtype = "gpcm", # for partial credit models
15 dentype = "mixture -2", # mixture IRT for 2 classes
16 technical = list(customTheta = quad , # specified

quadratures
17 NCYCLES = 1000) , # max number of

iterations
18 GenRandomPars = TRUE) # random starting values
19

20 # save log -likelihood at convergence
21 verb.ll <- c(verb.ll, mirt:: extract.mirt(verb.out[[r]], what="logLik"))
22 }
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We again use 15 random starting points and select the replication with the highest
log-likelihood. The codes are mostly similar to those of the ECPE example, except for the
following:

• There is one discrete latent variable (Line 2).
• data has been changed (Line 11).
• The default is a GRM, but itemtype = "gpcm" can be added for the PCM (Line 14).

• dentype equals "mixture-2" because we only assume two latent classes (Line 15).

• NCYCLES = 1000 in this analysis as the data size is smaller than that of the ECPE
(Line 17).

Users can refer to Listing 10 to obtain outputs.

Listing 10. Verbal aggression: model output.

1 # result with the highest log -likelihood
2 highest <- which(verb.ll == max(verb.ll))
3

4 # select the best output
5 out <- verb.out[[ highest ]]
6

7 # model information
8 mirt:: extract.mirt(out , what="nest") # the number of unique parameters
9 mirt:: extract.mirt(out , what="logLik") # log -likelihood

10 mirt:: extract.mirt(out , what="AIC") # AIC
11 mirt:: extract.mirt(out , what="BIC") # BIC
12 mirt:: extract.mirt(out , what="SABIC") # SABIC
13

14 # Estimates and SE
15 out.coef <- mirt::coef(out , printSE=T)
16

17 # item slope (in the case of 2PL)
18 slope <- NULL
19 for(i in 1:24){
20 slope <- rbind(slope , out.coef[["MIXTURE_1"]][[i]][, "a1"])
21 }
22

23 # item intercepts (a negative of item difficulty)
24 int1 <- NULL # for the second category
25 int2 <- NULL # for the third category
26 for(i in 1:24){
27 int1 <- rbind(int1 , out.coef[["MIXTURE_1"]][[i]][, "d1"])
28 int2 <- rbind(int2 , out.coef[["MIXTURE_1"]][[i]][, "d2"])
29 }
30

31 # Intercept Tau parameter
32 out.coef[["MIXTURE_2"]][[13]][ , "a2"] # tau22
33

34 # Slope Tau parameter (in the case of Rasch with slope differentiation
parameters)

35 out.coef[["MIXTURE_2"]][[13][ , "a1"] # stau22
36

37 # Latent trait distribution
38 out.coef[["MIXTURE_1"]][[24+1]] # for the class 1 (reference)
39 out.coef[["MIXTURE_2"]][[24+1]] # for the class 2 (focal)
40

41 # class probability
42 exp(c(out.coef[["MIXTURE_1"]][[24+1]][1 , "PI"],
43 out.coef[["MIXTURE_2"]][[24+1]][1 , "PI"]))/
44 sum(exp(c(out.coef[["MIXTURE_1"]][[24+1]][1 , "PI"],
45 out.coef[["MIXTURE_2"]][[24+1]][1 , "PI"])))
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Table 8 presents the final estimated results for each of the three models (i.e., Rasch,
Rasch with sτhk, and 2PL StrMixIRMs). Again, only structural parameter estimates are
included for simplicity. Item parameter estimates can be found in the supplementary
document (Tables S4 and S6).

Once more, we only examine the Rasch StrMixIRM results. Considering the means
of θih do not have a statistically significant difference (µ̂2 = −0.11), the positive differenti-
ation parameter (τ̂22 = 1.74) clearly shows that respondents in Class 2 are more likely to
respond to higher response categories for ‘Do’ items compared to those in Class 1. In other
words, Class 2 respondents are more likely to exhibit ‘Do’ verbally aggressive behaviors
when confronted with frustrating situations. Like this, ‘Do’ items can clearly differentiate
respondents prone to displaying more serious behaviors (Class 2).

Table 8. Verbal aggression: model parameter estimates.

Rasch Rasch with sτhk 2PL

1. Model fit Value Value Value

N.par 53 54 66
Log-lik −6255.40 −6250.63 −6228.37

AIC 12,616.81 12,609.27 12,608.74
BIC 12,815.86 12,812.08 12,894.18

SBIC 12,647.76 12,640.80 12,653.12

2. Model parameters EST SE EST SE EST SE

Class
probabilities

π1 0.48 - 0.52 - 0.65 -
π2 0.52 - 0.48 - 0.35 -

Latent
trait
distributions

µ1 0.00 - 0.00 - 0.00 -
σ2

1 3.02 0.42 2.69 0.31 1.00 -
µ2 −0.11 0.07 0.05 0.08 −0.57 0.03
σ2

2 0.84 0.06 1.19 0.08 0.17 0.01

Differentiation
parameters

τ22 1.74 0.13 1.75 0.12 2.13 0.15
sτ22 - - −0.34 0.08 - -

Therefore, we confirm our hypothesis that there is a subpopulation of respondents
(Class 2) exhibiting excess expressions of anger above simply wanting to express it. The
proportion of these respondents (π̂2 = 0.52) is not negligible, and the amount of additional
anger (τ̂22 = 1.74) is substantially large.

4. Discussion

In light of limited software options to conduct StrMixIRM analyses, the present study
proposes reparameterizing it as a confirmatory mixture IRT model using interaction effects
of latent classes and item groups. Along with increased efficiency and new opportunities
for previously unexplored extensions of StrMixIRMs, this parameterization makes the
StrMixIRM readily implementable in multiple software packages with mixture modeling
capabilities.

We first presented the framework and its flexibility to handle many variants of the
StrMixIRM (e.g., dichotomous and polytomous forms and multidimensional extensions).
We followed with in-depth illustrations on how to estimate these models using the freely
available mirt package in R, as well as how to interpret the ensuing results. In order to
emphasize the applicability of the StrMixIRM outside its origins in modeling developmental
stages, we used two empirical datasets to describe two other scenarios where the StrMixIRM
may be useful. We presented detailed R code with notes as well as in depth interpretation
of the output. We found that the results were very similar between mirt and Mplus for
the two applications, as shown Section S1. Additionally, we conducted a small simulation
study to evaluate the performance of mirt and Mplus. Both programs performed well and
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the differences in the estimated results were negligible. Detailed results are provided in
Section S4.

The availability of an open-source tool coupled with a systematic introduction to using
it for various StrMixIRM estimations is expected to pave the way for more researchers to
realize the potential of StrMixIRMs. In addition, we anticipate our parameterization formu-
lating the StrMixIRM as basically a logistic linear regression with interaction effects can
promote the understanding of StrMixIRMs by providing an alternative conceptualization
in addition to existing frameworks.

Caveats of the procedures discussed in this paper based on the mirt package include
specifying multiple random starts to solve the local maxima issue prevalent in LCA. More-
over, it is recommended to check that the maximum likelihood can be replicated [47].
Whereas many software programs for LCA or mixture modeling have commands to stream-
line this process with detailed procedures, mixture modeling in its current form in mirt
requires the user to set up and run repeated iterations of the model themselves, and then
manually select the optimal final output. Thus, estimating the StrMixIRM with a large
number of multiple starting points may require much more time than existing commercial
software. For example, the average running time over 30 simulated datasets (see Section S4)
was 2.73 min with mirt (including the computation of standard errors), while 0.45 min with
Mplus on a laptop computer with 1.80 GHz Intel Core i5-8265U CPU processor and 8 GB
of RAM. Note that these differences in the computing time might be due to the different
estimation settings of the two programs.

A more prominent issue is with estimating the standard errors of model parameters.
In addition to the fact that adding equality (and inequality) constraints in itself does
not provide standard errors (e.g., StrMixIRM using linear equality constraints on item
difficulties or the 2PL StrMixIRM with sτhk), we noticed that the standard errors for all
parameters from the mirt package were smaller than those from Mplus (see Section S1 in
the Supplemental Document). We speculate this is due to different methods for standard
error calculations, but additional investigation is needed to identify the source of the
discrepancies as well as which standard error method might be more appropriate for
the StrMixIRM.

Notwithstanding the multiple extensions of the StrMixIRM organized in this paper,
they are by no means exhaustive. Other extensions are possible such as the inclusion of
person predictors, additional item guessing parameters [17] and the StrMixIRM in multi-
level [16] or longitudinal contexts [23,48]. A key advantage of our novel reparameterization
is the flexibility to incorporate all of these suggestions, some of which are not possible in the
original parameterization. For example, our new parameterization enables a researcher’s
hypothesis to incorporate an investigation of the variation in differentiation parameters
across schools.

In fact, our parameterization using interaction effects of discrete latent variables need
not be limited to the family of StrMixIRMs but can be applied many other models involving
discrete latent variables, such as DCMs. Nonetheless, whether existing software, preferably
an open-source one like the mirt package, can accommodate all aforementioned StrMixIRM
extensions requires further investigation. It would be useful to explore the possibility of
using other statistical programs such as SAS or Stata and Bayesian estimation platforms
like Stan using the reparameterization, along with a comparison between the capabilities
and advantages of each program. This would offer more options for users to help them
conduct StrMixIRM analyses.



Psych 2024, 6 398

Supplementary Materials: The following supporting information can be downloaded at https:
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Aggression Data: Multidimensonal Rasch StrMixIRM in mirt, Section S3: Item Parameters in ECPE
and Verbal Aggression Data Analyses, and Section S4: Simulation Study. Tables and code listings
corresponding to each section are prefixed by S.
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