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Abstract: In this study, we introduce a novel and robust approach for computing Generalizability
Theory (GT) absolute error and related dependability indices using indicator intercepts that represent
observed means within structural equation models (SEMs). We demonstrate the applicability of
our method using one-, two-, and three-facet designs with self-report measures having varying
numbers of scale points. Results for the indicator mean-based method align well with those obtained
from the GENOVA and R gtheory packages for doing conventional GT analyses and improve upon
previously suggested methods for deriving absolute error and corresponding dependability indices
from SEMs when analyzing three-facet designs. We further extend our approach to derive Monte
Carlo confidence intervals for all key indices and to incorporate estimation procedures that correct
for scale coarseness effects commonly observed when analyzing binary or ordinal data.

Keywords: generalizability theory; structural equation modeling; R programming; Music Self-Perception
Inventory; reliability; psychometrics; absolute error; estimation methods; prophecy formulas;
confidence intervals

1. Introduction

Generalizability theory (GT; [1–4]) offers an effective framework for accounting for
multiple sources of measurement error when assessing the accuracy of measurement data
and subsequently using that information to evaluate and improve assessment procedures.
Such techniques have recently been applied to advantage in such diverse fields as ed-
ucation [5–13], psychology [14–17], business [18–21], medicine/health sciences [22–29],
psychophysiology [30–32], athletic training [33–35], and many others. Although GT de-
signs have traditionally been analyzed using analysis of variance (ANOVA) procedures,
they also can be analyzed using linear mixed-effect [36,37] and structural equation models
(SEMs; [14,37–54]).

Using SEMs to conduct GT analyses has many advantages including use of alternative
estimation procedures to correct for scale coarseness effects (diagonally weighted least
squares, paired maximum likelihood, etc.; [14,38,42,44–46,49]), derivation of Monte Carlo
confidence intervals for key indices of interest [14,44,46,47,50,51,55,56], partitioning of
variance at both total score and individual item levels [46–49], and extensions to multivari-
ate [37,46,47,50,51] and bifactor model GT designs [46,50,52–54]. These advantages stem
in part from the inherent capabilities of SEM programs to tailor factor loadings, variances,
residuals, intercepts, and thresholds to specific needs and contexts of assessment.

GT can be used with both objectively and subjectively scored measures to yield indices
reflecting the accuracy of scores used for either norm- or criterion-referencing purposes.
However, initial uses of SEMs for conducting GT analyses were limited to derivation of

Psych 2024, 6, 401–425. https://doi.org/10.3390/psych6010024 https://www.mdpi.com/journal/psych

https://doi.org/10.3390/psych6010024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/psych
https://www.mdpi.com
https://orcid.org/0000-0001-7642-6161
https://orcid.org/0000-0002-9415-251X
https://doi.org/10.3390/psych6010024
https://www.mdpi.com/journal/psych
https://www.mdpi.com/article/10.3390/psych6010024?type=check_update&version=2


Psych 2024, 6 402

variance components and related generalizability (G) coefficients for norm-referencing pur-
poses that only reflected relative rather than absolute differences in scores (see, e.g., [38–43]).
To address this limitation within one- and two-facet GT designs, Jorgensen [44] devised
methods for estimating variance components reflecting absolute differences in scores that
together with variance components for relative differences can be used to derive dependabil-
ity coefficients for making criterion-referenced decisions. When using Jorgensen’s method,
variance components for absolute differences in scores are obtained indirectly from SEMs
by placing constraints on mean structure parameters. In the study reported here, we
propose an alternative method for deriving variance components for absolute differences
in scores based on factor indicator means that can be extended beyond two measurement
facets. We compare results for the indicator mean-based method to those obtained using
the standalone ANOVA-based GT package GENOVA [57], the gtheory package in R [58,59],
and Jorgensen’s [44] SEM-based method applied within the lavaan package in R [60,61]
when analyzing one-, two-, and three-facet designs. Results are based on multi-occasion
data obtained from the Music Self-Perception Inventory (MUSPI; [62–64]), with designs
having two, four, or eight scale points for all items. We further extend the overall SEM GT
analyses to allow for derivation of Monte Carlo confidence intervals for key parameters and
corrections for possible scale coarseness effects resulting from limited numbers of response
options and/or unequal intervals between those options.

2. Background
2.1. Generalizability Theory

GT subdivides measurement or generalization error into distinct facets reflecting
variations in scores for items, occasions, raters, and other relevant entities. Universe
scores in GT are analogous to true scores in classical test theory and to communality
in factor analysis. However, in contrast to these other contexts, universe scores in GT
represent estimated average scores that individuals would receive across all observable
facet conditions within the assessment domain(s) of interest. In its broadest sense, an
observed score in GT represents universe score plus “absolute” or total error, with absolute
error representing the overall deviation of an individual’s observed score from his or her
universe score. Absolute error encompasses all sources of error, including those that affect
the consistency of rankings (relative error) as well as differences in the absolute magnitudes
of scores. More specifically, relative error variance is the sum of interaction effects that
involve persons (or objects of measurement), whereas absolute error is the sum of all
facet effects that include interactions between person and facet effects as well as main and
interaction effects for the facets themselves.

Estimates of variance components for universe scores and measurement errors allow
for computation of several GT-based reliability-like indices. Generalizability (G or Eρ2) and
dependability (D or ϕ) coefficients, respectively, underpin decision-making processes tai-
lored to norm-referenced and criterion-referenced decisions. A G coefficient (Equation (1))
is computed as the ratio of universe score variance over the combined variances for uni-
verse score and relative error, rendering it particularly useful when representing relative
differences in observed scores across individuals. This is especially pertinent in large-scale
assessments where the priority is to rank individuals according to their relative perfor-
mance levels. In contrast, a D coefficient encompasses total or absolute error rather than
just relative error, thereby providing a more inclusive and comprehensive assessment of
measurement precision. D coefficients fall into two categories, with the “global D coeffi-
cient” (Equation (2)) providing a summary index of dependability across all scores derived
from the assessment procedure, and the “cut-score-specific D coefficient” (Equation (3))
reflecting dependability or random classification agreement at a predetermined level of
performance or endorsement represented by a cut score [65–67].

G coefficient =
Universe score variance

Universe score variance + Relative error variance
. (1)
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Global D coefficient =
Universe score variance

Universe score variance + Absolute error variance
. (2)

Cut-score-specific D coefficient =
Universe score variance + (µY − cut score)2

Universe score variance + (µY − cut score)2 + Absolute error variance
. (3)

2.2. Estimation of Universe Scores and Relative Error Using SEMs

In the study reported here, we will use SEMs to represent random effects GT designs
based on responses to the adult form of the Music Self-Perception Inventory (MUSPI; [62–64])
and the measurement facets items, occasions, and skills. More specifically, we will consider
the following three random effects designs: persons × items (pi), persons × items × occasions
(pio), and persons × items × occasions × skills (pios). Partitioning of variance at the individual
score level within those designs is shown in Equations (4)–(6).

p × i (pi) design : σ2
Ypi

= σ2
p + σ2

pi,e + σ2
i , (4)

p × i × o (pio) design : σ2
Ypio

= σ2
p + σ2

pi + σ2
po + σ2

pio,e + σ2
i + σ2

o + σ2
io , (5)

p × i × o × s (pios) design : σ2
Ypios

= σ2
p + σ2

pi + σ2
po + σ2

ps + σ2
pio + σ2

pis + σ2
pos + σ2

pios,e

+σ2
i + σ2

o + σ2
s + σ2

io + σ2
is + σ2

os + σ2
ios.

(6)

The Y scores in Equations (4)–(6) are not aggregated. In Equation (4), they represent
individual item scores; in Equation (5), they represent individual combinations of item
and occasion scores; and in Equation (6), they represent individual combinations of item,
occasion, and skill scores. Variance components on the right side of these equations
involving interactions with persons (p) reflect relative differences in scores, whereas those
not involving persons reflect absolute differences in mean scores. When “,e” is included
within the subscript for a relative error term, it indicates that any remaining relative residual
error in the design is also included in that term. As evident from Equations (4)–(6), the
number of variance components reflecting both relative and absolute differences in scores
noticeably increases as the number of measurement facets increase, which, in turn, adds
greater layers of complexity when analyzing GT designs.

The three diagrams in Figure 1, respectively, represent all possible variance compo-
nents included in random-facet pi, pio, and pios designs. Within the figure, the circles for a
given diagram collectively represent overall observed score variance ( σ2

Y
)
, σ2

p represents
universe score variance, variance terms that include interactions between persons and
measurement facets represent relative differences in scores, and variance terms for main
and interaction effects involving facets alone represent absolute differences in mean scores.
When using SEMs to analyze the three designs described above, variance components for
persons and sources of relative measurement error are estimated directly, whereas those for
absolute differences in scores are estimated indirectly using additional formulas that we
later provide.

Within the SEMs for the pi, pio, and pios designs, universe or person scores are repre-
sented by a single factor that has unit loadings on all observed variables (or indicators) to
define explained variance (σ2

p) shared across all observations. The interaction term that
includes person scores and all facets within a given design is represented as a common
residual or uniqueness across all indicators. For example, in a single-facet, pi design with
four items, four indicators are used to represent person scores, and the variance for the
person factor (σ2

p) and common residual (σ2
pi,e) are estimated.

Designs involving more than one facet require additional factors to account for in-
teractions of persons with all possible combinations of relevant measurement facets. In a
two-facet, pio design with four items and two occasions, there are eight (4 × 2) indicators
representing Items 1 to 4 across Occasions 1 and 2. The person factor again is linked to
all indicators with unit loadings, and its variance (σ2

p) is estimated. Additional factors are
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included for each item across all occasions and for each occasion across all items, with
all loadings again set equal to one. Variances for all item factors are set equal, and this
common variance represents an estimate of σ2

pi. Similarly, variances for all occasion factors

are set equal, and that common variance represents as estimate of σ2
po. Finally, uniquenesses

for all indicators are set equal, and this common uniqueness provides an estimate of σ2
pio,e.

In all, four variances are estimated to represent person scores (σ2
p) and three sources of

relative error variance (σ2
pi, σ2

po, σ2
pio,e).
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Figure 1. Diagrams representing complete partitioning of observed score variance within GT pi, pio,
and pios designs. Note. GT = generalizability theory, p = persons, i = items, o = occasions, s = skills,
and ,e = remaining relative residual error.

In a three-facet, pios design with four items, two occasions, and three skills, there are
24 (4 × 2 × 3) indicators in total. In this design, eight variances would be directly estimated
to represent relative differences in scores, with one for persons (σ2

p), three for the two-way
interactions involving persons (σ2

pi, σ2
po, σ2

ps), three for the three-way interactions involving

persons (σ2
pio, σ2

pis, σ2
pos), and one for the four-way interaction involving persons (σ2

pios,e). As
in the other designs, the person factor is linked to all indicators with unit loadings, and its
variance (σ2

p) is estimated. For the two-way interactions, there would be a separate factor
for each targeted facet linked to all combinations of the other two facets. For example, if
items represent the targeted facet, there would be a separate factor for each item linked
to all combinations of occasions and skills (entailing 2 × 3 = 6 indicators here), and the
variances for the four item factors would be set equal to estimate σ2

pi. This same process

would be repeated separately for occasions and skills to estimate σ2
po and σ2

ps.
For the three-way interactions, there would be a separate factor for each combination of

the two targeted facets linked to all conditions for the remaining facet. For example, if items
and occasions are the targeted facets, there would be a separate factor for each combination
of items and occasions (4 × 2 = 8 factors here) linked to all skills, and the variances for the
eight relevant factors would be set equal to estimate σ2

pio. This process would be repeated
for the remaining two possible pairs of targeted facets (items & skills; occasions & skills)
to estimate σ2

pis and σ2
pos. Finally, uniquenesses for all 24 indicators are set equal, and this

common uniqueness is used to estimate σ2
pios,e. In all, eight variances are estimated within

this three-facet design to represent person scores (σ2
p) and the seven sources of relative

error variance (σ2
pi, σ2

po, σ2
ps, σ2

pio, σ2
pis, σ2

pos, σ2
pios,e). More detailed information about setting

constraints for all SEMs illustrated in this article is provided in our online Supplementary
Material. Although the complexity of the pios design with its numerous overlapping factors
renders it impractical to represent within a simple factor model diagram, examples of such
diagrams for pi and pio designs with the same constraints described here can be found
in [14,68].
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2.3. Overview of Absolute Error Estimation within SEMs

The preceding methodology for estimating variance components for universe score
and relative error within SEMs was first described by Marcoulides [39] and Raykov and
Marcoulides [41] for one- and two-facet designs and more recently revisited and expanded
upon by others (see, e.g., [42,43,45,48]). Subsequently, Jorgensen [44] introduced an ap-
proach to estimate absolute error within SEMs using the same one- and two-facet SEM
designs described in previous studies.

When using both Jorgensen’s and our approaches, variance components reflecting
absolute differences in scores are derived using ANOVA-like formulas that ultimately
represent estimates of average squared differences of facet condition means from the grand
mean across all relevant facet conditions with or without controlling for the effects of other
facets. With Jorgensen’s approach, the global person factor mean will equal the grand mean
(µ) across all measurement conditions, and other factor means will equal mean deviation
scores. In contrast, our approach relies exclusively on indicator intercepts that represent
means for all possible combinations of facet conditions. In sections to follow, we describe
how both methods are used to estimate variance components reflecting absolute differences
in scores within pi, pio, and pios GT designs. Due to its simplicity and more transparent
relationships with traditional ANOVA formulas, we begin by describing our indicator
mean-based method first, and then turn to Jorgensen’s approach.

2.4. The Indicator Mean-Based Method for Estimating Absolute Error Indices

persons × items (pi) designs. As noted above, our method is based solely on the
intercepts for all indicators within the relevant SEM and requires no additional constraints
other than those already described. In the pi design, the variance component σ2

i represents
the deviation of each item’s mean from the grand mean. If item means are expressed as
intercepts for each observed variable (βi), the estimated grand mean µ will equal the sum
of all intercepts in the model divided by the number of items (see Equation (7)).

grand µ̂ =
∑ni

i=1 β̂i

ni
, (7)

where ni = the number of items, and β̂i = intercept of ith item.
The variance component for items (σ2

i ) then can be estimated by summing the squared
differences between each mean (or intercept) for items and the grand mean, and then
dividing by the number of items minus one (see Equation (8)).

σ̂2
i =

∑ni
i=1

(
β̂i − grand µ̂

)2

ni − 1
. (8)

persons × items × occasions (pio) designs. In a two-facet, pio design, the estimated grand
mean again is the average of intercepts across all indicators as shown in Equation (9):

grand µ̂ =
∑

i=ni ,o=no
i=1,o=1 β̂io

ni × no
, (9)

where ni = the number of items, no = the number of occasions, and β̂io = intercept of
ith item on the oth occasion.

The mean for each item is derived by averaging the intercepts for the given item across
occasions (see Equation (10)).

µ̂i =
∑no

o=1 β̂io

no
. (10)

As in the pi design, the variance component for items (σ2
i ) then can be estimated

by summing the squared differences between each item mean and the grand mean and
dividing by the number of items minus one (see Equation (11)). This equation parallels



Psych 2024, 6 406

Equation (8) except that item means are averaged across occasions, and the grand mean is
based on Equation (9) rather than Equation (7).

σ̂2
i =

∑ni
i=1(µ̂i − grand µ̂)2

ni − 1
. (11)

The variance component for occasions (σ2
o ) would be estimated in a similar fashion. The

mean for each occasion would be derived by averaging the intercepts for the given occasion
across items (see Equation (12)) and the squared differences between each occasion mean
and the grand mean would be summed and dividing by the number of occasions minus
one (see Equation (13)).

µ̂o =
∑ni

i=1 β̂io

ni
. (12)

σ̂2
o =

∑no
o=1(µ̂o − grand µ̂)2

no − 1
. (13)

Finally, the variance component for the items × occasions interaction (σ2
io) represents

the extent to which each combination of item and occasion, on average, deviates from
the grand mean after taking the item and occasion main effects into account, as shown in
Equation (14).

σ̂2
io =

∑i=ni ,o=no
i=1,o=1

(
β̂io − µ̂i − µ̂o + grand µ̂

)2

(ni × no)− 1
. (14)

persons × items × occasions × skills (pios) designs. For a three-facet, pios design, the
estimated grand mean again is the average of intercepts across all indicators as shown in
Equation (15):

grand µ̂ =
∑n=ni ,o=no ,s=ns

i=1,o=1,s=1 β̂ios

ni × no × ns
, (15)

where ni = the number of items, no = the number of occasions, ns = the number of skills,
and β̂ios = intercept of ith item on the oth occasion for the sth skill.

The mean for each item is derived by averaging the intercepts for the given item across
both occasions and skills (see Equation (16)).

µ̂i =
∑o=no ,s=ns

o=1,s=1 β̂ios

no × ns
. (16)

The variance component for items (σ2
i ) then can be estimated by summing the squared

differences between each item mean and the grand mean and dividing by number of items
minus one (see Equation (17)). The variance component for occasions (σ2

o ) and skills ( σ2
s
)

would be estimated in a similar fashion, as shown in Equations (18) and (19). Equation (17)
is in the same form as Equations (8) and (11) except that item means are averaged across
both occasions and skills, and the grand mean is based on Equation (15) rather than
Equation (7) or Equation (9). Similarly, Equation (18) is in the same form as Equation (13)
except that occasion means are averaged across both items and skills, and the grand mean
again is based on Equation (15) rather than Equation (7) or Equation (9).

σ̂2
i =

∑ni
i=1( µ̂i − grand µ̂)2

ni − 1
. (17)

σ̂2
o =

∑no
o=1( µ̂o − grand µ̂)2

no − 1
. (18)

σ̂2
s =

∑ns
s=1( µ̂s − grand µ̂)2

ns − 1
. (19)
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To derive the variance component for the items × occasions interaction, the mean for
each combination of items and occasions is calculated by averaging the intercepts for the
given combinations across skills (see Equation (20)).

µ̂io =
∑ns

s=1 β̂ios

ns
. (20)

The variance component estimate for the items × occasions interaction (σ2
io) is then

calculated as the variance of means for combinations of items and occasions across skills,
adjusting for the main effects of items and occasions (see Equation (21)). The variance
components for the items × skills (σ2

is) and occasions × skills ( σ2
os
)

interactions would be
estimated in a similar fashion, as shown in Equations (22) and (23).

σ̂2
io =

∑i=ni ,o=no
i=1,o=1 (µ̂io − µ̂i − µ̂o + grand µ̂)2

(ni × no)− 1
. (21)

σ̂2
is =

∑i=ni ,s=ns
i=1,s=1 (µ̂is − µ̂i − µ̂s + grand µ̂)2

(ni × ns)− 1
. (22)

σ̂2
os =

∑o=no ,s=ns
o=1,s=1 (µ̂os − µ̂o − µ̂s + grand µ̂)2

(no × ns)− 1
. (23)

Finally, the variance component for the items × occasions × skills interaction represents
an estimate of the variance arising from the specific combination of these three facets, after
removing the influence of their main and pairwise interaction effects (see Equation (24)).

σ̂2
ios =

∑i=ni ,o=no ,s=ns
i=1,o=1,s=1

(
β̂ios − µ̂io − µ̂is − µ̂os + µ̂i + µ̂o + µ̂s − grand µ̂

)2

(ni × no × ns)− 1
. (24)

2.5. Jorgensen’s Procedure for Estimating Absolute Error Indices

Jorgensen’s method for estimating variance components reflecting absolute differences
in scores involves the same linkages among indicators in creating factors as those for our
approach but imposes effect coding constraints on indicator intercepts [69] and additional
constraints on factor intercepts. When applying these techniques, the average of intercepts
for indicators that load on the same factor is set equal to zero in addition to having
the sum of factor intercepts related to the same variance component set to zero. Under
these conditions, the variance for the person factor will equal the grand mean across
all measurement facet conditions, and intercepts for the relevant factor will equal mean
deviation scores.

persons × items (pi) designs. Accordingly, for a one-facet, pi design, Equation (25) can
be used to estimate the variance component for σ2

i .

σ̂2
i =

∑ni
i=1 β̂2

i
ni − 1

, (25)

where β̂i = intercept of ith item.
persons × items × occasions (pio) designs. Similarly, for the two-facet, pio design,

Equations (26)–(28) can be used to estimate σ2
i , σ2

o , and σ2
io.

σ̂2
i =

∑ni
i=1 α̂2

i
ni − 1

, (26)

where α̂i= ith item factor mean.

σ̂2
o =

∑no
o=1 γ̂2

o

no − 1
, (27)
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where γ̂o = oth occasion factor mean.

σ̂2
io =

∑
i=ni ,o=no
i=1,o=1 β̂2

io

(n i × no)− 1
, (28)

where β̂io = intercept of ith item on the oth occasion.
persons × items × occasions × skills (pios) designs. Finally, for the three-facet, pios design

Equations (29)–(35) can be used to estimate σ2
i , σ2

o , σ2
s , σ2

io, σ2
is, σ2

os, and σ2
ios.

σ̂2
i =

∑ni
i=1 α̂2

i
ni − 1

, (29)

where α̂i = ith item factor mean.

σ̂2
o =

∑no
o=1 γ̂2

o

no − 1
, (30)

where γ̂o = oth occasion factor mean.

σ̂2
s =

∑ns
s=1 δ̂2

s

ns − 1
, (31)

where δ̂s = sth skill factor mean.

σ̂2
io =

∑
i=ni ,o=no
i=1,o=1 α̂γ2

io

(ni × no)− 1
, (32)

where α̂γio = ith item oth occasion interaction factor mean.

σ̂2
is =

∑
i=ni ,s=ns
i=1,s=1 α̂δ

2
is

(ni × ns)− 1
, (33)

where α̂δis = ith item sth skill interaction factor mean.

σ̂2
os =

∑o=no ,s=ns
o=1,s=1 γ̂δ

2
os

(no × ns)− 1
, (34)

where γ̂δos = oth occasion sth skill interaction factor mean.

σ̂2
ios =

∑i=ni ,o=no ,s=ns
i=1,o=1,s=1 β̂2

ios

(n i × no × ns)− 1
(35)

where β̂ios = intercept of ith item for the oth occasion and sth skill.
All formulas for deriving variance components representing absolute differences in

mean scores for both Jorgensen’s and our procedures within pi, pio, and pios GT designs
are summarized in Table 1. Once relevant variance components are estimated, they can be
placed into formulas appearing in Table 2 to derive G, global D, and cut-score-specific D
coefficients for these designs. Note that the equations for global D coefficients differ from
those for corresponding G coefficients in that the denominators for global D coefficients
include additional variance components to represent absolute differences in facet condition
mean scores. Variance components reflecting differences in facet condition means also are
included in the denominators of cut-score-specific D coefficients. The equations in Table 2
can be further used to estimate changes in the coefficients shown when altering numbers of
items, occasions, or skills.
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Table 1. Formulas reflecting absolute differences in mean scores for pi, pio, and pios designs using alternative methods.

Design/VC
Method

Indicator Mean Jorgensen

pi design

σ̂2
i

∑
ni
i=1(β̂i−grand µ̂)

2

ni−1 ,

where ni = the number of items, β̂i = intercept of ith item, and grand µ̂ = ∑
ni
i=1 β̂i
ni

.

∑
ni
i=1 β̂2

i
ni−1 ,

where ni= the number of items, β̂i = intercept of ith item, and ∑ni
i=1 β̂i = 0.

pio design

σ̂2
i

∑
ni
i=1(µ̂i−grand µ̂)2

ni−1 ,

where µ̂i =
∑no

o=1 β̂io
no

, grand µ̂ =
∑

i=ni ,o=no
i=1,o=1 β̂io

ni×no
, β̂io = intercept of

ith item on the oth occasion, and no = the number of occasions.

∑
ni
i=1 α̂2

i
ni−1 ,

where α̂i= ith item factor mean, β̂io= intercept of the ith item on the oth occasion,
∑no

o=1 β̂io = 0 for each ith item, no= the number of occasions, and ∑ni
i=1 α̂i = 0.

σ̂2
o

∑no
o=1(µ̂o−grand µ̂)2

no−1 ,

where µ̂o = ∑
ni
i=1 β̂io

ni
.

∑no
o=1 γ̂2

o
no−1 ,

where γ̂o= oth occasion factor mean, ∑ni
i=1 β̂io = 0 for each oth occasion, and

∑no
o=1 γ̂o = 0.

σ̂2
io

∑
i=ni ,o=no
i=1,o=1 (β̂io−µ̂i−µ̂o+grand µ̂)

2

(ni×no)−1 . ∑
i=ni ,o=no
i=1,o=1 β̂2

io
(n i×no)−1 .

pios design

σ̂2
i

∑
ni
i=1( µ̂i−grand µ̂)2

ni−1 ,

where µ̂i =
∑o=no ,s=ns

o=1,s=1 β̂ios
no×ns

, grand µ̂ =
∑

n=ni ,o=no ,s=ns
i=1,o=1,s=1 β̂ios

ni×no×ns
, β̂ios= intercept of the ith

item on the oth occasion for the sth skill, and ns = the number of skills.

∑
ni
i=1 α̂2

i
ni−1 ,

where α̂i = ith item factor mean, β̂ios= intercept of the ith item on the oth occasion
and the sth skill, ∑o=no , s=ns

o=1,s=1 β̂ios = 0 for each ith item, ns= the number of skills,
and ∑ni

i=1 α̂i = 0.

σ̂2
o

∑no
o=1( µ̂o−grand µ̂)2

no−1 ,

where µ̂o =
∑

i=ni ,s=ns
i=1,s=1 β̂ios

ni×ns
.

∑no
o=1 γ̂2

o
no−1 ,

where γ̂o = oth occasion factor mean, ∑i=ni , s=ns
i=1, s=1 β̂ios = 0 for each oth occasion,

and ∑no
o=1 γ̂o = 0.
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Table 1. Cont.

Design/VC
Method

Indicator Mean Jorgensen

σ̂2
s

∑ns
s=1( µ̂s−grand µ̂)2

ns−1 ,

where µ̂s =
∑

i=ni ,o=no
i=1,o=1 β̂ios

ni×no
.

∑ns
s=1 δ̂2

s
ns−1 ,

where δ̂s= sth skill factor mean, ∑i=ni , o=no
i=1, o=1 β̂ios = 0 for each sth skill, and

∑ns
s=1 δ̂s = 0.

σ̂2
io

∑
i=ni ,o=no
i=1,o=1 (µ̂io−µ̂i−µ̂o+grand µ̂)2

(ni×no)−1 ,

where µ̂io = ∑ns
s=1 β̂ios

ns
.

∑
i=ni ,o=no
i=1,o=1 α̂γ2

io
(ni×no)− 1 ,

where α̂γio= ith item oth occasion interaction factor mean, ∑s=ns
s=1 β̂ios = 0 for each

ith item and oth occasion, and ∑i=ni ,o=no
i=1,o=1 α̂γio = 0.

σ̂2
is

∑
i=ni ,s=ns
i=1,s=1 (µ̂is−µ̂i−µ̂s+grand µ̂)2

(ni×ns)−1 ,

where µ̂is =
∑no

o=1 β̂ios
no

.

∑
i=ni ,s=ns
i=1,s=1 α̂δ

2
is

(ni×ns)−1 ,

where α̂δis= ith item sth skill interaction factor mean, ∑o=no
o=1 β̂ios = 0 for each ith

item and sth skill,
and ∑i=ni ,s=ns

i=1,s=1 α̂δis = 0.

σ̂2
os

∑o=no ,s=ns
o=1,s=1 (µ̂os−µ̂o−µ̂s+grand µ̂)2

(no×ns)−1 ,

where µ̂os =
∑

ni
i=1 β̂ios

ni
.

∑o=no ,s=ns
o=1,s=1 γ̂δ

2
os

(no×ns)− 1 ,

where γ̂δos= oth occasion and sth skill interaction factor mean,
∑i=ni

i=1 β̂ios = 0 for each oth occasion and sth skill,
and ∑o=no ,s=ns

o=1,s=1 γ̂δos = 0.

σ̂2
ios

∑
i=ni ,o=no ,s=ns
i=1,o=1,s=1 (β̂ios−µ̂io−µ̂is−µ̂os+µ̂i+µ̂o+µ̂s−grand µ̂)

2

(ni×no×ns)−1 . ∑
i=ni ,o=no ,s=ns
i=1,o=1,s=1 β̂2

ios
(n i×no×ns)−1 .

Note. p = persons, i = items, o = occasions, and s = skills.
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Table 2. Formulas for estimating G, global D, and cut-score-specific D coefficients in GT pi, pio, and
pios designs.

Design/Index Formula

pi design σ̂2
p

σ̂2
p+

σ̂2
pi,e
n′i

.
G coefficient

Global D coefficient
σ̂2

p

σ̂2
p+

σ̂2
pi,e+σ̂2

i
n′i

.

Cut-score-specific
D coefficient

σ̂2
p+(µY−Cut score)2−σ̂2

Y

σ̂2
p+(µY−Cut score)2−σ̂2

Y
+

σ̂2
pi,e+σ̂2

i
n′i

, where
^
σ

2

Y =
σ̂2

p
n′

p
+

σ̂2
pi,e

n′
pn′

i
+

σ̂2
i

n′
i

and corrects for bias.

pio design σ̂2
p

σ̂2
p+

σ̂2
pi

n′i
+

σ̂2
po

n′o +
σ̂2

pio,e
n′i n′o

.
G coefficient

Global D coefficient
σ̂2

p

σ̂2
p+

σ̂2
pi+σ̂2

i
n′i

+
σ̂2

po+σ̂2
o

n′o +
σ̂2

pio,e+σ̂2
io

n′i n′o

.

Cut-score-specific
D coefficient

σ̂2
p+(µY−Cut score)2−σ̂2

Y

σ̂2
p+(µY−Cut score)2−σ̂2

Y
+

σ̂2
pi+σ̂2

i
n′ i

+
σ̂2

po+σ̂2
o

n′o
+

σ̂2
pio,e+σ̂2

io
n′ i n′o

,

where
^
σ

2

Y =
σ̂2

p
n′

p
+

σ̂2
pi

n′
pn′

i
+

σ̂2
po

n′
pn′

o
+

σ̂2
pio,e

n′
pn′

in′
o
+

σ̂2
i

n′
i
+ σ̂2

o
n′

o
+

σ̂2
io

n′
in′

o
and corrects for bias.

pios design σ̂2
p

σ̂2
p+

σ̂2
pi

n′i
+

σ̂2
po

n′o +
σ̂2

ps
n′s +

σ̂2
pio

n′i n′o +
σ̂2

pis
n′i n′s +

σ̂2
pos

n′o n′s +
σ̂2

pios,e
n′i n′o n′s

.
G coefficient

Global D coefficient
σ̂2

p

σ̂2
p+

σ̂2
pi+σ̂2

i
n′i

+
σ̂2

po+σ̂2
o

n′o +
σ̂2

ps+σ̂2
s

n′s +
σ̂2

pio+σ̂2
io

n′i n′o +
σ̂2

pis+σ̂2
is

n′i n′s +
σ̂2

pos+σ̂2
os

n′o n′s +
σ̂2

pios,e+σ̂2
ios

n′i n′o n′s

.

Cut-score-specific
D coefficient

σ̂2
p+(µY−Cut score)2−σ̂2

Y

σ̂2
p + (µY − Cut score)2 − σ̂2

Y
+

σ̂2
pi+σ̂2

i
n′

i
+

σ̂2
po+σ̂2

o
n′o

+
σ̂2

ps+σ̂2
s

n′ s
+

σ̂2
pio+σ̂2

io
n′

in′o
+

σ̂2
pis+σ̂2

is
n′

in′ s
+

σ̂2
pos+σ̂2

os
n′on′ s

+
σ̂2

pios,e+σ̂2
ios

n′
in′

on′ s
,

where
^
σ

2

Y =
σ̂2

p
n′

p
+

σ̂2
pi

n′
pn′

i
+

σ̂2
po

n′
pn′

o
+

σ̂2
ps

n′
pn′

s
+

σ̂2
pio

n′
pn′

in′
o
+

σ̂2
pis

n′
pn′

in′
s
+

σ̂2
pos

n′
pn′

on′
s
+

σ̂2
pios,e

n′
pn′

in
′
on′

s
+

σ̂2
i

n′
i
+ σ̂2

o
n′

o
+ σ̂2

s
n′

s
+

σ̂2
io

n′
in′

o
+

σ̂2
is

n′
in′

s
+

σ̂2
os

n′
on′

s
+

σ̂2
ios

n′
in

′
on′

s
and corrects for bias.

Note. GT = generalizability theory, p = persons, i = items, o = occasions, s = skills, G coefficient = generalizability
coefficient, and D coefficient = dependability coefficient.

2.6. Advantages of Analyzing GT Designs Using SEMs

Doing GT analyses using SEMs offers several advantages over traditional ANOVA-based
procedures, two of which we apply in the analyses reported here. The first is to use diago-
nally weighted least squares estimators (i.e., Weighted Least Squares Mean and Variance
adjusted (WLSMV) estimators in R) to handle ordinal and binary data when the measured
constructs are believed to be continuous in nature. This approach differs from the un-
weighted least squares (ULS) or expected mean square estimation procedures typically used
in applications of GT that potentially compromise accuracy by treating ordinal or binary
data as continuous. The second benefit of doing GT analyses using SEMs we demonstrate
is to derive Monte Carlo confidence intervals for key indices (e.g., variance components, G
coefficients, global D coefficients) using the lavaan [60,61] and semTools [55] packages in R
to take sampling error into account. Together, WLSMV estimation within lavaan and Monte
Carlo confidence intervals [56] within semTools offer a powerful toolkit for performing GT
analyses unavailable in standard GT and variance components estimation programs.



Psych 2024, 6 412

3. This Investigation

In the study reported here, we introduce a novel indicator mean-based approach for
computing absolute error indices in GT using SEMs and showcase its applicability across
one-, two-, and three-facet designs with varying numbers of scale points. We compare
variance components, G coefficients, and global D coefficients obtained using our approach
to those obtained from the GENOVA and R gtheory packages, as well as Jorgensen’s SEM-
based method. We further extend our methodology to incorporate Monte Carlo confidence
intervals, correct for scale coarseness effects common when using binary or ordinal data,
and derive cut-score-specific D coefficients for all relevant designs and scoring procedures.

4. Methods
Participants, Measures, and Procedure

We surveyed 511 college students (77.50% female, 82.00% Caucasian, mean age = 21.16)
enrolled in educational psychology and applied statistics courses at a large Midwestern
university. These students exhibited a broad range of perceptions regarding their musical
abilities. The study received ethical approval from the governing Institutional Review Board
(ID# 200809738), with all respondents providing informed concern before participating.
Measures were completed using the Qualtrics platform on two separate occasions, spaced
one week apart.

Our analyses are based on scores obtained from the adult form of the Music Self-
Perception Inventory (MUSPI; [62–64]), which assesses self-perceived competencies across
a wide range of music-related skills, with each competency measured using a separate
subscale. Competencies sampled for the present analyses include composing, listening,
reading music, and instrument playing. Each subscale contains 12 items that share the
same item stems except for the skill being measured (e.g., “I am better than most people my
age at [insert skill]”). Respondents answer items along an 8-point Likert-style metric with
the response options “Definitely false” (1), “Mostly false” (2). “Moderately false” (3), “More
false than true” (4), “More true than false” (5), to “Moderately true” (6), “Mostly true” (7),
and “Definitely true” (8). Scales are equally balanced for positive and negative phrasing,
with responses to all negatively keyed items reverse scored. Evidence supporting the
reliability and validity of MUSPI subscale scores using its original 8-point responses metric
includes alpha reliability estimates no lower than 0.96 for any given subscale, confirmatory
factor analyses supporting the distinctiveness of constructs measured by MUSPI subscale
scores, and confirmation of logically consistent relationships of MUSPI subscale scores with
each other and with external criterion measures [62–64].

To investigate effects of number of scale points on key indices, we converted scores on
the 8-point metric to 4-point and 2-point metrics. For the 4-point metric, we recoded the
original scores of 1–2, 3–4, 5–6, and 7–8, respectively, to 1, 2, 3, and 4; for the 2-point metric,
we recoded the original scores of 1–4 and 5–8, respectively, to 1 and 2. Within the one- and
two-facet designs, we report results exclusively for the composing subscale, respectively,
treating items and both items and occasions as random facets. For the three-facet design,
we included composing, listening, reading music, and instrument playing as conditions
representing an additional random facet that we labeled “skills.”

5. Analyses

Our preliminary analyses included descriptive statistics (means, standard deviations)
and conventional reliability estimates (alpha, omega, test-retest) for the four sampled sub-
scales from the MUSPI. Then, to assess the effectiveness of our new method, we compared
results (variance components, G coefficients, global D coefficients) from it to those obtained
using the GT package GENOVA [57], the gtheory package in R [58], and Jorgensen’s SEM
method [44]. Results from the GENOVA and gtheory packages served as benchmarks for
comparisons of accuracy when doing analyses on observed score metrics. Expected mean
square (i.e., unweighted least squares; ULS) parameter estimates are used in the GENOVA
package, and restricted maximum likelihood (REML) estimates from lme4 [70] are used
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in the gtheory package in R. Expected mean square and restricted maximum likelihood
estimates will typically be very close to each other in magnitude unless negative variance
components are found (see, e.g., [68,71]). When applying Jorgensen’s and our procedures
using the lavaan package in R [60,61], we derived ULS estimates on observed score met-
rics and WLSMV estimates on continuous latent response variable metrics. Within these
SEM analyses, we also used the semTools package in R [55] to derive 95% Monte Carlo
confidence intervals [56] for variance components, G coefficients, and global D coefficients.
We report results using two, four, and eight scale points for pi and pio designs with the
MUSPI’s Composing subscale, and for the pios design with the Composing, Listening,
Reading Music, and Instrument Playing subscales as conditions for the additional skills
facet. These comparisons were used to determine the extent to which the SEM methods
yield results on par with more established procedures and how they might differ from each
other when using different estimation procedures and numbers of scale points. Finally, we
illustrate how our procedure can be used to derive cut-score-specific D coefficients for all
analyzed designs.

6. Results
6.1. Descriptive Statistics and Conventional Reliability Estimates

Table 3 includes means, standard deviations, and conventional reliability estimates for
MUSPI scores. As would be anticipated, increasing number of scale points leads to higher
means, standard deviations, and reliability coefficients. For each scale metric, Listening
has the highest mean and standard deviation, followed, respectively, by Instrument Play-
ing, Reading Music, and Composing in most instances. Overall, conventional reliability
coefficients range from 0.885 to 0.983, with mean alpha, omega, and test-retest coefficients
respectively equaling 0.959, 0.959, and 0.912 on the two-point metric; 0.974, 0.974, and
0.932 on the four-point metric; and 0.978, 0.978, and 0.936 on the eight-point metric. Alpha
and omega coefficients rarely differ and always exceed corresponding test-retest coefficients,
thereby implying greater item-to-item than occasion-to-occasion consistency.

Table 3. Descriptive statistics and conventional reliability coefficients for Music Self-Perception
Inventory subscale scores.

Metric/Subscale

Index/Occasion

Time 1 Time 2

Mean
Scale (Item)

SD
Scale (Item) α ω

Mean
Scale (Item)

SD
Scale (Item) α ω Test-Retest

2-point metric
Composing 16.64 (1.39) 4.53 (0.38) 0.942 0.942 16.64 (1.39) 4.75 (0.40) 0.954 0.953 0.894
Listening 18.34 (1.53) 4.98 (0.42) 0.960 0.960 18.34 (1.53) 4.97 (0.41) 0.960 0.960 0.885
Reading Music 17.63 (1.47) 5.09 (0.42) 0.966 0.966 17.83 (1.49) 5.09 (0.42) 0.965 0.965 0.937
Instrument Playing 17.76 (1.48) 4.98 (0.41) 0.960 0.960 17.91 (1.49) 5.01 (0.42) 0.962 0.962 0.930
Mean 17.59 (1.47) 4.90 (0.41) 0.957 0.957 17.68 (1.47) 4.96 (0.41) 0.960 0.960 0.912
4-point metric
Composing 25.90 (2.16) 10.71 (0.89) 0.959 0.959 25.90 (2.16) 11.02 (0.92) 0.971 0.971 0.911
Listening 29.93 (2.49) 12.27 (1.02) 0.974 0.974 29.93 (2.49) 11.97 (1.00) 0.975 0.975 0.920
Reading Music 28.27 (2.36) 12.78 (1.07) 0.978 0.978 28.69 (2.39) 12.49 (1.04) 0.980 0.980 0.950
Instrument Playing 28.73 (2.39) 12.52 (1.04) 0.977 0.977 29.02 (2.42) 12.42 (1.04) 0.978 0.978 0.946
Mean 28.21 (2.35) 12.07 (1.01) 0.972 0.972 28.39 (2.37) 11.98 (1.00) 0.976 0.976 0.932
8-point metric
Composing 45.45 (3.79) 22.38 (1.86) 0.965 0.965 45.45 (3.79) 22.91 (1.91) 0.975 0.975 0.919
Listening 53.43 (4.45) 25.36 (2.11) 0.977 0.978 53.43 (4.45) 24.76 (2.06) 0.979 0.979 0.928
Reading Music 50.06 (4.17) 26.83 (2.24) 0.981 0.981 50.83 (4.24) 26.07 (2.17) 0.983 0.983 0.950
Instrument Playing 51.09 (4.26) 26.40 (2.20) 0.980 0.980 51.68 (4.31) 25.91 (2.16) 0.982 0.982 0.948
Mean 50.01 (4.17) 25.24 (2.10) 0.976 0.976 50.35 (4.20) 24.91 (2.08) 0.980 0.980 0.936
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6.2. Comparisons of Variance Components, G Coefficients, and Global D Coefficients
across Methods
6.2.1. persons × items (pi) designs

In Table 4, we report variance components, G coefficients, and global D coefficients
for observed scores within the pi designs obtained from GENOVA, the gtheory package in
R, and the two SEM procedures (Jorgensen’s and our new method). For the two-point
scale metric, results are identical across all procedures, with estimated G and global D
coefficients, respectively, equaling 0.942 and 0.940, and 95% confidence intervals for all
indices within the SEM analyses failing to capture zero. For the four-point metric, results
are also identical across procedures except for the variance component for items being
0.001 higher (0.024 vs. 0.023) in the two SEM analyses compared to the two conventional
packages. G and global D coefficients for four scale points further increase to 0.959 and
0.957, respectively, and the 95% confidence intervals for all indices again fail to capture zero.
For the eight-point metric, results are identical for the SEM procedures and identical for the
two conventional procedures except for the pi,e variance component (1.471 vs. 1.470), but
these pairs of methods differ slightly from each other, with the global D coefficient for the
SEM procedures being 0.001 lower (0.962 vs. 0.963) and the i variance component being
0.003 higher (0.099 vs. 0.096). Across procedures, the G coefficient for the eight-point metric
equals 0.965, but the difference between it and the G coefficient for the four-point scale
(0.965 − 0.959 = 0.006) is noticeably smaller than the difference in G coefficients between
the two- and four-point scales (0.959 − 0.942 = 0.017). This same trend of diminishing
improvement in accuracy with increases in numbers of scale points holds for global D
coefficients and for each of the conventional reliability coefficients previously reported in
Table 3.

Table 4. G and global D coefficients and variance components for GT persons × items designs using
ULS estimation.

Scale Metric/Index

Procedure

GENOVA gtheory Package
in R Jorgensen Indicator Mean

2-point metric
G coefficient 0.942 0.942 0.942 (0.924, 0.959) 0.942 (0.924, 0.959)
Global D coefficient 0.940 0.940 0.940 (0.921, 0.955) 0.940 (0.921, 0.955)
σ̂2

p 0.134 0.134 0.134 (0.124, 0.145) 0.134 (0.124, 0.145)
σ̂2

pi,e 0.099 0.099 0.099 (0.072, 0.127) 0.099 (0.072, 0.127)
σ̂2

i 0.004 0.004 0.004 (0.003, 0.010) 0.004 (0.003, 0.010)
4-point metric
G coefficient 0.959 0.959 0.959 (0.956, 0.962) 0.959 (0.956, 0.962)
Global D coefficient 0.957 0.957 0.957 (0.954, 0.960) 0.957 (0.954, 0.960)
σ̂2

p 0.765 0.765 0.765 (0.754, 0.775) 0.765 (0.754, 0.775)
σ̂2

pi,e 0.389 0.389 0.389 (0.362, 0.416) 0.389 (0.362, 0.416)
σ̂2

i 0.023 0.023 0.024 * (0.018, 0.035) 0.024 * (0.018, 0.035)
8-point metric
G coefficient 0.965 0.965 0.965 (0.964, 0.965) 0.965 (0.964, 0.965)
Global D coefficient 0.963 0.963 0.962 * (0.962, 0.963) 0.962 * (0.962, 0.963)
σ̂2

p 3.355 3.355 3.355 (3.344, 3.366) 3.355 (3.344, 3.366)
σ̂2

pi,e 1.471 1.470 * 1.470 * (1.442, 1.497) 1.470 * (1.442, 1.497)
σ̂2

i 0.096 0.096 0.099 * (0.085, 0.118) 0.099 * (0.085, 0.118)

Note. GT = generalizability theory, ULS = Unweighted Least Squares estimation, p = persons, i = items, and,
e = remaining relative residual error. Values within parentheses represent 95% Monte Carlo confidence interval
limits [56]. All results reported in the tables are based on n′i = 12. Values that differ with those from GENOVA in
the table are marked with asterisks.
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One of the key advantages of doing GT analyses using SEMs is that estimation pro-
cedures such as WLSMV can be used to adjust for scale coarseness effects resulting from
limited numbers of response options and/or unequal intervals between those options
by referencing results to a continuous latent response variable metric. Such results for G
and global D coefficients, in turn, can serve as estimated upper bounds for score accuracy
that might be achieved by increasing number of scale points. WLSMV estimation results
reported in Table 5 are identical for the two SEM procedures in relation to variance com-
ponents, G coefficients, and global D coefficients, and all corresponding 95% confidence
intervals again fail to capture zero. In comparison to the observed score results previ-
ously described, G and global D coefficients, respectively, increase from 0.942 and 0.940 to
0.986 and 0.983 for the two-point metric; from 0.959 and 0.957 to 0.980 and 0.977 for the
four-point metric, and from 0.965 and 0.963 to 0.979 and 0.977 on the eight-point metric.
As would be expected, results for G and global D coefficients are more consistent across
numbers of response options using WLSMV because, in all instances, they are referenced
to a continuous metric rather than varying discrete scale score metrics, with differences in
score accuracy between WLSMV and ULS estimates diminishing with increases in number
of original raw score scale points.

Table 5. G and global D coefficients and variance components for GT persons × items designs using
WLSMV estimation.

Scale Point/Index
Procedure

Jorgensen Indicator Mean

2-point metric
G coefficient 0.986 (0.982, 0.989) 0.986 (0.982, 0.989)
Global D coefficient 0.983 (0.979, 0.986) 0.983 (0.979, 0.986)
σ̂2

p 5.899 (4.612, 7.185) 5.899 (4.612, 7.184)
σ̂2

pi,e 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
σ̂2

i 0.199 (0.138, 0.290) 0.199 (0.138, 0.290)
4-point metric
G coefficient 0.980 (0.976, 0.982) 0.980 (0.976, 0.982)
Global D coefficient 0.977 (0.973, 0.980) 0.977 (0.973, 0.980)
σ̂2

p 4.032 (3.388, 4.675) 4.032 (3.388, 4.674)
σ̂2

pi,e 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
σ̂2

i 0.123 (0.093, 0.166) 0.123 (0.093, 0.166)
8-point metric
G coefficient 0.979 (0.976, 0.982) 0.979 (0.976, 0.982)
Global D coefficient 0.977 (0.973, 0.980) 0.977 (0.973, 0.980)
σ̂2

p 3.966 (3.398, 4.534) 3.966 (3.398, 4.534)
σ̂2

pi,e 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
σ̂2

i 0.109 (0.083, 0.144) 0.109 (0.083, 0.144)
Note. GT = generalizability theory, WLSMV = Weighted Least Squares Mean and Variance adjusted estimation,
p = persons, i = items, and ,e = remaining relative residual error. Values within parentheses represent 95% Monte
Carlo confidence interval limits [56]. All results reported in the table are based on n′i = 12.

6.2.2. persons × items × occasions (pio) designs

Congruence in observed score results across the four procedures continues to hold for
the pio design, with no differences among variance components, G coefficients, and global
D coefficients for the two-point scale; differences no larger than 0.001 for the four-point
scales; and differences no greater than 0.002 for the eight-point scale (see Table 6). Except
for the global D coefficient on the eight-point scale for Jorgensen’s method (0.910), the
magnitudes of G and global D coefficients do not vary across the four procedures, respec-
tively, equaling 0.884 and 0.882 for the two-point metric, 0.905 and 0.902 for the four-point
metric, and 0.913 and 0.911 for the eight-point metric. Values for these coefficients are
lower than corresponding ones from the pi design due to inclusion of another estimated
source of measurement error (occasions). The slight differences in indices that appear
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across procedures are generally between the traditional GT and SEM analyses. In contrast
to results for the pi design, several of the 95% confidence intervals within the pio design
capture zero, including the pi, po, o, and io variance components for the two-point scale; the
o and io variance components for the four-point scale; and the o variance component for the
eight-point scale. The preponderance of confidence intervals that capture zero involving
occasions makes sense because perceptions of composing skills were not expected to change
appreciatively across the first week gap between administrations of the MUSPI.

Table 6. G and global D coefficients and variance components for GT persons × items × occasions
designs using ULS estimation.

Scale Point/Index
Procedure

GENOVA gtheory
Package in R Jorgensen Indicator Mean

2-point
G coefficient 0.884 0.884 0.884 (0.821, 0.951) 0.884 (0.821, 0.951)
Global D coefficient 0.882 0.882 0.882 (0.816, 0.946) 0.882 (0.817, 0.947)
σ̂2

p 0.132 0.132 0.132 (0.125, 0.140) 0.132 (0.125, 0.140)
σ̂2

pi 0.016 0.016 0.016 (−0.010, 0.043) 0.016 (−0.010, 0.043)
σ̂2

po 0.010 0.010 0.010 (−0.001, 0.020) 0.010 (−0.001, 0.020)
σ̂2

pio,e 0.077 0.077 0.077 (0.044, 0.109) 0.077 (0.044, 0.109)
σ̂2

i 0.004 0.004 0.004 (0.003, 0.007) 0.004 (0.003, 0.007)
σ̂2

o 0.000 0.000 0.000 (0.000, 0.001) 0.000 (0.000, 0.001)
σ̂2

io 0.000 0.000 0.000 (0.001, 0.004) 0.000 (0.000, 0.002)

4-point
G coefficient 0.905 0.905 0.905 (0.893, 0.917) 0.905 (0.893, 0.917)
Global D coefficient 0.902 0.902 0.902 (0.890, 0.914) 0.902 (0.890, 0.914)
σ̂2

p 0.742 0.742 0.742 (0.734, 0.749) 0.742 (0.734, 0.749)
σ̂2

pi 0.058 0.058 0.058 (0.032, 0.084) 0.058 (0.032, 0.084)
σ̂2

po 0.050 0.050 0.050 (0.039, 0.061) 0.050 (0.039, 0.061)
σ̂2

pio,e 0.281 0.281 0.281 (0.249, 0.314) 0.281 (0.249, 0.314)
σ̂2

i 0.021 0.021 0.022 * (0.017, 0.028) 0.022 * (0.017, 0.028)
σ̂2

o 0.000 0.000 0.001 * (0.000, 0.002) 0.001 * (0.000, 0.002)
σ̂2

io 0.000 0.000 0.001 * (0.001, 0.005) 0.000 (0.000, 0.003)

8-point
G coefficient 0.913 0.913 0.913 (0.910, 0.916) 0.913 (0.910, 0.916)
Global D coefficient 0.911 0.911 0.910 * (0.908, 0.913) 0.911 (0.908, 0.913)
σ̂2

p 3.251 3.251 3.251 (3.243, 3.258) 3.251 (3.243, 3.258)
σ̂2

pi 0.237 0.237 0.237 (0.210, 0.263) 0.237 (0.210, 0.263)
σ̂2

po 0.204 0.204 0.204 (0.193, 0.214) 0.204 (0.193, 0.214)
σ̂2

pio,e 1.037 1.037 1.037 (1.004, 1.070) 1.037 (1.005, 1.070)
σ̂2

i 0.087 0.087 0.089 * (0.079, 0.102) 0.089 * (0.079, 0.102)
σ̂2

o 0.001 0.001 0.002 * (0.000, 0.005) 0.002 * (0.000, 0.005)
σ̂2

io 0.002 0.002 0.003 * (0.002, 0.009) 0.002 (0.001, 0.005)
Note. GT = generalizability theory, ULS = Unweighted Least Squares estimation, p = persons, i = items,
o = occasions, and ,e = remaining relative residual error. Values within parentheses represent 95% Monte Carlo
confidence interval limits [56]. All results reported in the tables are based on n′i = 12 and n′o = 1. Values that
differ with those from GENOVA in the table are marked with asterisks.

Results for WLSMV estimates in Table 7 for the pio design are identical for the two SEM
procedures except that the io variance component within our procedure is 0.004 lower on
the two-point scale and 0.003 lower on the four- and eight-point scales. As with the pi
designs, G and global D coefficients within the WLSMV pio designs are more similar in
magnitude across numbers of scale points than are those for the ULS designs. Due to the
enhanced precision of the WLSMV estimates, the number of confidence intervals capturing
zero is reduced and limited to the o variance component across all scale metrics.
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Table 7. G and global D coefficients and variance components for GT persons × items × occasions
design using WLSMV estimation.

Scale Point/Index
Procedure

Jorgensen Indicator Mean

2-point
G coefficient 0.920 (0.896, 0.937) 0.920 (0.896, 0.937)
Global D coefficient 0.917 (0.893, 0.935) 0.917 (0.893, 0.935)
σ̂2

p 11.570 (8.294, 14.839) 11.570 (8.297, 14.842)
σ̂2

pi 0.717 (0.429, 1.003) 0.717 (0.431, 1.003)
σ̂2

po 0.864 (0.628, 1.101) 0.864 (0.628, 1.101)
σ̂2

pio,e 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
σ̂2

i 0.354 (0.241, 0.507) 0.354 (0.242, 0.507)
σ̂2

o 0.005 (0.000, 0.032) 0.005 (0.000, 0.032)
σ̂2

io 0.013 * (0.010, 0.048) 0.009 (0.007, 0.030)

4-point
G coefficient 0.915 (0.900, 0.927) 0.915 (0.900, 0.927)
Global D coefficient 0.913 (0.896, 0.925) 0.913 (0.897, 0.925)
σ̂2

p 6.238 (5.170, 7.305) 6.238 (5.171, 7.307)
σ̂2

pi 0.342 (0.281, 0.402) 0.342 (0.281, 0.403)
σ̂2

po 0.466 (0.402, 0.530) 0.466 (0.402, 0.531)
σ̂2

pio,e 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
σ̂2

i 0.182 (0.143, 0.233) 0.182 (0.143, 0.233)
σ̂2

o 0.004 (0.000, 0.017) 0.004 (0.000, 0.017)
σ̂2

io 0.007 * (0.004, 0.019) 0.004 (0.002, 0.010)

8-point
G coefficient 0.899 (0.884, 0.911) 0.899 (0.884, 0.911)
Global D coefficient 0.897 (0.881, 0.909) 0.897 (0.881, 0.909)
σ̂2

p 6.325 (5.340, 7.308) 6.325 (5.336, 7.310)
σ̂2

pi 0.354 (0.311, 0.397) 0.354 (0.311, 0.397)
σ̂2

po 0.597 (0.543, 0.650) 0.597 (0.543, 0.650)
σ̂2

pio,e 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
σ̂2

i 0.167 (0.132, 0.211) 0.167 (0.132, 0.211)
σ̂2

o 0.004 (0.000, 0.016) 0.004 (0.000, 0.016)
σ̂2

io 0.006 * (0.004, 0.016) 0.003 (0.002, 0.009)
Note. GT = generalizability theory, WLSMV = Weighted Least Squares Mean and Variance adjusted estimation,
p = persons, i = items, o = occasions, and ,e = remaining relative residual error. Values within parentheses represent
95% Monte Carlo confidence interval limits [56]. All results reported in the tables are based on n′i = 12 and n′o = 1.
Values that differ with those from Indicator Mean procedure in the table are marked with asterisks.

6.2.3. persons × items × occasions × skills (pios) design

Observed score results for the pios design reported in Table 8 on the two-point metric
vary by no more than 0.004 across the conventional and SEM procedures, but those for
Jorgensen’s SEM method begin to diverge more from those for the other procedures on
the four- and eight-point scales. Indices for the two conventional procedures and our SEM
procedure vary by no more than 0.001 on the four-point matric and 0.003 on the eight-point
metric, whereas differences between Jorgensen’s SEM and the other procedures vary by
as much as 0.012 for the s variance component on the four-point metric and by 0.043 for
the i variance component on the eight-point metric. Confidence intervals based on our
procedure capture zero for the pi, pio, pis, pos, o, io, os, and ios variance components on the
two-point metric, for the o, io, and os variance components on the four-point metric, and
for the os variance component on the eight-point metric. As in the previous two designs,
differences between G and global D coefficients are greater between the two- and four-point
metrics than between the four- and eight-point metrics.
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Table 8. G and global D coefficients and variance components for GT persons × items × occasions × skills
designs using ULS estimation.

Scale Point/Index
Procedure

GENOVA gtheory
Package in R Jorgensen Indicator Mean

2-point
G coefficient 0.860 0.860 0.860 (0.839, 0.881) 0.860 (0.839, 0.881)
Global D coefficient 0.852 0.852 0.856 * (0.835, 0.876) 0.852 (0.830, 0.871)
σ̂2

p 0.111 0.111 0.111 (0.109, 0.113) 0.111 (0.109, 0.113)
σ̂2

pi 0.007 0.007 0.007 (−0.001, 0.014) 0.007 (−0.001, 0.014)
σ̂2

po 0.004 0.004 0.004 (0.001, 0.007) 0.004 (0.001, 0.007)
σ̂2

ps 0.042 0.042 0.042 (0.038, 0.046) 0.042 (0.038, 0.046)
σ̂2

pio 0.006 0.006 0.006 (−0.005, 0.016) 0.006 (−0.005, 0.016)
σ̂2

pis 0.008 0.008 0.007 * (−0.008, 0.023) 0.007 * (−0.008, 0.023)
σ̂2

pos 0.005 0.005 0.005 (−0.001, 0.012) 0.005 (−0.001, 0.012)
σ̂2

pios,e 0.063 0.063 0.063 (0.043, 0.082) 0.063 (0.043, 0.082)
σ̂2

i 0.002 0.002 0.001 * (0.000, 0.001) 0.002 (0.001, 0.003)
σ̂2

o 0.000 0.000 0.000 (0.000, 0.000) 0.000 (0.000, 0.001)
σ̂2

s 0.004 0.004 0.002 * (0.001, 0.002) 0.004 (0.003, 0.005)
σ̂2

io 0.000 0.000 0.000 (0.000, 0.001) 0.000 (0.000, 0.001)
σ̂2

is 0.000 0.000 0.000 (0.001, 0.002) 0.000 (0.001, 0.002)
σ̂2

os 0.000 0.000 0.000 (0.000, 0.001) 0.000 (0.000, 0.000)
σ̂2

ios 0.000 0.000 0.000 (0.000, 0.001) 0.000 (0.000, 0.001)

4-point
G coefficient 0.884 0.884 0.884 (0.881, 0.887) 0.884 (0.880, 0.887)
Global D coefficient 0.876 0.876 0.880 * (0.876, 0.883) 0.876 (0.872, 0.879)
σ̂2

p 0.717 0.717 0.717 (0.715, 0.719) 0.717 (0.715, 0.719)
σ̂2

pi 0.027 0.027 0.027 (0.019, 0.034) 0.027 (0.020, 0.035)
σ̂2

po 0.025 0.025 0.025 (0.022, 0.028) 0.025 (0.022, 0.028)
σ̂2

ps 0.219 0.219 0.219 (0.214, 0.223) 0.219 (0.214, 0.223)
σ̂2

pio 0.019 0.019 0.019 (0.008, 0.030) 0.019 (0.010, 0.031)
σ̂2

pis 0.026 0.026 0.026 (0.011, 0.041) 0.026 (0.013, 0.043)
σ̂2

pos 0.021 0.021 0.021 (0.015, 0.027) 0.021 (0.015, 0.028)
σ̂2

pios,e 0.237 0.237 0.237 (0.218, 0.257) 0.237 (0.218, 0.257)
σ̂2

i 0.016 0.016 0.005 * (0.005, 0.006) 0.017 * (0.015, 0.019)
σ̂2

o 0.001 0.001 0.000 * (0.000, 0.001) 0.001 (0.000, 0.002)
σ̂2

s 0.020 0.020 0.008 * (0.007, 0.010) 0.021 * (0.018, 0.024)
σ̂2

io 0.000 0.000 0.002 * (0.001, 0.002) 0.000 (0.000, 0.001)
σ̂2

is 0.002 0.002 0.002 (0.002, 0.003) 0.002 (0.002, 0.003)
σ̂2

os 0.000 0.000 0.002 * (0.002, 0.002) 0.000 (0.000, 0.001)
σ̂2

ios 0.000 0.000 0.000 (0.001, 0.001) 0.001 * (0.001, 0.002)

8-point
G coefficient 0.889 0.889 0.889 (0.888, 0.890) 0.889 (0.888, 0.890)
Global D coefficient 0.882 0.882 0.884 * (0.883, 0.885) 0.882 (0.881, 0.883)
σ̂2

p 3.183 3.183 3.183 (3.181, 3.185) 3.183 (3.181, 3.185)
σ̂2

pi 0.112 0.112 0.112 (0.105, 0.120) 0.112 (0.105, 0.120)
σ̂2

po 0.114 0.114 0.114 (0.110, 0.117) 0.114 (0.110, 0.117)
σ̂2

ps 0.908 0.908 0.908 (0.904, 0.912) 0.908 (0.904, 0.912)
σ̂2

pio 0.075 0.075 0.075 (0.064, 0.085) 0.075 (0.064, 0.085)
σ̂2

pis 0.099 0.099 0.099 (0.084, 0.114) 0.099 (0.084, 0.114)
σ̂2

pos 0.083 0.083 0.083 (0.077, 0.089) 0.083 (0.077, 0.089)
σ̂2

pios,e 0.858 0.858 0.858 (0.839, 0.877) 0.858 (0.839, 0.877)
σ̂2

i 0.065 0.065 0.022 * (0.021, 0.024) 0.068 * (0.064, 0.073)
σ̂2

o 0.002 0.002 0.003 * (0.002, 0.004) 0.003 * (0.002, 0.004)
σ̂2

s 0.081 0.081 0.066 * (0.063, 0.070) 0.083 * (0.078, 0.090)
σ̂2

io 0.001 0.001 0.006 * (0.006, 0.007) 0.001 (0.001, 0.002)
σ̂2

is 0.008 0.008 0.008 (0.008, 0.011) 0.007 * (0.006, 0.009)
σ̂2

os 0.000 0.000 0.001 * (0.001, 0.001) 0.000 (0.000, 0.001)
σ̂2

ios 0.001 0.001 0.001 (0.001, 0.002) 0.001 (0.001, 0.002)

Note. GT = generalizability theory, ULS = Unweighted Least Squares estimation, p = persons, i = items,
o = occasions, s = skills, and ,e = remaining relative residual error. Values within parentheses represent 95% Monte
Carlo confidence interval limits [56]. All results reported in the tables are based on n′i = 12, n′o = 1, and n′s = 4.
Values that differ with those from GENOVA in the table are marked with asterisks.
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Within the WLSMV analyses reported in Table 9, discrepancies in indices between the
Indicator Mean and Jorgensen’s procedures are even more pronounced, with differences
observed for all but one variance component reflecting absolute differences in scores (i.e.,
the ios variance component for the original eight-point metric). The largest such difference
equals 1.246 for the o variance component in relation to the original eight-point metric, with
differences in variance components for absolute differences in scores together leading to
a counterintuitive global D coefficient of 0.773 for Jorgensen’s procedure versus 0.884 for
our procedure when the G coefficient equals 0.891 for both SEM procedures. Overall, these
results cast doubt on the appropriateness of using Jorgensen’s procedure for estimating
absolute error indices within three-facet GT designs, and especially when scales have
eight response options.

Table 9. G and global D coefficients and variance components for GT persons × items × occasions × skills
designs using WLSMV estimation.

Scale Point/ Index
Procedure

Jorgensen Indicator Mean

2-point
G coefficient 0.899 (0.877, 0.918) 0.899 (0.877, 0.918)
Global D coefficient 0.895 * (0.872, 0.913) 0.890 (0.866, 0.909)
σ̂2

p 23.544 * (15.012, 32.092) 23.541 (15.002, 32.083)
σ̂2

pi 1.098 (0.591, 1.613) 1.098 (0.588, 1.610)
σ̂2

po 0.843 * (0.482, 1.208) 0.844 (0.481, 1.207)
σ̂2

ps 5.875 (3.698, 8.057) 5.875 (3.713, 8.050)
σ̂2

pio 0.797 (0.294, 1.302) 0.797 (0.296, 1.298)
σ̂2

pis 0.200 * (−0.057, 0.456) 0.199 (−0.057, 0.457)
σ̂2

pos 0.564 (0.308, 0.820) 0.564 (0.308, 0.819)
σ̂2

pios,e 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
σ̂2

i 0.142 * (0.088, 0.214) 0.435 (0.270, 0.655)
σ̂2

o 0.016 * (0.002, 0.045) 0.029 (0.003, 0.080)
σ̂2

s 0.340 * (0.198, 0.535) 0.852 (0.497, 1.339)
σ̂2

io 0.044 * (0.032, 0.070) 0.010 (0.006, 0.025)
σ̂2

is 0.090 * (0.066, 0.146) 0.079 (0.058, 0.133)
σ̂2

os 0.076 * (0.046, 0.120) 0.002 (0.000, 0.012)
σ̂2

ios 0.011 * (0.012, 0.031) 0.012 (0.013, 0.032)
4-point
G coefficient 0.900 (0.883, 0.914) 0.900 (0.883, 0.914)
Global D coefficient 0.895 * (0.877, 0.909) 0.892 (0.873, 0.907)
σ̂2

p 8.783 (7.232, 10.336) 8.783 (7.236, 10.333)
σ̂2

pi 0.312 (0.237, 0.387) 0.312 (0.237, 0.387)
σ̂2

po 0.370 (0.288, 0.453) 0.370 (0.288, 0.453)
σ̂2

ps 2.059 (1.765, 2.355) 2.059 (1.765, 2.355)
σ̂2

pio 0.160 (0.103, 0.218) 0.160 (0.104, 0.217)
σ̂2

pis 0.091 (0.046, 0.136) 0.091 (0.046, 0.136)
σ̂2

pos 0.118 (0.080, 0.156) 0.118 (0.080, 0.156)
σ̂2

pios,e 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
σ̂2

i 0.068 * (0.061, 0.078) 0.199 (0.156, 0.252)
σ̂2

o 0.001 * (0.000, 0.006) 0.008 (0.001, 0.022)
σ̂2

s 0.113 * (0.084, 0.151) 0.255 (0.178, 0.356)
σ̂2

io 0.083 * (0.076, 0.092) 0.003 (0.002, 0.006)
σ̂2

is 0.028 * (0.024, 0.038) 0.019 (0.015, 0.028)
σ̂2

os 0.045 * (0.035, 0.057) 0.001 (0.000, 0.003)
σ̂2

ios 0.002 * (0.003, 0.007) 0.003 (0.003, 0.007)
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Table 9. Cont.

Scale Point/ Index
Procedure

Jorgensen Indicator Mean

8-point
G coefficient 0.891 (0.875, 0.904) 0.891 (0.875, 0.904)
Global D coefficient 0.773 * (0.743, 0.796) 0.884 (0.867, 0.898)
σ̂2

p 10.150 * (8.463, 11.839) 10.149 (8.462, 11.840)
σ̂2

pi 0.354 (0.286, 0.422) 0.354 (0.286, 0.422)
σ̂2

po 0.460 (0.373, 0.547) 0.460 (0.374, 0.546)
σ̂2

ps 2.424 (2.139, 2.710) 2.424 (2.140, 2.709)
σ̂2

pio 0.193 (0.140, 0.245) 0.193 (0.140, 0.245)
σ̂2

pis 0.194 (0.150, 0.237) 0.194 (0.150, 0.237)
σ̂2

pos 0.407 * (0.368, 0.445) 0.406 (0.368, 0.445)
σ̂2

pios,e 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
σ̂2

i 0.212 * (0.201, 0.225) 0.207 (0.162, 0.260)
σ̂2

o 1.254 * (1.154, 1.360) 0.008 (0.001, 0.023)
σ̂2

s 0.888 * (0.776, 1.010) 0.258 (0.181, 0.361)
σ̂2

io 0.364 * (0.351, 0.378) 0.003 (0.002, 0.006)
σ̂2

is 0.261 * (0.256, 0.271) 0.022 (0.018, 0.031)
σ̂2

os 0.861 * (0.828, 0.898) 0.001 (0.000, 0.003)
σ̂2

ios 0.003 (0.003, 0.007) 0.003 (0.003, 0.007)
Note. GT = generalizability theory, WLSMV = Weighted Least Squares Mean and Variance adjusted estimation,
p = persons, i = items, o = occasions, s = skills, and ,e = remaining relative residual error. Values within parentheses
represent 95% Monte Carlo confidence interval limits [56]. All results reported in the tables are based on
n′i = 12, n′o = 1, and n′s = 4. Values that differ with the Indicator Mean procedure in the table are marked
with asterisks.

6.3. Cut-Score-Specific D Coefficients

In Figure 2, we provide indicator mean method-based cut-score-specific D coefficients
in six panels to represent each design and estimation procedure, with the two-, four-,
and eight-point scale results represented by Z scores (i.e., standard deviation distances
away from the scale mean) for comparative purposes. Conceptually, cut-score-specific D
coefficients reflect proportions of random agreement in classifying scores above or below
targeted cut points along the assessment continuum when making criterion-referenced
decisions [65–67]. Consistent with the results for global D coefficients already discussed,
differences in cut-score-specific D coefficients are more congruent across numbers of scale
points on continuous latent response variable than on observed score metrics, with differ-
ences between the coefficients for ULS and WLSMV estimation diminishing with increases
in the number of original scale points. As is typically the case, within each panel, the
magnitude of D coefficients increases as cut scores get further and further away from the
mean of each scale.
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7. Discussion
7.1. Overview

Applications of GT analyses within SEM frameworks has steadily increased over
recent years. At first, these analyses were limited to estimation of variance components
reflecting relative differences in scores (see, e.g., [38–43]), but Jorgensen [44] recently
extended those frameworks to allow for derivation of variance components reflecting
absolute differences in scores within one- and two-facet designs. Subsequently, applications
of Jorgensen’s procedures to data collected in live assessment settings using these same
designs confirmed that they yielded results highly comparable to those obtained from
standalone GT packages and variance components estimation programs within popular
comprehensive statistical packages such as SPSS, SAS, and R [14,46,68]. Our goal in the
study reported here was to offer an alternative approach to deriving variance components
reflecting absolute differences in scores that we believed to be more versatile and widely
applicable than Jorgensen’s procedure. To investigate the effectiveness of our new indicator
mean-based method, we compared results from it to those obtained using Jorgensen’s SEM
procedure and the GT packages GENOVA [57] and gtheory in R [58,59].

7.2. Discrepancies between SEM Methods for Estimating Absolute Error Indices

In keeping with previous research [14,44,46,68], Jorgensen’s procedure yielded results
highly comparable to those obtained from the GENOVA package and gtheory package in
R for one- and two-facet random effects GT designs, but this proved to be less so overall
for three-facet designs, and particularly for those in which items had eight scale points. In
contrast, congruence of results between our indicator mean-based procedure and those
from the conventional GT packages continued to hold for three-facet designs for any
number of scale points considered here. The consistency between our method results and
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those from the conventional packages occurs because facet condition means derived from
our procedure uses indicator intercepts that directly match observed score means obtained
from standard ANOVA-based techniques. Moreover, implementing our procedure for
deriving absolute errors does not introduce any additional parameters to estimate. As a
result, our method remains unaffected by the complexity of the model or the number of
scale points, ensuring robust and accurate variance component estimation across various
designs. The precision achieved by our procedure, in turn, generalizes well to estimation
procedures such as WLSMV when observed score results are transformed to continuous
latent response variable metrics.

The discrepancies in absolute error variance components and D coefficients between
our procedure and Jorgensen’s are likely due to the extra steps needed to get factor means
and indicator intercepts to align with effect coding constraints as facet conditions and
numbers of scale points increase. As facet conditions and scale points increase, additional
parameter estimates and iterations are needed for optimal fitting. For example, when
analyzing the pios design with eight scale points and ULS estimation, our procedure entailed
49 iterations, 291 model parameters, and 187 equality constraints, whereas Jorgensen’s
procedure required 66 iterations, 390 model parameters, and 292 equality constraints. As
model complexity increases, deviations from effect coding constraints that force the sum of
indicator intercepts for each factor to equal zero increase with more scale points, potentially
leading to less accurate variance component estimates.

7.3. Summary of Advantages of the Indicator Mean-Based Method and Future Applications

The primary advantages of our indicator mean-based procedure over Jorgensen’s pro-
cedure in deriving indices related to absolute error demonstrated here include: (1) use of
fewer constraints within SEMs to derive absolute error indices, (2) inclusion of indicator in-
tercepts within SEMs that directly match observed score means, (3) formulas for estimating
absolute error variance components that more directly match those within ANOVA-based
analyses, (4) more precise estimation of absolute error variance components for designs
that include more than two facets and multiple scale points, and (5) extensions to esti-
mation procedures within such analyses that more accurately correct for scale coarseness
effects. At a more general level, the present results also highlighted improvements in score
accuracy gained when increasing numbers of observed scale points using ULS estimates
and the importance of taking all relevant sources of measurement error into account when
estimating score generalizability and dependability across all designs. Our extended online
Supplementary Material includes code in R for implementing all procedures we illustrated
here within one-, two-, and three-facet random effects GT designs. The same techniques
are directly applicable to any set of facets including raters for subjectively scored measures.

Although not demonstrated explicitly here, our procedure also can be extended to
multivariate and bifactor GT designs with any number of facet conditions and scale points
and to derive variance components for absolute error and D coefficients for GT-based
designs that allow for congeneric relationships between indicators and underlying factors.
We currently are completing research studies to investigate these applications and to extend
hypothesis testing procedures for comparing the magnitudes of single-occasion alpha and
omega coefficients developed by Deng and Chan [72] to comparisons of G coefficients
derived from multi-facet GT designs representing essential tau-equivalent versus con-
generic relationships. Collectively, we believe that such applications will go a long way in
combining and broadening the benefits of GT and contemporary SEM techniques.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/psych6010024/s1.

https://www.mdpi.com/article/10.3390/psych6010024/s1
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