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Abstract: Despite the importance of demonstrating and evaluating how structural equation modeling
(SEM), exploratory structural equation modeling (ESEM), and Bayesian structural equation modeling
(BSEM) work simultaneously, research comparing these analytic techniques is limited with few
studies conducted to systematically compare them to each other using correlated-factor, hierarchical,
and bifactor models of personality. In this study, we evaluate the performance of SEM, ESEM,
and BSEM across correlated-factor, hierarchical, and bifactor structures and multiple estimation
techniques (maximum likelihood, robust weighted least squares, and Bayesian estimation) to test the
internal structure of personality. Results across correlated-factor, hierarchical, and bifactor models
highlighted the importance of controlling for scale coarseness and allowing small off-target loadings
when using maximum likelihood (ML) and robust weighted least squares estimation (WLSMV)
and including informative priors (IP) when using Bayesian estimation. In general, Bayesian-IP and
WLSMV ESEM models provided noticeably best model fits. This study is expected to serve as a
guide for professionals and applied researchers, identify the most appropriate ways to represent
the structure of personality, and provide templates for future research into personality and other
multidimensional representations of psychological constructs. We provide Mplus code for conducting
the demonstrated analyses in the online supplement.

Keywords: personality assessments; big-five personality traits; Bayesian structural equation modeling;
exploratory structural equation modeling; bifactor models; hierarchical models

1. Introduction

Factor analysis has served as a critical tool for understanding the nature of constructs
included in personality inventories. Over the years, factor analysis techniques have ad-
vanced from simple exploratory analyses to more sophisticated approaches that include
(a) confirmatory factor analyses (CFAs); (b) estimation procedures that adjust for non-
normal distributions, correct for ordinal-level data, and enhance model convergence; (c) ex-
tensions of simple structure models, also called independent-clusters models (IC-CFA; [1]),
to allow for cross-loadings for non-targeted items via small-variance priors.

Maximum likelihood (ML) estimation is commonly used in factor analytic models
but is affected by scale coarseness, whereas weighted least squares estimation with means
and variances adjusted (WLSMV) corrects for such effects (e.g., [2,3]). Bayesian estimation
allows for the incorporation of prior information in testing models (e.g., [4,5]). Traditional
factor analytic procedures have forced off-target loadings to equal zero, but more recent
exploratory structural equation modeling (ESEM) techniques have allowed such loadings
to vary from zero to improve model fit and represent constructs more realistically ([6]).

Despite the importance of demonstrating how these CFA models estimated under
maximum likelihood (CFA ML) and CFA models estimated under mean-variance ad-
justed weighted least squares (CFA WLSMV), exploratory structural equation modeling
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under maximum likelihood (ESEM ML), exploratory structural equation modeling under
mean-variance adjusted weighted least squares (ESEM WLSMV), and Bayesian structural
equation modeling (BSEM) analytical dimensions work, research comparing these analytic
techniques simultaneously is limited with no studies to the best of our knowledge con-
ducted to systematically compare them to each other using more complex correlated-factor,
hierarchical factor, and bifactor models of personality or other related constructs.

In this study, we demonstrate how structural equation modeling (SEM) can be applied
with different estimation methods (maximum likelihood (ML) vs. weighted least squares
with mean and variance adjusted (WLSMV) vs. Bayesian and factor loading constraints
(exploratory structural equation modeling; ESEM)) to find the types of procedures that best
represent the theoretical framework of personality using online data for 447,500 respondents
from the International Personality Item Pool (IPIP) database ([7]). The present study is
focused on the most recent advances in factor analytic procedures to determine their relative
effectiveness in best representing constructs measured by a personality inventory. The
present analyses are expected to provide templates for future research into personality and
other similar multidimensional representations of psychological constructs by implication.

The remainder of this paper is structured as follows: first, we provide an overview
of factor analytic techniques including exploratory factor analysis, confirmatory factor
analysis, exploratory structural equation modeling, and Bayesian structural equation
modeling with an emphasis on correlated-factor, hierarchical, and bifactor structures. Next,
we discuss (a) the methods used, data, and sample; (b) the results; (c) the discussion and
implications; (d) recommendations for future studies; (e) limitations; and (f) conclusions.

2. An Overview of Factor Analytic Techniques

The primary goal of factor analysis is to determine the number and nature of latent
variables or factors that explain variation and covariation among observed scores ([8]).
Two main kinds of factor analysis fall under the umbrella of Thurstone’s (1947) [9] com-
mon factor model: exploratory factor analysis (EFA) and confirmatory factor analysis
(CFA; [10,11]). Both methods seek to account for observed relationships among a set of
indicators with a smaller set of latent variables or factors but are fundamentally different in
other ways ([8,12]).

2.1. Exploratory Factor Analysis (EFA)

EFA is data-driven in the sense that the number of factors or the pattern of associations
between the latent factors and the indicators need not be initially specified. EFA is used as
an exploratory or descriptive tool to find an appropriate number of common factors and to
determine which observed measures serve as the best indicators of the latent factors by the
size and magnitude of factor loadings ([8,12]).

However, EFA has several shortcomings. These generally include the absence of fit
indexes, being data-driven rather than theory-driven, the inability to account for method
effects, confounding measurement error and indicator specificity, and the absence of proce-
dures for testing measurement invariance and formal theoretical models ([13]). Confirma-
tory factor analysis is intended to alleviate these shortcomings.

2.2. Confirmatory Factor Analysis (CFA)

Confirmatory factor analysis (CFA) is a structural equation modeling (SEM) procedure
that quantifies associations between observed measures or indicators (e.g., items) and
latent variables or factors ([8]). CFA is a common statistical approach to analyzing complex
multidimensional structures underlying personality inventories, including correlated-
factor, hierarchical, and bifactor models. CFA is theory-driven, but it often fails to achieve
acceptable model fit and can produce substantial parameter biases in the estimation of
factor loadings and correlations because of its restrictive assumptions of exact zero cross-
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loadings and residual covariances (e.g., [8,12,14,15]). The CFA model links the observed
indicators to the latent factors via the measurement equation

yr = µ + Ληr + ϵr

where r = 1, . . . , R indexes observations, yr is a p × 1 vector of observed indicators, µ
is a p × 1 vector of intercepts, ηr is a q × 1 vector of latent variables, ϵr is a p × 1 vector
of measurement errors, and Λ is a p × q matrix of factor loadings that links the latent
variables to the observed indicators. Under standard assumptions of the CFA model, ηr
and ϵr are normally distributed and independent, implying that E(yr) = µ + ΛΞ and
V(yr) = ΛΦΛ⊤ + Θ, with Ξ denoting the mean vector of the latent variables, Φ is a factor
covariance matrix, and Θ is the residual covariance matrix.

Common CFA Models: Correlated-Factor, Hierarchical, and Bifactor Models

In this study, three types of CFA models including the correlated-factor, hierarchical,
and bifactor models are relevant (see Figure 1). Within correlated-factor CFA models,
factors are typically intercorrelated, but the researcher does not analyze the directions or
patterns of factor interrelationships. Hierarchical factor analysis extends such modeling by
further investigating higher-order factors that might account for intercorrelations among
lower-order factors. Hierarchical CFA models, as the name implies, are useful when
theory dictates that constructs are related in a hierarchical fashion in which lower-order
factors account for the intercorrelations among observed indicators and higher-order
factors in turn account for interrelationships among lower-order factors. As a result, the
hierarchical model is more parsimonious but can fit the data no better than the correlated-
factor model. Hierarchical models must include at least three first-order factors to differ
from correlated-factor models. Additionally, first-order factors should have at least three
indicators ([8,12,15–17]).

Bifactor (also known as nested-factor or general-specific) models serve as alternatives
to hierarchical models ([17]). Such models have a latent structure that includes a general
factor that accounts for the commonality among all indicators and independent group
factors that represent systematic variance specific to nested and non-overlapping subsets of
indicators ([8,12,16,18]). Unlike correlated-factor models, bifactor and hierarchical models
both assume that global factors in addition to more specific factors explain covariation in
observed scores ([13]).

Chen et al. (2006) [17] enumerated the following advantages of the bifactor model.
First, the bifactor model can work as a baseline model to be compared to the second-order
model through a likelihood ratio test because the second-order model is nested within the
bifactor model ([19,20]). Second, the bifactor model can be used to assess the importance
of domain-specific factors that are orthogonal to the general factor. For example, with
Spearman’s (1927) [21] original conception of general and domain-specific factors, he
assumed that there was a factor representing general intelligence as well as domain-specific
factors reflecting separate abilities such as verbal, spatial, mathematical, and analytic.

Third, bifactor models show the strength of association between the specific group
factors and their corresponding indicators with the effects of the general factor partialed
out and vice versa. This is not the case with the hierarchical model because interpretations
are level specific. Finally, the bifactor model can be used to predict outcomes using both
the general and group factors while they mutually control for each other’s effects. This
cannot be done with the second-order model because the second-order factors directly
affect the first-order factors and thus residual variances of the first-order factors reflect the
variability of the domain-specific factors that are not accounted for by the second-order
factors ([8,17] Brown, 2015; Chen et al., 2006).

Despite the interpretative advantages of the three types of CFA models described here, they
are not without their shortcomings and often fail to yield acceptable fits ([14] Marsh et al., 2014).
The likelihood of this occurring typically increases as the number of items representing each
factor increases ([22–24] Booth and Huges, 2014; Marsh et al., 2005; Marsh et al., 2010a). Misfit
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can occur because items typically do not exclusively represent the factors to which they are
linked. In EFA, all cross-loadings are freely estimated to indicate potential systematic associations
with other constructs, but such cross-loadings are forced to be zero in the basic IC-CFA models
discussed here. Such restrictions also can result in inflated correlations among CFA factors, poor
discriminant validity, and less accurate structural parameter estimates in misspecified SEMs
([6,14,15] Asparouhov and Muthén, 2009; Marsh et al., 2014; Morin et al., 2016).Psych 2024, 6, FOR PEER REVIEW  4 
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Figure 1. Examples of correlated-factor, hierarchical, and bifactor measurement models.
Note: F = factor; FG = general factor; HO = hierarchical factor. In (a), the correlated-factor model,
covariation in the observed indicators is explained by six interrelated factors; in (b), the hierarchical
model, covariation in the observed indicators is captured by lower-order factors whose interrela-
tionship is in turn captured by the hierarchical factor; in (c), the bifactor model, covariation in the
observed indicators is primarily captured by a general factor with the specific factors capturing
additional covariation not captured by the general factor. For simplicity, residual variances and
intercepts are omitted.

2.3. Exploratory Structural Equation Modeling

Exploratory structural equation modeling (ESEM) was proposed by Asparouhov and
Muthén (2009) [6] as an alternative method to solve the problems described in the previous
paragraph by merging methodological advantages of CFA, SEM, and EFA to allow for
assessment of goodness-of-fit, tests of multiple-group invariance, longitudinal differential
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item functioning, higher-order factor structures, growth modeling, and other applications
([6,13,14,24] Asparouhov and Muthén, 2009; Marsh et al., 2009, 2010a; Marsh et al., 2014).

ESEM Correlated-Factor, Hierarchical, and Bifactor Models

An appealing attribute of the ESEM framework is that it is applicable to the correlated-
factor, hierarchical, and bifactor models of interest to this study, and has been applied in
numerous studies (see, e.g., [15,25–28] Litalien et al., 2017; Morin et al., 2016; Perera, 2016;
Sánchez-Oliva et al., 2017; Tóth-Király et al., 2018). Perera (2016) [26] investigated the
construct validity of the Social Provisions Scale data using correlated-factor, bifactor, and
higher-order ESEM models and found that the bifactor ESEM model outperformed other
ESEM and IC-CFA models, which links each item to one factor only, with respect to model
fit. Perera also found that the correlated-factor ESEM model produced much lower factor
correlations than those in the corresponding IC-CFA model. Tóth-Király et al. (2018) [28]
examined the multidimensionality of responses to the Basic Psychological Need Satisfaction
and Frustration inventory using bifactor ESEM and found that most of the bifactor ESEM
models achieved an acceptable level of model fit. Figure 2 illustrates an example of
exploratory SEM correlated-factor, hierarchical, and bifactor models, respectively.Psych 2024, 6, FOR PEER REVIEW  6 
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Figure 2. Examples of exploratory SEM (a) correlated-factors, (b) hierarchical, and (c) bifactor models.
Note: F: factor; FG: general factor; HO: higher-order factor. For simplicity and illustrative purposes,
the figures above only contain a subset of cross-loadings (represented with the dashed lines).
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2.4. Estimation Methods
Maximum Likelihood vs. Weighted Least Squares

With maximum likelihood (ML) estimation in factor modeling, observed item scores
are assumed to fall on a continuous equal-interval scale that follows a multivariate normal
distribution ([3,29,30] Beauducel and Herzberg, 2006; Li, 2016; Rhemtulla et al., 2012).
When data are categorical or ordinal, diagonally weighted least squares procedures such as
weighted least squares estimation with means and variances adjusted (WLSMV) can be used
to correct for scale coarseness effects ([2,3] Beauducel and Herzberg, 2006; Muthén, 1993).
WLSMV is an asymptotically distribution-free estimation procedure involving polychoric
correlation matrices ([2] Muthén, 1993). The WLSMV estimator has been shown to produce
better results when ordinal indicators are employed within SEMs ([3,31] Beauducel and
Herzberg, 2006; Nussbeck et al., 2006) and when continuous and categorical indicators are
used with multilevel SEMs ([32,33] Hox et al., 2010; Nylund et al., 2007).

2.5. Bayesian Structural Equation Modeling

Bayesian structural equation modeling (BSEM) has been proposed as an alternative
approach to traditional CFA and SEM to improve model fit and provide less restrictive
and more realistic presentations of the nature of constructs measured within personality
inventories ([6,34] Asparouhov and Muthén, 2009; Muthén and Asparouhov, 2012). The
term BSEM encompasses an extensive variety of Bayesian analyses conducted in SEM with
numerous prior distributions ([35] Liang, 2020). BSEM is less restrictive than maximum
likelihood procedures and uses prior information to reflect a researcher’s theories or prior
knowledge in a way that the previously discussed estimation procedures do not. In contrast
to BSEM, ML procedures rely on large-sample theory and normality assumptions ([34,36]
Levy and Choi, 2013; Muthén and Asparouhov, 2012). BSEM is not based on such assump-
tions and can be used with small samples and in situations where ML estimates do not
converge or yield counterintuitive results (e.g., [37–39] Heerwegh, 2014; Liang et al., 2020;
van de Schoot et al., 2015).

Rooted in Bayes’ theorem, BSEM treats a vector of model parameters θ as random
variables that are assigned a prior distribution according to a researcher’s previous knowl-
edge, beliefs, or assumptions. The elements in θ include, but are not limited to, item
intercepts, factor loadings, residual variances and factor covariances. The distributions are
collectively denoted as P(θ) and are referred to as priors. Bayesian inference combines
the prior distribution P(θ) and the likelihood of the observed data P(D | θ) (i.e., the SEM
model of interest) to produce the posterior distribution, denoted by P(θ | D ) ([5] Levy and
Mislevy, 2017), which reflects updated knowledge about θ in light of the observed data.
Bayes’ theorem says that the posterior distribution is given by

P(θ | D) =
P(D | θ)P(θ)

P(D)

where P(D) =
∫
θ P(D | θ)P(θ

)
dθ is the marginal distribution of the observed data after

the parameters have been integrated over their respective parameter space. Except for
simple cases, the marginal distribution of the observed data are generally not available in
analytic form, however, because it is constant with respect to the parameter vector θ, it is
not needed in Bayesian computations.

Previous research on BSEM has found that a Bayesian approach provides bettermodel
fit than CFA/SEM ([34] Muthén and Asparouhov, 2012). In addition, BSEM is also more
flexible when the models are complex with smaller sample sizes of respondents in compari-
son to ESEMs which typically require larger samples to provide trustworthy results ([35,40]
Liang, 2020; Reis, 2017).
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2.5.1. Types of Priors

The prior distribution represents theories and previous knowledge or beliefs that a
researcher has about the parameter values before gathering new data and conducting a
new study ([34,41] Kaplan, 2014; Muthén and Asparouhov, 2012). Priors are specified for
each of the CFA model parameters. They can be informative (small prior variance) or
non-informative (large prior variance; also called vague or diffuse).

Informative priors are used when there are sufficient previous findings about the
nature of scales and shapes of distributions ([42,43] Kaplan and Depaoli, 2012; Zyphur
and Oswlad, 2015). BSEM provides a means to shrink noise parameters (e.g., trivial
cross-loadings) toward zero in a sparse factor loading matrix. Many cross-loadings are
constrained to zero, and only a few important or theoretically relevant cross-loadings are
typically allowed to be non-zero ([35,44,45] Bhattacharya and Dunson, 2011; Kaufmann
and Schumacher, 2017; Liang, 2020). Informative priors on small-sized parameters such
as cross-loadings are assigned and manipulated to achieve shrinkage. Shrinkage priors
are intended to diminish the noise parameters (e.g., trivial cross-loadings) toward zero
for the purpose of generating a more parsimonious factor model while keeping estimates
strong for the signal parameters (e.g., targeted loadings and non-trivial targeted cross-
loadings; [35,38] Liang, 2020; Liang et al., 2020).

The small-variance normal prior is one of the shrinkage priors commonly used among
various kinds of distributions in BSEM and available in Mplus ([34,40,46] Muthén and
Asparouhov, 2012; Price, 2017; Reis, 2017). In BSEM with small-variance normal dis-
tribution priors (BSEM-N), major loadings are estimated in a confirmatory approach
by being assigned non-informative priors (e.g., N (0, 1010)) or weakly informative pri-
ors if prior information is presented from past analyses. Cross-loadings are estimated
in an exploratory way and penalized by being assigned shrinkage priors with a mean
of zero and a small variance ([35] Liang, 2020). For example, utilizing a normal prior
of N (0, 0.01) suggests “the prior belief that a 95% chance the true cross-loading falls
between −0.196 and 0.196” ([38] Liang et al., 2020, p. 876). In comparison to the indepen-
dent clusters model CFA, which allows each item to load on one factor and sets all the
cross-loadings to zero ([13] Marsh et al., 2009), Bayesian estimation is flexible in estimating
models by regulating the variability in cross-loadings through controlling prior distribu-
tions. This enables models that are not computed by frequentist methods such as ML to be
estimated ([38] Liang et al., 2020).

Non-informative priors are employed when we do not possess sufficient prior knowl-
edge or information or have consistent findings or theories to yield posterior inferences.
This lack of information is still important to quantify to represent our cumulative under-
standing of an imminent problem. Non-informative priors are regarded as a standard
method to quantify the lack of prior information.

One type of commonly used non-informative prior distribution is the uniform (flat)
distribution. This prior is less informative (i.e., flatter) than other types of priors, so it
allows the data to take over the estimation of posteriors via their likelihood ([47,48] Gill,
2008; Kass and Wasserman, 1996). This distribution indicates that, before any data are
assembled, no parameter values are more plausible than others. A prior distribution with a
large variance, such as a normal distribution with a mean µ = 0 and variance σ2 = 1010,
serves a similar purpose. This variance makes the prior probability distribution of the
parameter values almost flat, which is the default setting in Mplus (see [49,50] Asparouhov
and Muthén, 2010; Muthén, 2010).

The choice of the prior distribution is challenging ([43,51] Xiao et al., 2019; Zyphur
and Oswlad, 2015) because priors may influence the results in different and potentially
misleading ways ([52,53] van de Schoot and Depaoli, 2014; van Erp et al., 2018). For
example, researchers (e.g., [34,53] Muthén and Asparouhov, 2012; van Erp et al., 2018) have
found that the use of improper priors and the large prior variance can result in model
convergence problems and unstable estimates. Van Erp et al. (2018) [53] recommended
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that several default priors be used to evaluate the effects of the choice of the prior on
model estimation.

The Markov chain Monte Carlo (MCMC) algorithm is often applied to empirically
approximate posterior distributions. The words Monte Carlo mean that a simulation
process with sampling, generating, and drawing is applied. The word chain indicates
that the random values are drawn by being linked and taking place sequentially. Thus,
MCMC iteratively draws many samples from posterior distributions of unknown model
parameters. When MCMC chains converge to a stationary distribution, Bayesian parameter
estimates can be generated based on summary statistics (e.g., mean, mode, standard
deviation, median, and quantiles) of the posterior distributions ([4,5,35,42] Gelman et al.,
2014; Kaplan and Depaoli, 2012; Levy and Mislevy, 2017; Liang, 2020).

2.5.2. Bayesian Model Fit Evaluation

Model goodness-of-fit indices and information criteria (IC) used in conventional SEMs
have also been adapted for use in BSEM. These include the Bayesian root mean square
error of approximation (BRMSEA; [7] Hoofs et al., 2018), the Bayesian comparative fit index
(BCFI), and the Bayesian Tucker–Lewis index (BTLI; [54] Garnier-Villarreal and Jorgensen,
2020). BRMSEA, BCFI, and BTLI indices of model fit are based on discrepancies between ac-
tual and replicated data at each MCMC iteration in a similar way to the posterior predictive
model checking technique (PPMC; e.g., [55] Gelman et al., 1995). PPMC replicates a dataset
with the same sample size as the observed data at every MCMC iteration and quantifies a
posterior predictive p-value (PPp; [56] Meng, 1994) as the proportion of iterations where the
fit statistic calculated based on the observed data does not exceed the fit statistic obtained
from the replicated data. PPMC implies that the discrepancy between the observed and
replicated data should be minimal when the model fits the data ([34,42] Kaplan and Depaoli,
2012; Muthén and Asparouhov, 2012). BRMSEA indices have been shown effective in large
samples (N > 1000). Unlike most frequentist equivalents, Bayesian adaptions of fit indices
also include credibility intervals to quantify their uncertainty ([54] Garnier-Villarreal and
Jorgensen, 2020).

In keeping with cutoff criteria for acceptable model fit within a frequentist structural
equation modeling framework stated earlier, RMSEAs less than 0.06 indicate excellent fit,
and values less than 0.08 are acceptable with sample sizes greater than or equal to 1000.
In contrast, the application of traditional cutoff values for BCFI and BTLI is not endorsed
by Garnier-Villarreal and Jorgensen (2020) [54] because the criteria were not applicable to
all samples.

3. Research on IPIP-NEO-120

The International Personality Item Pool—Neuroticism, Extraversion, and Openness
(IPIP-NEO-120) questionnaire is a public domain 120-item inventory that assesses person-
ality traits under the Big Five model. The domain scales (Openness, Conscientiousness,
Extraversion, Agreeableness, and Neuroticism) have 24 items each with six nested four-
item facet subscales under each domain ([57] Johnson, 2014). The IPIP-NEO-120 was
assembled by Johnson as an abbreviated version of the 300-item IPIP-NEO inventory ([58]
Goldberg, 1999) and is intended to measure the same constructs assessed by the original
240-item NEO Personality Inventory (NEO PI-R; [59] Costa and McCrae, 1992). To mea-
sure personality more efficiently, researchers have created several reduced-length forms
of the IPIP-NEO-300, including the IPIP-20, IPIP-50, IPIP-100, and IPIP-NEO-120, but
only the IPIP-NEO-120 measures all six facets nested under each of the Big Five domains.
The IPIP-NEO-120 is available from the IPIP website (http://ipip.ori.org), accessed on
28 November 2023.

Reliability and Validity Evidence of the IPIP-NEO-120

Because the IPIP-NEO-120 was developed recently ([57] Johnson, 2014), empirical
studies investigating its psychometric properties are limited. The following summary

http://ipip.ori.org
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of findings from those studies (e.g., [57,60–63] Giolla and Kajonius, 2019; Johnson, 2014;
Kajonius and Giolla, 2017; Kajonius and Johnson, 2018, 2019) verifies that scores from the
IPIP-NEO-120 show solid evidence for reliability and validity despite its reduced length.

The reliability indices of the IPIP-NEO-120 are commonly reported at both domain
and facet levels. Overall, alpha coefficients ranged from 0.81 to 0.92 for domain scales and
from 0.47 to 0.89 for facet scales. In general, the mean alpha coefficients for domain scales
were higher than those for facet scales ([57,60–66] Giolla and Kajonius, 2019; Johnson, 2014;
Kajonius and Giolla, 2017; Kajonius and Johnson, 2018, 2019; Lace et al., 2019, 2020a, 2020b).

The convergent validity evidence of the IPIP-NEO-120 was reported in two stud-
ies. [57] Johnson (2014) evaluated the convergent validity of the IPIP-NEO-120 in the
Eugene-Springfield sample by correlating subscale scores with those for the NEO PI-R ([59]
Costa and McCrae, 1992). Correlation coefficients among IPIP-NEO-120 and NEO PI-R ([59]
Costa and McCrae, 1992) domain scores ranged from 0.76 to 0.87 (M = 0.82) and among
facet scores from 0.53 to 0.76 (M = 0.66). Lace et al. (2019) [65] also reported convergent
concurrent validity coefficients of the IPIP-NEO-120 Anxiety and Depression scores with
Anxiety and Depression scores from the Kessler Psychological Distress Scale (K10) with
correlations of 0.65 for Anxiety and 0.75 for Depression, respectively.

Factor structures for IPIP-NEO-120 scale scores were also investigated using CFA,
EFA, and maximum likelihood estimation in two studies ([61,63] Kajonius and Giolla,
2017; Kajonius and Johnson, 2019). Kajonius and Giolla (2017) [61] used a worldwide
sample of 130,602 respondents from 22 countries to examine hierarchical factor models
using confirmatory factor analysis with maximum likelihood estimation for each of the
five global domains. They reported comparative fit indices (CFIs) ranging from 0.87 to 0.92
for Neuroticism, 0.75 to 0.89 for Extraversion, 0.76 to 0.89 for Openness, 0.84 to 0.91 for
Agreeableness, and 0.89 to 0.94 for Conscientiousness across 22 countries.

As another example, Kajonius and Johnson (2019) [63] initially confirmed the five
factors of the IPIP-NEO-120 using exploratory factor analysis with maximum likelihood
estimation based on a sample of 320,128 respondents living in the United States. They
then compared hierarchical and bifactor confirmatory factor analysis models utilizing
maximum likelihood estimation for each of the IPIP-NEO-120 global domains. They found
that bifactor models fit better than hierarchical models with the largest differences in CFIs
between bifactor and hierarchical models observed for Extraversion (0.91 vs. 0.88) and
Agreeableness (0.93 vs. 0.87).

4. Significance of the Current Study

Recent research into ESEM and BSEM has been primarily focused on simple factor
analytic models and generally shows that these procedures better fit data than CFAs
(e.g., [51,67] Guo et al., 2019; Xiao et al., 2019). Also, factor analytic studies of IPIP-
NEO-120 responses ([61,63] Kajonius and Giolla, 2017; Kajonius and Johnson, 2019) were
limited to hierarchical and bifactor confirmatory factor analysis models using maximum
likelihood estimation. For example, Guo et al. (2019) [67] evaluated and contrasted single-
factor models of CFA, ESEM, and BSEM using the 60-item NEO Five-Factor Inventory
(NEO-FFI; [59] Costa and McCrae, 1992); Muthén and Asparouhov (2012) [34] compared
five-factor models of CFA and BSEM using Big Five personality data from the British
Household Panel Study; and Kim and Wang (2021) [68] assessed the factor structure of
data from the Positive and Negative Affect Schedule (PANAS; [69] Watson et al., 1988)
employing correlated-factor and bifactor models of CFA, ESEM, and BSEM. In all instances,
ESEM and BSEM performed better than CFA.

Absent from these studies are weighted least squares with mean and variance adjusted
estimation (WLSMV), exploratory structural equation modeling, and Bayesian structural
equation modeling analyses. Limited research involved comparisons of CFA, ESEM, and
BSEM simultaneously, focusing only on simple factor analytic models for the Big Five
personality models (e.g., [34,67,68] Guo et al., 2019; Kim and Wang, 2021; Muthén and
Asparouhov, 2012). To the best of our knowledge, no research has been conducted within
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more complex correlated-factor, hierarchical, and bifactor frameworks with the IPIP-NEO-
120. Because the IPIP-NEO-120 was recently developed, evidence supporting the reliability
and validity of its scores is quite limited. The present study is focused on the most
recent advances in factor analytic procedures to determine their relative effectiveness in
best representing constructs measured by a personality inventory, allowing replication of
analyses within a distinct domain of personality.

5. Illustrations of SEM, ESEM, and BSEM Techniques Using IPIP-NEO-120
Agreeableness Scale

In this study, we demonstrate and evaluate the effects of SEM estimation methods
(maximum likelihood (ML) vs. weighted least squares with mean and variance adjusted
(WLSMV) vs. Bayesian estimation) and factor loading constraints (exploratory structural
equation modeling: ESEM) on model fit in correlated-factor, hierarchical, and bifactor
models using IPIP-NEO-120 Agreeableness Scale. The following three research questions
will guide this study.

RQ1.To what extent do parameter estimation methods (SEM ML, WLSMV, and Bayesian
SEM) affect model fit for correlated-factor, bifactor, and hierarchical factor models?

RQ2.To what extent do factor loading constraints (allowing vs. restricting weak off-target
loadings; ESEM vs. CFA) affect model fit for correlated-factor, bifactor, and hierarchi-
cal factor models?

RQ3.To what extent will the use of different priors in BSEM affect model fit for correlated-
factor, bifactor, and hierarchical factor models?

6. Methods
6.1. Data and Measure
IPIP-NEO-120

The IPIP-NEO-120 ([57] Johnson, 2014) is a 120-item personality inventory that mea-
sures the Big Five personality factors (Agreeableness, Conscientiousness, Extraversion,
Neuroticism, and Openness to Experience). Each of the five domain scales has six nested
four-item facet subscales. The Agreeableness subscale consists of 24 items measuring levels
of trust, morality, altruism, cooperation, modesty, and sympathy. The Conscientiousness sub-
scale has 24 items focused on self-efficacy, orderliness, dutifulness, achievement-striving,
self-discipline, and cautiousness. The Extraversion subscale consists of 24 items with facets
for friendliness, gregariousness, assertiveness, activity level, excitement-seeking, and cheer-
fulness. The Neuroticism subscale has 24 items that measure anxiety, anger, depression,
and vulnerability. The Openness to Experience subscale includes 24 items for the facets of
imagination, artistic interests, emotionality, and liberalism ([57] Johnson, 2014).

Items are answered using a five-point Likert-type rating scale in which 1 = Very Inaccu-
rate, 2 = Moderately Inaccurate, 3 = Neither Accurate nor Inaccurate, 4 = Moderately Accurate, and
5 = Very Accurate (see Figure 3), with possible scores ranging from 24 to 144 for each 24-item
domain scale, and from 4 to 20 for each facet subscale. Missing values are coded as 0. The
IPIP-NEO-120 consists of 65 positively phrased and 55 negatively phrased items. Among
the domain scales, 29%, 46%, 75%, 71%, and 50% are positively phrased for Agreeableness,
Conscientiousness, Extraversion, Neuroticism, and Openness to Experience, respectively.
Negatively phrased items are reverse scored by recoding (1 = 5, 2 = 4, 4 = 2, 5 = 1), and this
recoding is automatically done after respondents finish the questionnaire so that users
need not do so themselves ([57] Johnson, 2014). For illustrations, we used data from the
Agreeableness subscale.
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6.2. Sample

Participants included in the study sample consisted of 447,500 respondents from the
United States who voluntarily completed the International Personality Item Pool NEO-
120 questionnaire (IPIP-NEO-120; [57] Johnson, 2014) at the IPIP website (data publicly
available via the Open Source Framework at https://osf.io/tbmh5/wiki/home/) accessed
on 28 November 2023. It consisted of 39% male (N = 174,707) and 61% female (N = 272,793)
respondents who had an average age of 24.93 years (SD = 10.29).

6.3. Descriptive Statistics

Preliminary analyses included descriptive statistics for the Agreeableness domain and
their facet scores (means and standard deviations) and conventional reliability estimates
(alpha and omega; see Table 1). Item-scale means ranged from 3.10 to 4.13. The mean item-
scale standard deviation across all facets was 0.82. Alpha reliability estimates ranged from
0.70 to 0.84 (overall M = 0.85 for the domain, and M = 0.73 across facets). Omega coefficients
ranged from 0.70 to 0.85 (overall M = 0.90 for the domain, and M = 0.74 across facets).

Table 1. Descriptive Statistics and Conventional Reliability Estimates for IPIP-NEO-120 Agreeableness
Facet Scores (N = 447,500).

Domain Facet Mean: Scale (Item) SD: Scale (Item) Alpha Omega

Agreeableness 87.95 (3.66) 12.54 (0.52) 0.85 0.90
Trust 13.36 (3.34) 3.57(0.89) 0.84 0.85
Morality 16.22 (4.06) 3.05 (0.76) 0.71 0.72
Altruism 16.52 (4.13) 2.69 (0.67) 0.70 0.70
Cooperation 14.51 (3.63) 3.75 (0.94) 0.71 0.72
Modesty 12.41 (3.10) 3.43 (0.86) 0.71 0.75
Sympathy 14.92 (3.73) 3.16 (0.79) 0.70 0.71
Facet Means 14.66 (3.67) 3.27 (0.82) 0.73 0.74

6.4. Data Analyses

Data analyses were completed in Mplus 8.8 ([70] Muthén and Muthén, 2017). For
the Agreeableness personality domain, 15 models were analyzed (see Table 2). For the
non-Bayesian models, fit was evaluated using the comparative fit index (CFI), Tucker–
Lewis index (TLI), and root mean square error of approximation (RMSEA). Values greater
than 0.90 and 0.95 for CFI and TLI have typically been interpreted as acceptable and
excellent fit, respectively ([23,71–74] Browne and Cudeck, 1992; Hu and Bentler, 1999;
Jöreskog and Sörbom, 1993; Marsh et al., 2005; Marsh, Hau, and Wen, 2004). For RMSEA,
values of 0.08 or lower have been suggested as adequate fit, values less than or equal to
either 0.05 ([71,73] Browne and Cudeck, 1993; Jöreskog and Sörbom, 1993) or 0.06 ([72,75]
Hu and Bentler, 1999; Yu, 2002) as indicators of excellent or close fit, and values of 0 as
perfect fit. We choose to adopt the more commonly used value of 0.06 for RMSEAs to signify
an excellent fit in this study. For Bayesian analyses, we investigated recently developed
counterparts to the CFI, TLI, and RMSEA, namely the BRMSEA, BCFI, and BTLI, proposed
by Garnier-Villarreal and Jorgensen (2020) [54].

The Bayesian models were estimated using the default priors for the target loadings
and informative priors for the off-target loadings, respectively. The small-variance normal
distribution priors were used with a mean of zero and a small variance. More specifically,
the small-variance normal distribution informative priors assigned to the off-target loadings
were N(0, 0.005), N(0, 0.01), N(0, 0.02), and N(0, 0.03). A total of two chains were specified
with each running 10,000 Markov chain iterations with the first 5000 iterations of each chain
discarded as burn-in.

https://osf.io/tbmh5/wiki/home/
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Table 2. Factor Models Analyzed.

Estimation Method(s) Models

SEM/CFA (ML)
1. 6 correlated factors
2. Bifactor
3. Hierarchical model

SEM/CFA (WLSMV)
4. 6 correlated factors
5. Bifactor
6. Hierarchical model

ESEM (ML)
7. 6 correlated factors
8. Bifactor
9. Hierarchical model

ESEM (WLSMV)
10. 6 correlated factors
11. Bifactor
12. Hierarchical model

BSEM (informative priors)
13. 6 correlated factors
14. Bifactor
15. Hierarchical Model

Note: SEM: structural equation modeling; CFA: confirmatory factor analysis; ML: maximum likelihood; WLSMV:
weighted least squares mean-variance adjusted; ESEM: exploratory structural equation modeling; BSEM: Bayesian
structural equation modeling.

7. Results
7.1. The Effects of Estimation Methods
7.1.1. Correlated-Factor Models

The results in Table 3 for the correlated-factor model revealed that when considering
estimation methods as a whole, Bayesian estimation with informative priors produced
superior model fit on average (BCFI = 0.983, BTLI = 0.983, and BRMSEA = 0.022) relative
to ML and WLSMV estimation with respect to CFI, TLI, and RMSEA.

Table 3. Goodness-of-Fit Statistics for the Factor Models Estimated.

Models
CFI

CFA ML ESEM ML ML
Mean

CFA
WLSMV

ESEM
WLSMV

WLSMV
Mean

Bayesian
NIP

Bayesian
IP

Bayesian
Mean

6 Correlated factor 0.906 0.983 0.945 0.894 0.987 0.941 0.906 0.983 0.951

Bifactor 0.929 0.990 0.96 0.935 0.993 0.964 0.929 0.99 0.967

Hierarchical 0.876 0.977 0.927 0.867 0.986 0.927 0.876 0.983 0.938

Mean 0.904 0.983 0.944 0.899 0.989 0.944 0.904 0.985 0.952

Models
TLI

CFA ML ESEM ML ML
Mean

CFA
WLSMV

ESEM
WLSMV

WLSMV
Mean

Bayesian
NIP

Bayesian
IP

Bayesian
Mean

6 Correlated factor 0.891 0.968 0.93 0.877 0.976 0.927 0.891 0.983 0.939

Bifactor 0.915 0.978 0.947 0.921 0.985 0.953 0.915 1.00 0.960

Hierarchical 0.861 0.962 0.912 0.851 0.977 0.914 0.861 0.978 0.926

Mean 0.889 0.969 0.930 0.883 0.979 0.931 0.889 0.987 0.942

Models
RMSEA

CFA ML ESEM ML ML
Mean

CFA
WLSMV

ESEM
WLSMV

WLSMV
Mean

Bayesian
NIP

Bayesian
IP

Bayesian
Mean

6 Correlated factor 0.055 0.029 0.042 0.09 0.039 0.065 0.055 0.022 0.047

Bifactor 0.048 0.025 0.037 0.072 0.031 0.052 0.048 0.001 0.035

Hierarchical 0.061 0.032 0.047 0.099 0.039 0.069 0.061 0.025 0.051

Mean 0.055 0.029 0.042 0.087 0.036 0.062 0.055 0.016 0.044

Note. CFA: confirmatory factor analysis; ESEM: exploratory structural equation modeling; ML: maximum
likelihood; WLSMV: weighted least squares with mean and variance adjusted; Bayesian-NIP: Bayesian non-
informative priors; Bayesian-IP: Bayesian informative priors; CFI: comparative fit index; TLI: Tucker–Lewis index;
RMSEA: root mean square error of approximation.
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The best-fitting models for CFAs versus ESEMs varied with the index considered.
WLSMV estimates for ESEM models provided the best fit in relation to CFIs (=0.983),
and Bayesian-IP estimates did so in relation to TLIs (=0.983) and RMSEAs (=0.022) that
penalized model complexity. Model fit under ML estimation was better than WLSMV
estimation in terms of CFIs, TLIs, and RMSEAs.

On average, WLSMV estimates for CFA models provided the poorest fit in terms of
CFIs, TLIs, and RMSEAs. Based on the criteria of CFIs and TLIs ≥ 0.95 and RMSEAs ≤ 0.06,
all Bayesian-IP and all ESEM ML and WLSMV models yielded excellent fit.

7.1.2. Bifactor Models

The results in Table 3 for the bifactor model again showed that Bayesian-IP estimation
produced better model fit on average than did ML and WLSMV in relation to CFIs, TLIs,
and RMSEAs. For CFAs versus ESEMs, the best-fitting estimation procedure varied with
the index considered. WLSMV estimates for ESEMs provided the best fit in relation to
CFIs (=0.993), and Bayesian-IP estimates did so in relation to TLIs (=1.000) and RMSEAs
(=0.001). Model fit for WLSMV was better than those for ML in terms of CFIs and TLIs, but
the reverse was true for RMSEAs. On average, ML estimates for CFAs and Bayesian-NIP
estimation provided the poorest fit in terms of CFIs and TLIs, and WLSMV estimates did
so in terms of RMSEAs. Based on the criteria of CFIs and TLIs ≥ 0.95 and RMSEAs ≤ 0.06,
all Bayesian-IP, ESEM ML, and ESEM WLSMV models yielded excellent fits.

7.1.3. Hierarchical Models

As with previous models, results for the hierarchical model in Table 3 show that
Bayesian-IP estimation generated better model fit on average than did ML and WLSMV
with respect to CFIs, TLIs, and RMSEAs. For CFAs versus ESEMs, the best-fitting estimation
procedure varied with the index considered. WLSMV estimates for ESEM models provided
the best fit in relation to CFIs (≥0.986), and Bayesian-IP estimates did so in relation to
TLIs (≥0.978) and RMSEAs (≤0.025). Model fits for WLSMV were better than those
for ML in terms of TLIs, but worse for RMSEAs. On average, WLSMV estimates for
CFAs provided the poorest fit in terms of CFIs, TLIs, and RMSEAs. Based on CFIs and
TLIs ≥ 0.95 and RMSEAs ≤ 0.06, all Bayesian-IP, ESEM ML, and ESEM WLSMV models
provided excellent fits.

7.1.4. Fit Differences for Estimation Procedures

We examined differences in average model fit indices between selected pairs of models
to compare relative improvements in fit gained by altering estimation procedures and
allowing off-target loadings. We provide mean differences in CFI, TLI, and RMSEA values
between estimation methods within each type of factor model (correlated-factor, bifactor,
and hierarchical). Table 4 also allows for direct comparisons of fit indices among the three
types of models. The following sets of estimation procedures are compared: (a) ML versus
WLSMV estimation, (b) ML estimation versus Bayesian estimation with informative priors,
and (c) WLSMV estimation versus Bayesian estimation with informative priors.

An important observation that applies to all comparisons to be discussed is that overall
fit indices were best for the bifactor model, followed by the correlated-factor model, and
followed by the hierarchical models. In addition, overall patterns of differences related to
estimation procedure and allowance of non-zero off-target loadings were very consistent
across these factor models.



Psych 2024, 6 124

Table 4. Fit Differences for Estimation Procedures.

CFI TLI RMSEA

ML WLSMV Diff ML WLSMV Diff ML WLSMV Diff

Correlated factor 0.945 0.941 −0.004 0.930 0.927 −0.003 0.042 0.065 0.023

Bifactor 0.960 0.964 0.004 0.947 0.953 0.006 0.037 0.052 0.015

Hierarchical 0.927 0.927 0.000 0.912 0.914 0.002 0.047 0.069 0.022

Mean 0.944 0.944 0.000 0.930 0.931 0.001 0.042 0.062 0.020

ML Bayesian-IP Diff ML Bayesian IP Diff ML Bayesian IP Diff

Correlated factor 0.945 0.983 0.038 0.930 0.983 0.053 0.042 0.022 −0.020

Bifactor 0.960 0.990 0.030 0.947 1.000 0.053 0.037 0.001 −0.036

Hierarchical 0.927 0.983 0.056 0.912 0.978 0.066 0.047 0.025 −0.022

Mean 0.944 0.985 0.041 0.930 0.987 0.057 0.042 0.016 −0.026

WLSMV Bayesian-IP Diff WLSMV Bayesian IP Diff WLSMV Bayesian IP Diff

Correlated factor 0.941 0.983 0.042 0.927 0.983 0.056 0.065 0.022 −0.043

Bifactor 0.964 0.990 0.026 0.953 1.000 0.047 0.052 0.001 −0.051

Hierarchical 0.927 0.983 0.056 0.914 0.978 0.064 0.069 0.025 −0.044

Mean 0.944 0.985 0.041 0.931 0.987 0.056 0.062 0.016 −0.046

Note. CFI: comparative fit index; TLI: Tucker–Lewis index; RMSEA: root mean square error of approximation;
ML: maximum likelihood; WLSMV: weighted least squares mean and variance adjusted; Diff: difference between
ML and WLSMV; IP: informative prior

7.1.5. ML vs. WLSMV

Results contrasting ML versus WLSMV estimation in Table 4 reveal that control for
scale coarseness provided better fits in terms of TLIs (M difference = 0.001) but worse fits in
terms of RMSEAs (M difference = 0.020).

7.1.6. ML vs. Bayesian Informative Priors

Differences in fit indices between ML and Bayesian estimation with informative priors
shown in Table 4 range from 0.030 to 0.056 (M = 0.041) for CFIs, from 0.053 to 0.066
(M = 0.057) for TLIs, and from −0.020 to −0.036 (M = −0.026) for RMSEAs.

7.1.7. WLSMV vs. Bayesian Informative Priors

Differences in CFIs, TLIs, and RMSEAs between WLSMV and Bayesian estimation with
informative priors were also noteworthy. In comparison to ML, corresponding differences
for WLSMV in CFIs (M = 0.041 vs. 0.041) and TLIs (M = 0.057 vs. 0.056) were very similar
but differences in RMSEAs were larger (M = −0.046 vs. −0.026). Thus, when considering
results in this section collectively, Bayesian estimation with informative priors provided
the best average fits for CFIs, TLIs, and RMSEAs. WLSMV estimation on average yielded
similar CFIs and TLIs to ML estimation, but RMSEAs were larger than ML estimation.

7.2. The Effects of Allowing and Restricting Off-Target Loadings (ESEM vs. CFA)
7.2.1. Correlated-Factor Models

The results in Table 5 indicate the average model fit indices of CFA ML and WLSMV
vs. ESEM ML and WLSMV. Correlated-factor ESEMs that allowed off-target loadings,
on average, provided better model fit (CFI = 0.985, TLI = 0.972, and RMSEA = 0.034)
than did corresponding CFA models (CFI = 0.900, TLI = 0.884, and RMSEA = 0.073).
Improvements in fit when allowing off-target loadings were great (CFI = 0.985 vs. 0.900,
TLI = 0.972 vs. 0.884, RMSEA = 0.034 vs. 0.073). According to the criteria adopted here
(CFI and TLI ≥ 0.95 and RMSEA ≤ 0.06), all ESEMs yielded excellent fit.
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Table 5. Goodness-of-Fit Statistics for the Factor Models Allowing vs. Restricting Weak
Off-Target Loadings.

Model
Mean CFI Mean TLI Mean RMSEA

CFA ESEM CFA ESEM CFA ESEM

Correlated-Factor 0.900 0.985 0.884 0.972 0.073 0.034

Bifactor 0.932 0.983 0.918 0.982 0.060 0.028

Hierarchical 0.872 0.982 0.856 0.970 0.080 0.036

Grand Mean 0.922 0.984 0.910 0.970 0.061 0.037
Note. CFA: confirmatory factor analysis; ESEM: exploratory structural equation modeling; CFI: comparative fit
index; TLI: Tucker–Lewis index; RMSEA: root mean square error of approximation.

7.2.2. Bifactor Models

As was the case with correlated-factor models, bifactor ESEMs on average fit better
(CFI = 0.983, TLI = 0.982, RMSEA = 0.028) than did corresponding CFA models that did not
allow off-target loadings (CFI = 0.932, TLI = 0.918, and RMSEA = 0.060). Improvements in
fit statistics when allowing non-zero off-target loadings were great in CFIs (0.983 vs. 0.932),
TLIs (0.982 vs. 0.918), and RMSEAs (0.028 vs. 0.060). All bifactor ESEMs again provided
excellent fits according to the present criteria (CFI and TLI ≥ 0.95 and RMSEA ≤ 0.06).

7.2.3. Hierarchical Models

Consistent with results for correlated-factor and bifactor ESEMs, ESEMs for hier-
archical models allowing non-zero off-targets fit better (CFI = 0.982, TLI = 0.970, and
RMSEA = 0.036) on average than did corresponding hierarchical models (CFI = 0.872,
TLI = 0.856, and RMSEA= 0.080) that restricted such loadings. As with the correlated-
factor and bifactor ESEMs, all hierarchical ESEMs yielded excellent fit (CFI and TLI ≥ 0.95
and RMSEA ≤ 0.06). When considered collectively, fit results for models supported the
inclusion of non-zero off-target loadings, with the improvements in most fit statistics.

7.2.4. Fit Differences When Allowing Off-Target Loadings

In this section, we contrast differences in fit indices for ML and WLSMV estimation
when restricting versus allowing off-target loadings. Results in Table 6 reveal that for all
comparisons, models allowing off-target loadings provided better model fits than models
that restricted such loadings.

Table 6. Fit Differences When Allowing Off-Target Loadings.

Models
CFI TLI RMSEA

CFA ML ESEM ML Diff CFA ML ESEM ML Diff CFA ML ESEM ML Diff

Correlated-factor 0.906 0.983 0.077 0.891 0.968 0.077 0.055 0.029 −0.026

Bifactor 0.929 0.99 0.061 0.915 0.978 0.063 0.048 0.025 −0.023

Hierarchical 0.876 0.977 0.101 0.861 0.962 0.101 0.061 0.032 −0.029

Mean 0.904 0.983 0.080 0.889 0.969 0.080 0.055 0.029 −0.026

Models CFA
WLSMV

ESEM
WLSMV Diff CFA

WLSMV
ESEM

WLSMV Diff CFA
WLSMV

ESEM
WLSMV Diff

Correlated-factor 0.894 0.987 0.093 0.877 0.976 0.099 0.09 0.039 −0.051

Bifactor 0.935 0.993 0.058 0.921 0.985 0.064 0.072 0.031 −0.041

Hierarchical 0.867 0.986 0.119 0.851 0.977 0.126 0.099 0.039 −0.06

Mean 0.899 0.989 0.090 0.883 0.979 0.096 0.087 0.036 −0.051

Note. CFI: comparative fit index; TLI: Tucker–Lewis index; RMSEA: root mean square error of approximation;
ML: maximum likelihood; WLSMV: weighted least squares mean and variance adjusted; Diff in the first column:
difference between CFA ML and ESEM ML; Diff in the second column: difference between CFA WLSMV and
ESEM WLSMV.
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For ML models, allowing off-target loadings raised mean CFIs by 0.077, mean TLIs by
0.077, and reduced mean RMSEAs by 0.026. For WLSMV models, a similar pattern was
evident with mean changes in CFIs, TLIs, and RMSEAs equaling 0.093, 0.099, and −0.051,
respectively. In general, these results emphasize that model fit noticeably improved on
average for all models and fit indices.

7.3. The Effects of Different Priors in BSEM on Model Fits

Correlated-Factor Models. The results in Table 7 for the correlated-factor model re-
veal that the Bayesian-IP models on average provided noticeably better fits (BCFI = 0.983,
BTLI = 0.983, and BRMSEA = 0.022) than Bayesian-NIP models (BCFI = 0.906, BTLI = 0.891,
and BRMSEA = 0.055). Improvements in fit when using different informative priors were not
noticeable, but as variance increased, BTLI was to some extent increased (BTLI = 0.980 vs. 0.984)
and BRASEA was slightly decreased (BRMSEA = 0.024 vs. 0.021). In keeping with the cut-
off criteria of CFIs and TLIs ≥ 0.95 and RMSEAs ≤ 0.06, all Bayesian-IP models yielded
exceptional fits.

Bifactor. Consistent with correlated-factor model results, Bayesian-IP models pro-
duced better model fit indices (BCFI = 0.990, BTLI = 1, and BRMSEA = 0.001) than did
Bayesian-NIP models (BCFI = 0.929, BTLI = 0.915, and BRMSEA = 0.048). Using different
informative priors did not improve model fit. In accordance with cutoff criteria for CFIs
and TLIs ≥ 0.95 and RMSEAs ≤ 0.06, all Bayesian models with informative priors yielded
excellent fits.

Hierarchical Models. Similar to correlated-factor and bifactor models, Bayesian-IP
models produced noticeably better model fit indices (BCFI = 0.983, BTLI = 0.978, and
BRMSEA = 0.025) than did Bayesian-NIP (BCFI = 0.876, BTLI = 0.861, and BRMSEA = 0.061).
Model fit when using informative priors with N (0, 0.005) was better than those with large
variance. According to the cutoff rules of CFIs and TLIs ≥ 0.95 and RMSEAs ≤ 0.06, all
Bayesian-IP models yielded excellent fits.

Table 7. Goodness-of-Fit Statistics for the Bayesian Factor Models with Different Priors.

6 Correlated Factors Parameters PPP PPPP BIC DIC BCFI BTLI BRMSEA

BSEM with default priors 87 0 29,257,462.5 29,256,504.9 0.906 0.891 0.055

BSEM with informative priors

BSEM-Cross loadings (CL) priors: N (0, 0.005) 207 0 0.039 29,001,466.6 28,997,563.2 0.983 0.980 0.024

BSEM-Cross loadings (CL) priors: N (0, 0.01) 207 0 0.875 29,001,791.6 28,997,523.5 0.983 0.983 0.022

BSEM-Cross loadings (CL) priors: N (0, 0.02) 207 0 0.999 29,001,550.1 28,997,509.9 0.983 0.983 0.021

BSEM-Cross loadings (CL) priors: N (0, 0.03) 207 0 0.999 29,001,401.1 28,997,502.3 0.983 0.984 0.021

Mean of BSEM with informative priors 207 0 0.728 29,001,552.4 28,997,524.7 0.983 0.983 0.022

Bifactor Parameters PPP PPPP BIC DIC BCFI BTLI BRMSEA

BSEM with default priors 96 0 29,179,630.6 29,178,573.2 0.929 0.915 0.048

BSEM with informative priors

BSEM-Cross loadings (CL) priors: N (0, 0.005) 214 0 0 29,027,629 28,924,943.8 0.99 1 0.001

BSEM-Cross loadings (CL) priors: N (0, 0.01) 214 0 0 29,024,892.2 28,927,616.1 0.99 1 0.001

BSEM-Cross loadings (CL) priors: N (0, 0.02) 214 0 0.001 29,031,978.6 28,918,152 0.99 1 0.001

BSEM-Cross loadings (CL) priors: N (0, 0.03) 214 0 0.001 29,036,419.5 28,912,666.6 0.99 1 0.001

Mean of BSEM with informative priors 214 0 0.001 29,030,229.8 28,920,844.6 0.99 1 0.001

Hierarchical Parameters PPP PPPP BIC DIC BCFI BTLI BRMSEA

BSEM with default priors 78 0 29,357,897.2 29,357,037.8 0.876 0.861 0.061

BSEM with informative priors

BSEM-Cross loadings (CL) priors: N (0, 0.005) 196 0 0 29,000,254.9 28,997,540.7 0.983 0.983 0.022
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Table 7. Cont.

Hierarchical Parameters PPP PPPP BIC DIC BCFI BTLI BRMSEA

BSEM-Cross loadings (CL) priors: N (0, 0.01) 196 0 0 29,000,200.2 28,997,593.1 0.983 0.977 0.025

BSEM-Cross loadings (CL) priors: N (0, 0.02) 196 0 0.002 29,000,235.2 28,997,613.5 0.983 0.974 0.027

BSEM-Cross loadings (CL) priors: N (0, 0.03) 196 0 0.004 29,000,206.8 28,997,583.1 0.983 0.978 0.025

Mean of BSEM with informative priors 196 0 0.002 29,000,224.3 28,997,582.6 0.983 0.978 0.025

Note. PPP: posterior predictive p-value; PPPP: prior posterior predictive p-Value; BIC: Bayesian information
criterion; DIC: deviance information criterion; BCFI: Bayesian comparative fit index; BTLI: Bayesian Tucker–Lewis
index; BRMSEA: Bayesian root mean square error of approximation.

7.4. Fit Differences for ESEM WLSMV Models versus Bayesian Models with Informative Priors

As a final follow-up comparison, we contrast average fit results between WLSMV-
ESEMs and Bayesian models with informative priors, which were the best-ranking models
overall in model fit. Results in Table 8 reveal that WLSMV-ESEMs slightly raised mean
CFIs (by 0.004), lowered mean TLIs (by 0.008), and raised mean RMSEAs (by 0.020).

Table 8. Fit Differences for ESEM WLSMV Models versus Bayesian Models with Informative Priors.

CFI TLI RMSEA

ESEM
WLSMV Bayesian-IP Diff ESEM

WLSMV Bayesian-IP Diff ESEM
WLSMV Bayesian-IP Diff

Correlated factor 0.987 0.983 −0.004 0.976 0.983 0.007 0.039 0.022 −0.017

Bifactor 0.993 0.99 −0.003 0.985 1 0.015 0.031 0.001 −0.03

Hierarchical 0.986 0.983 −0.003 0.977 0.978 0.001 0.039 0.025 −0.014

Mean 0.989 0.985 −0.004 0.979 0.987 0.008 0.036 0.016 −0.020

Note. CFI: comparative fit index; TLI: Tucker–Lewis index; RMSEA: root mean square error of approximation;
WLSMV: weighted least squares mean and variance adjusted; Diff: difference between ESEM WLSMV and
Bayesian with informative priors. IP: informative prior.

8. Discussion
8.1. The Effects of Parameter Estimation Methods on Model Fit

When considering model fit indices collectively, Bayesian-IP estimation provided
the best average model fit in comparison to non-Bayesian estimation (ML and WLSMV)
procedures, whereas WLSMV estimation for CFAs provided the poorest overall fit. Based
on the criteria of CFIs and TLIs ≥ 0.95 and RMSEAs ≤ 0.06 adopted here, all Bayesian-IP
models yielded excellent fit.

The finding that Bayesian-IP models performed better than ML models is consis-
tent with previous studies ([34,40,49,51] Asparouhov and Muthén, 2010; Muthén and
Asparouhov, 2012; Reis, 2017; Xiao et al., 2019). Bayesian estimation is a less restric-
tive approach than maximum likelihood and does not depend on large-sample theory
and normality assumptions.BSEM can be applied to complex models with small sam-
ple sizes where ML estimates often fail to converge or produce counterintuitive results
(e.g., [35,37–39,68] Heerwegh, 2014; Kim and Wang, 2021; Liang, 2020; Liang et al., 2020;
van de Schoot et al., 2015).

Findings also revealed that Bayesian-IP typically outperformed WLSMV, especially in
relation to parsimony-favoring fit indices. In previous research, this was not always the
case. Depaoli and Clifton (2015) [76] demonstrated that Bayesian models more frequently
converged in comparison to WLMSV models within a multilevel SEM simulation study.
Holtmann et al. (2016) [77] in another simulation study found that Bayesian estimation per-
formed better than WLSMV only when using highly informative priors, and this was true
in the present study as well. Aside from fit considerations, Liang and Yang (2014) [78] noted
that WLSMV is much more efficient than Bayesian-IP with respect to computational time.

We speculate that conflicting results for Bayesian estimation are largely due to the
choice of priors. Researchers (see, e.g., [52,53] van de Schoot and Depaoli, 2014; van
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Erp et al., 2018) have emphasized the importance of selecting suitable prior distribu-
tions because varying priors may produce different and sometimes misleading results.
Xiao et al. (2019) [51] recommended that Bayesian estimation only be used when correct
specifications of informative priors are made for cross-loadings. Consequently, methods
for best specifying appropriate priors remain an important topic for future research.

In comparison to ML, WLSMV estimation yielded similar or better comparative fit
indices (CFIs) and Tucker–Lewis indices (TLIs), but worse root mean square errors of
approximation (RMSEAs). These results are congruent with those reported by Beaudu-
cel and Herzberg (2006), Lei (2009), and Li (2016) [3,29,79]. Weaker fits for ML are of-
ten attributable to scale coarseness effects due to limited numbers of response options
and/or unequal intervals between those options. Ark (2015), Rhemtulla et al. (2012), and
Zumbo et al. (2007) [30,80,81] note that corrections for scale coarseness are most needed
when scales have four or fewer response options. However, the present results indicated
that such corrections also were warranted with five-option Likert-style scales commonly
used with self-report measures. Failure to make such corrections can produce imprecise
test statistics, standard errors, and parameter estimates. In such cases, the use of WLSMV
is strongly advocated ([2,3,82] Beauducel and Herzberg, 2006; Muthén, 1993; Muthén and
Kaplan, 1985), and the present results further support this conclusion.

However, an interesting and consistent result observed here was that RMSEA values
for WLSMV were generally larger than those for ML. Across previous studies, relationships
between RMSEAs for WLSMV versus ML estimation have been inconsistent. Beauducel
and Herzberg (2006) [3] found the same relationship observed here when number of
response categories exceeded four, whereas others ([83,84] Nye and Drasgow, 2011; Xia
and Yang, 2019) found that WLSMV RMSEAs were smaller than ML RMSEAs. Under
circumstances when RMSEAs for WLSMV do not reach satisfactory levels but CFIs and
TLIs do, modification indices may highlight effective ways to lower RMSEAs. In the present
analyses, when RMSEAs for WLSMV were higher than those for ML, they still met the
present criteria for inferring excellent to adequate fits.

In this regard, researchers have routinely emphasized that final model selection should
not be based solely on fit indices exceeding a set of cutoff values ([74,84] Marsh et al., 2004;
Xia and Yang, 2019). Instead, RMSEA, CFI, and TLI values should serve as a diagnostic
means to improve fit. As suggested by Xia and Yang (2019) [84], researchers need to pursue
alternative approaches to assessing goodness-of-fit statistics when ordered categorical data
are employed, and this again represents an important area for further inquiry.

8.2. The Effects of Factor Loading Constraints on Model Fit

ESEMs have been adopted as an alternative approach to CFA models, which though
theory-driven, often fail to achieve acceptable model fits. Unlike CFA, ESEM is more data-
driven and less restrictive. In ESEMs, items loading on specific factors are not specified in
advance and all other parameters are estimated freely ([14] Marsh et al., 2014). In previous
studies comparing ESEMs and CFA models, much better model fits and lower inter-factor
correlations have been reported ([6,13,15,22,24,26,40,85] Asparouhov and Muthén, 2009;
Booth and Hughes, 2014; Mai et al., 2018; Marsh et al., 2009, 2010a; Morin et al., 2016;
Perara, 2016; Reis, 2017). As expected, these results were replicated in the present analyses,
with off-target loadings typically being trivial in magnitude.

Nevertheless, ESEMs also have potential drawbacks worth mentioning. These include
(a) being less parsimonious, especially in large, complicated models, (b) being more likely
to have convergence issues in small samples with complicated models, and (c) being
susceptible to confounding of constructs within factors that should be separated according
to theory ([14,35,40,68,86] Kim and Wang, 2021; Liang, 2020; Marsh et al., 2014; Marsh et al.,
2020; Reis, 2017). Although these issues did not come into play in the present analyses,
they might be in other situations, especially with small sample sizes.

Sellbom and Tellegen (2019) [87] have argued against comparing ESEMs and CFA
models in terms of fit due to the large number of additional parameters estimated in an
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exploratory manner within ESEMs. Marsh et al. (2020) [86] also acknowledged that, due
to the nesting of CFA models within ESEM models, CFA models will always be more
parsimonious. As a result, though not observed here, ESEMs may exhibit superior fits
than CFA models for indices that do not control for parsimony such as CFI, whereas the
opposite fits may be true for indices that do (e.g., TLI and RMSEA). Accordingly, Marsh et al.
(2020) [86] recommended that when ESEMs and CFA models differ regarding parsimony,
models should not be evaluated solely by the goodness of fit. They recommended that
if fit and parameter estimates for CFA models and ESEMs are similar, then CFA models
are more desirable based on parsimony. If ESEMs provide substantial improvements in
goodness of fit compared to CFA models, then ESEMs would be preferred despite their
added complexity.

ESEM results can also be influenced by the choice of rotation method ([51,67] Guo
et al., 2019; Xiao et al., 2019). ESEMs here were estimated using target rotations in which
cross-loadings were confined to zeros, whereas target loadings were freely estimated ([6,88]
Asparouhov and Muthén, 2009; Marsh et al., 2013). When target rotations are used, ESEMs
provide good estimates of target loadings and factor correlations. However, with alternative
rotations such as Geomin, these relationships may vary and thus are worthy of further
investigation.

8.3. Bayesian Structural Equation Models and Exploratory Structural Equation Models

Another key finding observed here was that Bayesian-IP models and ESEMs consis-
tently provided noticeably better fits to the data than did CFA models. WLSMV-ESEMs
yielded the best fits in terms of CFIs, whereas Bayesian-IP models did so in terms of parsi-
mony favoring TLIs and RMSEAs. Consequently, if model fit is of primary interest, then one
of those models would likely best serve that purpose assuming satisfactory convergence
and the absence of counterintuitive results.

Compared to CFA models, using ESEM models allowing non-zero off-target loadings
generally provided the greatest improvements in model fit. Specifically, for both ML and
WLSMV models, allowing non-zero off-target loadings improved mean CFIs and mean
TLIs and reduced mean RMSEAs. Using increases in CFIs and TLIs greater than 0.01
and decreases in RMSEAs greater than 0.015 suggested by Chen (2007) and Cheung and
Rensvold (2002) [89,90] as rough guidelines, these differences all would be considered
noteworthy changes in average fit.

Results contrasting ML and Bayesian-IP estimation were generally even more pro-
nounced, revealing that models using Bayesian-IP fit better on average than did models
with ML and WLSMV estimation with respect to CFIs, TLIs, and RMSEAs. According to
guidelines suggested by Chen (2007) and Cheung and Rensvold (2002) [89,90], all of these
differences would be considered important. When conflicts arise among fit indices, Marsh,
Hau, and Grayson (2005) and Marsh et al. (2020) [23,86] favor the use of TLIs and RMSEAs
over CFIs because the former indices favor parsimony by penalizing model complexity.

8.4. Implications

Overall, this study was centered on the most recent innovations in factor analytic
techniques to assess their relative effectiveness in representing latent constructs measured
by the IPIP-NEO-120 inventory. Incorporating these innovations into correlated-factor,
bifactor, and hierarchical models significantly extended evidence of the psychometric
quality of IPIP- NEO-120 scores, identified appropriate ways to represent the structure
of personality, and provided guidelines for future research into personality and other
multidimensional measures of psychological constructs.

The current results revealed that the structure of personality can be well represented
from three theoretical perspectives (correlated-factor, bifactor, and hierarchical models).
In general, Bayesian-IP and WLSMV ESEM models best represented each theoretical
framework. Researchers in future studies might replicate the present modeling procedures
to determine the extent to which they generalize to other measures.
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To guide professionals and applied researchers to identify suitable models for mul-
tidimensional representations of constructs, we suggest the following guidelines. First,
Bayesian estimation is a less restrictive approach than maximum likelihood and does not
depend on large-sample theory and normality assumptions. BSEM-IP models provide
better fits and can be used when models are complex with small sample sizes where ML or
WLSMV often fail to converge or yield negative variance. However, specifying appropriate
informative priors is necessary to avoid counterintuitive results and best enhance fit. Sec-
ond, ESEM models are advantageous in allowing off-target loadings and providing better
fits. With ML and WLSMV estimations, allowing non-zero off-target loadings noticeably
improved model fit. If ESEMs show much better model fits and lower inter-factor correla-
tions than CFAs and the model fit is of foremost interest, ESEMs may be preferred. ESEM
results may be influenced by the choice of rotation methods, so further investigation with
different rotation methods may be required. Third, WLSMV estimation may be needed to
correct for scale coarseness when scales have four or fewer response options. Finally, if
CFA and ESEM models provide similar fit and parameter estimates, CFA models are more
desirable based on the parsimony.

8.5. Recommendations for Future Research

This study might be extended to assessing method effects for positively and negatively
worded items ([1,15] Marsh et al., 2010b; Morin et al., 2016) or an overall acquiescence
factor by adding a unit-weighted factor to all items when feasible in correlated-factor and
hierarchical models ([91–93] Hofstee et al., 1998; Soto and John, 2017; Ten Berge, 1999).
Alternative response metrics with additional options might be substituted by the current
five-point scale to assess possible improvements in reliability, validity, and model fit. For
example, Vispoel et al. (2019) [94] demonstrated that there were no meaningful differ-
ences between ML and WLSMV when eight response options were used with measures
of self-concept.

Other areas for future inquiry include exploration of methods for creating appro-
priate priors within Bayesian analyses, use of promising but underused methods to
correct for scale coarseness (e.g., paired maximum likelihood; [95] Katsikatsou et al.,
2012), most accurate criteria for determining model fit when using WLSMV and Bayesian
estimation ([54,83,84] Garnier-Villarreal and Jorgensen 2020; Nye and Drasgow, 2011; Xia
and Yang, 2019), alternative rotation methods in ESEM analyses ([6,51,67,88] Asparouhov
and Muthén, 2009; Guo et al., 2019; Marsh et al., 2013; Xiao et al., 2019), guidelines for
the best uses of the bifactor model for theoretical inquiries and practical applications, and
simulation studies for determining the most suitable model for various scenarios.

8.6. Limitations

While interpreting results from this study, a couple of limitations should be kept in
mind. First, analyses relied on only one self-report personality measure collected from a
volunteer sample of United States participants, and, therefore, the results may not apply
to heterogeneous groups. Second, it is important to note that our findings regarding the
Bayesian analysis included many parameters in situations in which cross-loadings were
included. The inclusion of cross-loadings necessarily increases the complexity of the model
and it is possible that improvements in model fit could come at the cost of overfitting
the data. Hence, future research should investigate the extent to which the inclusion of
multiple cross-loadings affects model fit.

9. Conclusions

Our goal in this study was to demonstrate and systematically evaluate the effects
of estimation procedures, scale metrics, and relaxed factor loading constraints within
correlated-factor, bifactor, and hierarchical models using a recently developed, comprehen-
sive, and well-constructed inventory of reasonable length that captures current theoretical
consensus on overall domains and underlying facets of personality. Analyses performed
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on a sample of well over 400,000 respondents from the United States also contributed
new insights into the psychometric scores from the IPIP-NEO-120 in representing con-
structs from several theoretical frameworks. Techniques demonstrated here are widely
applicable to self-report measures in general and may serve as templates for future in-
vestigations into multidimensional psychological constructs. To help readers apply these
techniques, we provide code in Mplus 8.8 for analyzing all factor models described in this
study (see Supplementary Materials). We hope these resources prove helpful in choosing
models to best represent constructs in multiple disciplines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/psych6010007/s1, File S1: Sample Mplus Code.
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28. Tóth-Király, I.; Morin, A.J.; Bőthe, B.; Orosz, G.; Rigó, A. Investigating the multidimensionality of need fulfillment: A bifactor
exploratory structural equation modeling representation. Struct. Equ. Model. A Multidiscip. J. 2018, 25, 267–286. [CrossRef]

29. Li, C.H. Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least
squares. Behav. Res. Methods 2016, 48, 936–949. [CrossRef]

30. Rhemtulla, M.; Brosseau-Liard, P.É.; Savalei, V. When can categorical variables be treated as continuous? A comparison of robust
continuous and categorical SEM estimation methods under suboptimal conditions. Psychol. Methods 2012, 17, 354–373. [CrossRef]

31. Nussbeck, F.W.; Eid, M.; Lischetzke, T. Analysing multitrait–multimethod data with structural equation models for ordinal
variables applying the WLSMV estimator: What sample size is needed for valid results? Br. J. Math. Stat. Psychol. 2006,
59, 195–213. [CrossRef]

32. Hox, J.J.; Maas, C.J.; Brinkhuis, M.J. The effect of estimation method and sample size in multilevel structural equation modeling.
Stat. Neerl. 2010, 64, 157–170. [CrossRef]

33. Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the number of classes in latent class analysis and growth mixture
modeling: A Monte Carlo simulation study. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 535–569. [CrossRef]

34. Muthén, B.; Asparouhov, T. Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychol.
Methods 2012, 17, 313–335. [CrossRef]

35. Liang, X. Prior sensitivity in Bayesian structural equation modeling for sparse factor loading structures. Educ. Psychol. Meas. 2020,
80, 1025–1058. [CrossRef]

36. Levy, R.; Choi, J. Bayesian structural equation modeling. In Structural Equation Modeling: A Second Course; Hancock, G.R., Mueller,
R.O., Eds.; IAP Information Age Publishing: Charlotte, NC, USA, 2013; pp. 563–623.

37. Heerwegh, D. Small Sample Bayesian Factor Analysis. Phuse. 2014. Available online: http://www.lexjansen.com/phuse/2014
/sp/SP03.pdf (accessed on 11 January 2024).

38. Liang, X.; Yang, Y.; Cao, C. The performance of ESEM and BSEM in structural equation models with ordinal indicators. Struct.
Equ. Model. A Multidiscip. J. 2020, 27, 874–887. [CrossRef]

39. Van De Schoot, R.; Broere, J.J.; Perryck, K.H.; Zondervan-Zwijnenburg, M.; Van Loey, N.E. Analyzing small data sets using
Bayesian estimation: The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. Eur. J.
Psychotraumatology 2015, 6, 25216. [CrossRef] [PubMed]

40. Reis, D. Further insights into the German version of the Multidimensional Assessment of Interoceptive Awareness (MAIA):
Exploratory and Bayesian structural equation modeling approaches. Eur. J. Psychol. Assess. 2017, 35, 317–325. [CrossRef]

41. Kaplan, D. Bayesian Statistics for the Social Sciences; Guilford: New York, NY, USA, 2014.
42. Kaplan, D.; Depaoli, S. Bayesian structural equation modeling. In Handbook of Structural Equation Modeling; Hoyle, R.H., Ed.;

Guilford: New York, NY, USA, 2012; pp. 650–673.
43. Zyphur, M.J.; Oswald, F.L. Bayesian estimation and inference: A user’s guide. J. Manag. 2015, 41, 390–420. [CrossRef]
44. Bhattacharya, A.; Dunson, D.B. Sparse Bayesian infinite factor models. Biometrika 2011, 98, 291–306. [CrossRef] [PubMed]
45. Kaufmann, S.; Schumacher, C. Identifying relevant and irrelevant variables in sparse factor models. J. Appl. Econom. 2017,

32, 1123–1144. [CrossRef]
46. Price, L. A didactic investigation of perfect fit in second-order confirmatory factor analysis: Exploratory structural equation

modeling and Bayesian approaches. SM J. Biom. Biostat. 2017, 2, 1011. [CrossRef]
47. Gill, R.D. Conciliation of Bayes and Pointwise Quantum State Estimation. In Quantum Stochastics and Information—Statistics,

Filtering and Control; World Scientific: Singapore, 2008.
48. Kass, R.E.; Wasserman, L. The Selection of Prior Distributions by Formal Rules. J. Am. Stat. Assoc. 1996, 91, 1343–1370. [CrossRef]

https://doi.org/10.1146/annurev-clinpsy-050718-095522
https://doi.org/10.1007/BF02294531
https://doi.org/10.1177/1073191114528029
https://doi.org/10.1037/a0019227
https://doi.org/10.1016/j.cedpsych.2017.06.010
https://doi.org/10.1177/1073191115589344
https://doi.org/10.1016/j.jvb.2016.12.001
https://doi.org/10.1080/10705511.2017.1374867
https://doi.org/10.3758/s13428-015-0619-7
https://doi.org/10.1037/a0029315
https://doi.org/10.1348/000711005X67490
https://doi.org/10.1111/j.1467-9574.2009.00445.x
https://doi.org/10.1080/10705510701575396
https://doi.org/10.1037/a0026802
https://doi.org/10.1177/0013164420906449
http://www.lexjansen.com/phuse/2014/sp/SP03.pdf
http://www.lexjansen.com/phuse/2014/sp/SP03.pdf
https://doi.org/10.1080/10705511.2020.1716770
https://doi.org/10.3402/ejpt.v6.25216
https://www.ncbi.nlm.nih.gov/pubmed/25765534
https://doi.org/10.1027/1015-5759/a000404
https://doi.org/10.1177/0149206313501200
https://doi.org/10.1093/biomet/asr013
https://www.ncbi.nlm.nih.gov/pubmed/23049129
https://doi.org/10.1002/jae.2566
https://doi.org/10.36876/smjbb.1011
https://doi.org/10.1080/01621459.1996.10477003


Psych 2024, 6 133

49. Asparouhov, T.; Muthén, B. Bayesian Analysis of Latent Variable Models Using Mplus. Technical Report. Version 4. 2010.
Available online: http://www.statmodel.com/download/BayesAdvantages18.pdf (accessed on 28 November 2023).

50. Muthén, B. Bayesian Analysis in Mplus: A Brief Introduction. Technical Report. Version 3. 2010. Available online: http:
//www.statmodel.com/download/IntroBayesVersion%203.pdf (accessed on 11 January 2024).

51. Xiao, Y.; Liu, H.; Hau, K.T. A comparison of CFA, ESEM, and BSEM in test structure analysis. Struct. Equ. Model. A Multidiscip. J.
2019, 26, 665–677. [CrossRef]

52. van de Schoot, R.; Depaoli, S. Bayesian analyses: Where to start and what to report. Eur. Health Psychol. 2014, 16, 75–84.
53. Van Erp, S.; Mulder, J.; Oberski, D.L. Prior sensitivity analysis in default Bayesian structural equation modeling. Psychol. Methods

2018, 23, 363–388. [CrossRef]
54. Garnier-Villarreal, M.; Jorgensen, T.D. Adapting fit indices for Bayesian structural equation modeling: Comparison to maximum

likelihood. Psychol. Methods 2020, 25, 46–70. [CrossRef]
55. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 1995.
56. Meng, X.L. Posterior predictive p-values. Ann. Stat. 1994, 22, 1142–1160. [CrossRef]
57. Johnson, J.A. Measuring thirty facets of the Five Factor Model with a 120-item public domain inventory: Development of the

IPIP-NEO-120. J. Res. Personal. 2014, 51, 78–89. [CrossRef]
58. Goldberg, L.R. A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor

models. Personal. Psychol. Eur. 1999, 7, 7–28.
59. Costa, P.T., Jr.; McCrae, R.R. Revised NEO Personality Inventory (NEO PI-RTM) and NEO Five-Factor Inventory (NEO-FFI): Professional

Manual; Psychological Assessment Resources: Odessa, FL, USA, 1992.
60. Giolla, E.; Kajonius, P.J. Sex differences in personality are larger in gender equal countries: Replicating and extending a surprising

finding. Int. J. Psychol. 2019, 54, 705–711. [CrossRef]
61. Kajonius, P.J.; Giolla, E.M. Personality traits across countries: Support for similarities rather than differences. PLoS ONE 2017,

12, e0179646. [CrossRef]
62. Kajonius, P.J.; Johnson, J.A. Sex differences in 30 facets of the five factor model of personality in the large public (N= 320,128).

Personal. Individ. Differ. 2018, 129, 126–130. [CrossRef]
63. Kajonius, P.J.; Johnson, J.A. Assessing the structure of the five factor model of personality (IPIP-NEO-120) in the public domain.

Eur. J. Psychol. 2019, 15, 260–275. [CrossRef]
64. Lace, J.W.; Evans, L.N.; Merz, Z.C.; Handal, P.J. Five-factor model personality traits and self-classified religiousness and spirituality.

J. Relig. Health 2020, 59, 1344–1369. [CrossRef] [PubMed]
65. Lace, J.W.; Greif, T.R.; McGrath, A.; Grant, A.F.; Merz, Z.C.; Teague, C.L.; Handal, P.J. Investigating the factor structure of the

K10 and identifying cutoff scores denoting nonspecific psychological distress and need for treatment. Ment. Health Prev. 2019,
13, 100–106. [CrossRef]

66. Lace, J.W.; Merz, Z.C.; Grant, A.F.; Emmert, N.A.; Zane, K.L.; Handal, P.J. Validation of the K6 and its depression and anxiety
subscales for detecting nonspecific psychological distress and need for treatment. Curr. Psychol. 2020, 39, 1552–1561. [CrossRef]

67. Guo, J.; Marsh, H.W.; Parker, P.D.; Dicke, T.; Lüdtke, O.; Diallo, T.M.O. A systematic evaluation and comparison between
exploratory structural equation modeling and Bayesian structural equation modeling. Struct. Equ. Model. 2019, 26, 529–556.
[CrossRef]

68. Kim, M.; Wang, Z. Factor Structure of the PANAS with Bayesian Structural Equation Modeling in a Chinese Sample. Eval. Health
Prof. 2021, 45, 0163278721996794. [CrossRef] [PubMed]

69. Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS
scales. J. Personal. Soc. Psychol. 1988, 54, 1063. [CrossRef]

70. Muthén, L.K.; Muthén, B.O. Mplus User’s Guide (Version 8th); Muthén & Muthén: Los Angeles, CA, USA, 2017.
71. Browne, M.W.; Cudeck, R. Alternative ways of assessing model fit. Sociol. Methods Res. 1992, 21, 230–258. [CrossRef]
72. Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives.

Struct. Equ. Model. 1999, 6, 1–55. [CrossRef]
73. Jöreskog, K.G.; Sörbom, D. LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language; Scientific Software

International, Inc.: Skokie, IL, USA; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1993.
74. Marsh, H.W.; Hau, K.T.; Wen, Z. In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for

fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Struct. Equ. Model. 2004, 11, 320–341. [CrossRef]
75. Yu, C.Y. Evaluating Cutoff Criteria of Model-Fit Indexes for Latent Variable Models with Binary and Continuous Outcomes. Ph.D.

Thesis, University of California, Los Angeles, CA, USA, 2002.
76. Depaoli, S.; Clifton, J.P. A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous

outcomes. Struct. Equ. Model. 2015, 22, 327–351. [CrossRef]
77. Holtmann, J.; Koch, T.; Lochner, K.; Eid, M. A comparison of ML, WLSMV, and Bayesian methods for multilevel structural

equation models in small samples: A simulation study. Multivar. Behav. Res. 2016, 51, 661–680. [CrossRef]
78. Liang, X.; Yang, Y. An evaluation of WLSMV and Bayesian methods for confirmatory factor analysis with categorical indicators.

Int. J. Quant. Res. Educ. 2014, 2, 17–38. [CrossRef]
79. Lei, P.-W. Evaluating estimation methods for ordinal data in structural equation modeling. Qual. Quant. 2009, 43, 495–507.

[CrossRef]

http://www.statmodel.com/download/BayesAdvantages18.pdf
http://www.statmodel.com/download/IntroBayesVersion%203.pdf
http://www.statmodel.com/download/IntroBayesVersion%203.pdf
https://doi.org/10.1080/10705511.2018.1562928
https://doi.org/10.1037/met0000162
https://doi.org/10.1037/met0000224
https://doi.org/10.1214/aos/1176325622
https://doi.org/10.1016/j.jrp.2014.05.003
https://doi.org/10.1002/ijop.12529
https://doi.org/10.1371/journal.pone.0179646
https://doi.org/10.1016/j.paid.2018.03.026
https://doi.org/10.5964/ejop.v15i2.1671
https://doi.org/10.1007/s10943-019-00847-1
https://www.ncbi.nlm.nih.gov/pubmed/31154593
https://doi.org/10.1016/j.mhp.2019.01.008
https://doi.org/10.1007/s12144-018-9846-2
https://doi.org/10.1080/10705511.2018.1554999
https://doi.org/10.1177/0163278721996794
https://www.ncbi.nlm.nih.gov/pubmed/33657889
https://doi.org/10.1037/0022-3514.54.6.1063
https://doi.org/10.1177/0049124192021002005
https://doi.org/10.1080/10705519909540118
https://doi.org/10.1207/s15328007sem1103_2
https://doi.org/10.1080/10705511.2014.937849
https://doi.org/10.1080/00273171.2016.1208074
https://doi.org/10.1504/IJQRE.2014.060972
https://doi.org/10.1007/s11135-007-9133-z


Psych 2024, 6 134

80. Ark, T.K. Ordinal Generalizability Theory Using an Underlying Latent Variable Framework. Ph.D. Thesis, University of British
Columbia, Vancouver, BC, Canada, 2015.

81. Zumbo, B.D.; Gadermann, A.M.; Zeisser, C. Ordinal versions of coefficients alpha and theta for Likert rating scales. J. Mod. Appl.
Stat. Methods 2007, 6, 4. [CrossRef]

82. Muthén, B.; Kaplan, D. A comparison of some methodologies for the factor analysis of non-normal Likert variables. Br. J. Math.
Stat. Psychol. 1985, 38, 171–189. [CrossRef]

83. Nye, C.D.; Drasgow, F. Assessing goodness of fit: Simple rules of thumb simply do not work. Organ. Res. Methods 2011,
14, 548–570. [CrossRef]

84. Xia, Y.; Yang, Y. RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends
on the estimation methods. Behav. Res. Methods 2019, 51, 409–428. [CrossRef]

85. Mai, Y.; Zhang, Z.; Wen, Z. Comparing exploratory structural equation modeling and existing approaches for multiple regression
with latent variables. Struct. Equ. Model. A Multidiscip. J. 2018, 25, 737–749. [CrossRef]

86. Marsh, H.W.; Guo, J.; Dicke, T.; Parker, P.D.; Craven, R.G. Confirmatory Factor Analysis (CFA), Exploratory Structural Equation
Modeling (ESEM), and Set-ESEM: Optimal Balance Between Goodness of Fit and Parsimony. Multivar. Behav. Res. 2020,
55, 102–119. [CrossRef] [PubMed]

87. Sellbom, M.; Tellegen, A. Factor analysis in psychological assessment research: Common pitfalls and recommendations. Psychol.
Assess. 2019, 31, 1428. [CrossRef]

88. Marsh, H.W.; Lüdtke, O.; Nagengast, B.; Morin, A.J.; Von Davier, M. Why item parcels are (almost) never appropriate: Two
wrongs do not make a right—Camouflaging misspecification with item parcels in CFA models. Psychol. Methods 2013, 18, 257.
[CrossRef]

89. Cheung, G.W.; Rensvold, R.B. Evaluating goodness-of fit indexes for testing measurement invariance. Struct. Equ. Model. 2002,
9, 233–255. [CrossRef]

90. Chen, F.F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. 2007, 14, 464–504.
[CrossRef]

91. Hofstee, W.K.B.; Ten Berge, J.M.F.; Hendriks, A.A.J. How to score questionnaires. Personal. Individ. Differ. 1998, 25, 897–909.
[CrossRef]

92. Soto, C.J.; John, O.P. The next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance
bandwidth, fidelity, and predictive power. J. Personal. Soc. Psychol. 2017, 113, 117–143. [CrossRef] [PubMed]

93. Ten Berge, J.M. A Legitimate Case of Component Analysis of Ipsative Measures, and Partialling the Mean as an Alternative to
Ipsatization. Multivar. Behav. Res. 1999, 34, 89–102. [CrossRef] [PubMed]

94. Vispoel, W.P.; Morris, C.A.; Kilinc, M. Using generalizability theory with continuous latent response variables. Psychol. Methods
2019, 24, 153–178. [CrossRef]

95. Katsikatsou, M.; Moustaki, I.; Yang-Wallentin, F.; Jöreskog, K.G. Pairwise likelihood estimation for factor analysis models with
ordinal data. Comput. Stat. Data Anal. 2012, 56, 4243–4258. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.22237/jmasm/1177992180
https://doi.org/10.1111/j.2044-8317.1985.tb00832.x
https://doi.org/10.1177/1094428110368562
https://doi.org/10.3758/s13428-018-1055-2
https://doi.org/10.1080/10705511.2018.1444993
https://doi.org/10.1080/00273171.2019.1602503
https://www.ncbi.nlm.nih.gov/pubmed/31204844
https://doi.org/10.1037/pas0000623
https://doi.org/10.1037/a0032773
https://doi.org/10.1207/S15328007SEM0902_5
https://doi.org/10.1080/10705510701301834
https://doi.org/10.1016/S0191-8869(98)00086-5
https://doi.org/10.1037/pspp0000096
https://www.ncbi.nlm.nih.gov/pubmed/27055049
https://doi.org/10.1207/s15327906mbr3401_4
https://www.ncbi.nlm.nih.gov/pubmed/26825130
https://doi.org/10.1037/met0000177
https://doi.org/10.1016/j.csda.2012.04.010

	Introduction 
	An Overview of Factor Analytic Techniques 
	Exploratory Factor Analysis (EFA) 
	Confirmatory Factor Analysis (CFA) 
	Exploratory Structural Equation Modeling 
	Estimation Methods 
	Bayesian Structural Equation Modeling 
	Types of Priors 
	Bayesian Model Fit Evaluation 


	Research on IPIP-NEO-120 
	Significance of the Current Study 
	Illustrations of SEM, ESEM, and BSEM Techniques Using IPIP-NEO-120 Agreeableness Scale 
	Methods 
	Data and Measure 
	Sample 
	Descriptive Statistics 
	Data Analyses 

	Results 
	The Effects of Estimation Methods 
	Correlated-Factor Models 
	Bifactor Models 
	Hierarchical Models 
	Fit Differences for Estimation Procedures 
	ML vs. WLSMV 
	ML vs. Bayesian Informative Priors 
	WLSMV vs. Bayesian Informative Priors 

	The Effects of Allowing and Restricting Off-Target Loadings (ESEM vs. CFA) 
	Correlated-Factor Models 
	Bifactor Models 
	Hierarchical Models 
	Fit Differences When Allowing Off-Target Loadings 

	The Effects of Different Priors in BSEM on Model Fits 
	Fit Differences for ESEM WLSMV Models versus Bayesian Models with Informative Priors 

	Discussion 
	The Effects of Parameter Estimation Methods on Model Fit 
	The Effects of Factor Loading Constraints on Model Fit 
	Bayesian Structural Equation Models and Exploratory Structural Equation Models 
	Implications 
	Recommendations for Future Research 
	Limitations 

	Conclusions 
	References

