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Abstract: Background. Early childhood experiences have long-lasting effects on subsequent mental
and physical health, education, and employment. The measurement of these effects relies on insensi-
tive behavioral signs, subjective assessments by adult observers, neuroimaging or neurophysiological
studies, or retrospective epidemiologic outcomes. Despite intensive research, the underlying mech-
anisms of these long-term changes in development and health status remain unknown. Methods.
We analyzed scalp hair from healthy children and their mothers using an unbiased proteomics
platform combining tandem mass spectrometry, ultra-performance liquid chromatography, and
collision-induced dissociation to reveal commonly observed hair proteins with a spectral count of 3
or higher. Results. We observed 1368 non-structural hair proteins in children and 1438 non-structural
hair proteins in mothers, with 1288 proteins showing individual variability. Mothers showed higher
numbers of peptide spectral matches and hair proteins compared to children, with important age-
related differences between mothers and children. Age-related differences were also observed in
children, with differential protein expression patterns between younger (2 years and below) and
older children (3–5 years). We observed greater similarity in hair protein patterns between mothers
and their biological children compared with mothers and unrelated children. The top 5% of proteins
driving population variability represented biological pathways associated with brain development,
immune signaling, and stress response regulation. Conclusions. Non-structural proteins observed in
scalp hair include promising biomarkers to investigate the long-term developmental changes and
health status associated with early childhood experiences.

Keywords: hair biomarkers; proteomics; brain development; developmental psychology; preschool
children; non-structural proteins

1. Introduction

Early human development is extremely sensitive to parental, environmental, and
societal influences that vary with the history of each individual (via genetic and epigenetic
factors) and with their daily experiences. Variations in these factors, such as stress and social
determinants of health, can singly or collectively introduce differences in developmental
outcomes [1–4]. Such differences are then magnified in the higher-order cognitive and
behavioral capacities of the human mind–brain–body connectome, which are built on
a series of sequential or staggered developmental epochs that can enable or constrain
individuals’ future potential, their role(s) in society, as well as their mental and physical
health [4–8].
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Objective assessment of social, emotional, and other environmental inputs across
multiple timescales is challenging in early childhood. These challenges result from most
subjects being pre-verbal, coming from unknown environments, or accompanied by un-
reliable, fearful, or distrusting historians [1,3,9,10]. Developmental timescales can also
range from milliseconds to minutes (e.g., affecting acute neuromodulatory tone, neuronal
oscillations, or neuroendocrine changes), days to weeks (e.g., affecting circadian rhythms,
metabolic functions, or memory and learning), or months to years (e.g., affecting brain
growth and brain plasticity or emerging cognitive, behavioral, or social capacities) [4,11].
Neurophysiological, neuroimaging, and observational studies have attempted to describe
and quantify early developmental changes, but there remains a need for non-invasive, ob-
jective biomarkers that can be measured serially across the months and years of childhood
development [12–15].

Human scalp hair from preschool children, derived from the neuroectoderm and
mesoderm, grows constantly at about 1 cm/month and evolves via the prenatal lanugo,
postnatal vellus, intermediate medullary, and terminal hair stages [16]. Hair is comprised
of 65–85% protein, 15–35% water, 1–9% lipids, and 0.1–5% pigment, like melanin and
trace elements [17]. Constantly growing scalp hair incorporates both endogenous and
exogenous proteins in a time-averaged chronological manner [18], unlike any other biospec-
imens [19]. Therefore, it is used routinely to monitor drug exposures, heavy metals, and
other environmental toxins [20] or even reflect the social determinants of health [3].

Developmentally regulated hair proteins could offer biomarker candidates for the
mind–brain–body connectome with the potential to monitor health status in real time dur-
ing early childhood development. However, all published data on hair proteins are limited
to adult subjects, include relatively small sample sizes, and focus mainly on structural hair
proteins. Lee et al. described 343 hair proteins from three adults, showing evidence for post-
translational modifications [21]. Laatsch et al. analyzed hair from 18 males and 3 females,
reporting ethnic differences in keratins and keratin-associated proteins (KAPs) [22]. Carl-
son et al. characterized hair proteins from one adult with limited sample availability [23],
whereas Wu et al. used hierarchical protein clustering to match 10 monozygotic twin pairs
and differentiate them from unrelated individuals [24]. Parker et al. reported quantifiable
measures [21] of identity discrimination and racial ancestry by detecting genetically variant
peptides in the structural hair proteins for forensic purposes [25].

To fill the extant gaps in knowledge, we analyzed non-structural hair proteins using
ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS)
and ELISA-based validation studies conducted on a limited subset of the detected non-
structural hair proteins present in preschool children and their mothers. Our subjects were
not exposed to early life adversity, as evidenced by parental income, household structure,
health insurance, and parent education [5] as well as hair cortisol concentrations [4,26].

2. Materials and Methods

After IRB approval and parental consent, mothers and children aged 1–6 years were
recruited from local preschool facilities. All children were developmentally appropriate,
healthy, and belonged to stable nuclear families (Table 1). We excluded children with tinea
capitis, alopecia areata, eczema, or other scalp conditions; those receiving any prescription
or over-the-counter drugs or steroid therapy in the past 3 months; and those with chronic
medical conditions, developmental delay, or chemical exposures to the hair prior to study
entry. Hair samples from the posterior vertex (1 cm2 area) were trimmed at 0.1 mm from
the scalp and stored in Ziploc® bags at 4 ◦C.
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Table 1. Demographic characteristics and hair protein data of all participants.

Family
Code Subject Age

(Months)
Age

(Years) Gender Race Ethnicity # of Hair
Proteins

Peptide Spectral
Matches

F107
Mother 450.6 37.6 F White NH 819 6.533
Child1 27.6 2.3 F White NH 568 3.949
Child2 58.0 4.8 M White Other 464 2.873

F123
Mother 447.1 37.3 F White NH 809 10.370
Child1 24.0 2 F White NH 499 3.728
Child2 52.4 4.4 M White NH 573 5.078

F134
Mother 431.8 35.9 F White NA 684 5.445
Child1 20.9 1.74 M Mixed NA 387 2.760
Child2 67.6 5.6 F Mixed NA 759 6.872

F142
Mother 447.3 37.3 F Asian NA 650 8.370
Child1 20.1 1.7 M Mixed NA 581 6.208
Child2 50.6 4.2 M Mixed NA 226 2.353

F183
Mother 530.0 44.2 F Asian NH 1090 10.527
Child1 8.5 0.7 M Asian NH 314 2.331
Child2 44.0 3.7 M Asian NH 1010 8.065

F218
Mother 504 42 F White H 609 4.144
Child1 58.5 4.9 F White H 524 3.107
Child2 35.2 2.9 F White H 631 4.475

F271
Mother 402.6 33.6 F White NH 769 7.525
Child1 15.1 1.3 F White NH 557 7.161
Child2 42.5 3.5 F White NH 600 5.615

F286
Mother 489.8 40.8 F White NH 616 9.209
Child1 22.0 1.8 M White NH 403 4.727
Child2 52.5 4.4 F White NH 614 6.061

F346 Child 50.3 4.2 M White NA 475 3.429
F192 Child 38.1 3.2 F Other H 283 1.731
F132 Child 51.4 4.3 F White NA 272 1.892
F363 Child 56.6 4.7 M Mixed NH 270 1.914
F281 Child 53.5 4.5 M Mixed Mixed 406 3.192
F173 Child 51.3 4.3 F Other Other 835 7.168
F380 Child 14.8 1.2 M Asian NA 237 1.814
F159 Child 62.7 5.2 F White NH 485 3.830
F179 Child 53.0 4.4 F Asian Other 494 2.926
F149 Child 61.3 5.1 F Mixed NH 698 5.733
F106 Child 56.7 4.7 F Asian NH 668 6.390
F153 Child 57.1 4.8 M Asian NA 275 2.549
F256 Child 55.8 4.7 M Mixed Mixed 638 7.016
F190 Child 31.5 2.6 F Asian Other 527 7.460
F104 Child 50.2 4.2 M White NH 672 8.084
F113 Child 17.9 1.5 F White NH 441 3.640

Note. Demographic data, total number of proteins, and peptide spectral matches observed in all 40 individuals.
Mothers’ hair (n = 8) had a significantly higher number of proteins (p = 0.001) and protein spectral matches
(p = 0.0004) than children’s hair (n = 32). Related children (n = 16) are grouped with their mothers, and unrelated
children are listed below them (n = 16). Abbreviations: NH = Non-Hispanic, H = Hispanic, NA = Not Available.

2.1. Hair Protein Extraction

Proprietary methods were developed for extracting the soluble protein components of
human scalp hair.

2.2. Proteomics Method

Protein pellets were resuspended in 50 mM ammonium bicarbonate in the presence of
0.0015% ProteaseMAX (Promega, Madison, WI, USA), and the total protein amount was
estimated with Pierce BCA assays (Thermo Fisher Scientific, San Jose, CA, USA) for the
consistent loading of all samples. Proteins were digested with 0.25 µg of Trypsin/LysC
(Promega) at a 1:100 enzyme/substrate ratio overnight at 37 ◦C. Proteolytic digestion was
quenched with 1% formic acid; peptides were dried by speed vac before dissolving in 30 µL
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of reconstitution buffer (2% acetonitrile + 0.1% Formic acid) to a concentration of 1 µg/µL,
and 2 µL of this solution was injected into the MS instrument.

Experiments were performed on the Orbitrap Fusion Tribrid mass spectrometer
(Thermo Scientific) coupled with an ACQUITY M-Class ultra-performance liquid chro-
matography (UPLC) system (Waters Corporation, Milford, MA, USA). For a typical LCMS
experiment (liquid chromatography/mass spectrometry), a flow rate of 450 nL/min was
used, in which mobile phase A was 0.2% formic acid in water and mobile phase B was 0.2%
formic acid in acetonitrile. Analytical columns were pulled using fused silica (I.D. 100 mi-
crons) and packed with Magic 1.8-micron 120Å UChrom C18 stationary phase (nanoLCMS
Solutions) to a length of ~25 cm. Peptides were directly injected onto the analytical column
using a gradient (2–45% B followed by a high-B wash) of 80 min. The MS was operated in
a data-dependent fashion using CID (collision-induced dissociation) to generate MS/MS
spectra, which were collected in the ion trap with the collisional energy set at 35.

The *.raw data files were processed using Byonic v3.2.0 (ProteinMetrics, Cupertino,
CA, USA) to infer protein isoforms using the Uniprot Homo sapiens database. Proteolysis
with Trypsin/LysC was assumed to be semi-specific, allowing for N-ragged cleavage with
up to 2 missed cleavage sites. Precursor mass accuracies were maintained within 12 ppm
and 0.4 Da for MS/MS fragments. Proteins were limited to a false discovery rate (FDR)
of 1% or lower using standard target-decoy approaches [27], and only the proteins with
>3 spectral counts were selected for further data processing; keratins and KAPs were
removed at this stage.

2.3. Generation of Age-Associated Proteomic Libraries

Initially, standard UPLC–MS/MS methods (Section 2.2) were employed to identify
non-structural hair shaft proteins, using protein purification to remove keratins and estab-
lish age-associated hair shaft proteomic libraries with pooled hair samples from 40 children
of diverse races/ethnicities (Asian, White, mixed, or other races; Hispanic/non-Hispanic
ethnicity) aged 1–5 years (mean/SD = 44.5 months ± 12.6 months) and 43 mothers also
of diverse races/ethnicities (aged 39 years ± 5 years). The utilization of large numbers
of individuals of diverse races and ethnicities improved our ability to detect represen-
tative patterns of non-structural proteins incorporated in the hair shaft. We observed
1368 non-structural hair proteins in children and 1438 non-structural hair proteins in moth-
ers, with 1288 proteins showing individual variability. The total number of age-associated
proteins discovered in these libraries was also detected in the analyses of 40 independent
subjects that were not used for the generation of the libraries. Individual hair samples
from 8 mothers with 16 biologically related children and 16 unrelated children were ana-
lyzed against the pooled hair protein libraries to create a master library of hair proteins.
These data were deposited through the PRIDE repository [28] into the ProteomeXchange
Consortium [29,30].

2.4. Human Scalp Hair Shaft Proteoforms Validation Studies

Surplus volumes of protein remaining after UPLC-MS/MS generated libraries individ-
ual evaluations, and the quantification of hair cortisol concentrations (HCCs) were pooled
by low, intermediate, or high HCC values. The hair cortisol concentration (HCC) assays
were validated previously [31]. These pools were evaluated using commercially available
ELISA kits according to the manufacturer’s instructions for cortisol (ALPCO/11-CORHU-
E01-SLV), arginine vasopressin (AVP, Enzo/ADI-900-017A), Cu/ZN superoxide dismutase
(SOD1, Enzo/ALX-850-033), glial fibrillary acidic protein (GFAP, Bioatrik/EKU04380), and
HtrA serine peptidase 2 (HTRA2, Thermoscientific/EHHTRA2).

2.5. Statistical Analysis

Spectral counts were used to calculate Euclidean distances between individuals and
determine hierarchical clustering. A correlation matrix with Spearman’s coefficient was also
used for the rank-based depiction of similarities between the individual hair proteomes.
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Principal component analysis (PCA) [32–34] was used to reduce the dimensionality
of this rich dataset. PCA is a widely used technique for the analytical modeling of linear
combinations of the original dimensions, which are called principal components [34]. The
largest proportion of data variance is captured by the first principal component, the second
largest proportion of variance falls into the second principal component, and so on [32].
For the first five principal components from each PCA, we multiplied the loading scores of
each protein by the percent variance explained by that corresponding principal component;
these weighted scores were summed for each protein to give its total loading score (TLS).

Weighted Score = Loading Score * Proportion of Variance

Total Loading Score (TLS) =
5

∑
PC=1

Weighted score

On the basis of their TLS values, the top 5% of proteins were selected as the main
drivers of variability in hair protein expression.

Additionally, we used t-distributed stochastic neighboring embedding (tSNE), a non-
linear probabilistic approach [35,36], to visualize proteins with non-linear similarity in
high-dimensional space as neighbors in low-dimensional linear depictions. Unlike the
reproducible PCA results, the probabilistic nature of tSNE can result in somewhat different
results for each computation. To avoid serendipitous results, we ran each computation at
least 10 times to ensure reproducibility. For each computation, the maximum number of
iterations to converge was set to 1000, and perplexity was set to the maximum permitted
value. The statistical significance of the tSNE clustering was calculated by how often a
given statistic was reproduced in 1000 simulations of permuted versions of the dataset.

Boolean profiles of the hair proteins were also compared between the original dataset
(each mother coupled with her own children) and 5000 simulated datasets, which were
created by swapping mothers between families such that no mother was paired with her
own children, but the two siblings remained together in all simulated datasets. Observed
conservation in pairwise intra-family Manhattan distances from the original dataset could
then be attributed to the similarities in hair protein expression between each mother and
her children.

For the top 5% of proteins in children (n = 32), we averaged spectral counts for girls
and boys separately and divided the girls’ average by the boys’ average. The resulting
values were converted to log base 2. The same process was followed for spectral counts
from mothers and children.

The log fold-change values of the top 5% of proteins were used as input for ingenuity
pathway analysis (Qiagen: https://digitalinsights.qiagen.com/products/features/ (ac-
cessed on 24 June 2019)). We analyzed direct and indirect relationships between molecules
on the basis of experimentally observed data, restricted to human databases in the Inge-
nuity Knowledge Base. We used random forest (RF) models for both the classification
(boys vs. girls, mothers vs. children) and regression (age prediction) tasks, with protein
concentrations as model features and individuals as samples [37]. For classification, the
model output was the probability of an individual being female (sex classification) or being
a mother (person classification). For regression (age prediction), the model output was the
individual’s predicted age.

Results were based on a 10-fold cross-validation repeated 100 times. Members of
the same family were included in the same set, i.e., either training or test sets, to avoid
information leaks due to familial similarities. For age prediction, we evaluated results using
the R2 coefficient of determination and the linear model p-value fitted on the predicted and
observed data. For the classification tasks, we used the area under the ROC curve (AUC)
and the Wilcoxon Mann–Whitney test to test the null hypothesis that one distribution is
not stochastically greater than the other.

https://digitalinsights.qiagen.com/products/features/
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3. Results
3.1. Features of Hair Proteins

There were 3124 proteoforms representing the gene products of 2278 genes. The
expression of protein isoforms, alternative splicing of messenger RNA (mRNA), and
post-translational modifications resulted in a higher number of hair proteins than their asso-
ciated genes [21,38]. Hair proteins observed in individual mothers and children contained
2269 unique ‘proteoforms’ or protein isoforms; 1438 proteins were commonly observed
in mothers and 1368 proteins were commonly observed in children, and 1288 hair pro-
teins showed individual variability among mothers and children. Higher spectral counts
(p = 0.0004) and higher numbers of proteins (p = 0.001) were observed in mothers than in
children (Figure 1), perhaps reflecting a wider array of biological functions in adult females
related to reproduction [39–41], aging [37,42], or disease states [43]. These age differences
were explored further in subsequent analyses.
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Figure 1. Hair proteins in mothers and children. Note. (A) Protein spectral counts (p = 0.0004) and
(B) the numbers of proteins observed (with spectral counts >3) were consistently higher (p = 0.001,
Wilcoxon tests) in mothers (M; cyan) than in children (C; pink). Mothers and their biological children
(family labels: F107, F123, F134, F142, F183, F218, F271, and F288) and unrelated children (U) are
identified on the X-axis: all mothers except F134 and F218 had higher spectral counts and more hair
proteins than their children.

3.2. Hair Protein Profiles in Individuals and Families

Peptide spectral matches for each protein were combined to compare protein expres-
sion for all individuals and assess Spearman rank correlations. Hair proteins from the
mothers were closely correlated to each other, whereas hair proteins in children showed
correlations based on age and sex (Figure 2A). Euclidean distances were calculated for
pairwise comparisons between individuals (Figure 2B) and used for hierarchical clustering
to identify subjects with similarities in hair protein patterns (Figure 2C). Consistent with the
correlation matrix, all mothers were clustered close together; younger children (0–2 years)
were mostly located in one cluster, whereas older children were clustered with the mothers
(Figure 2C). The Boolean profiles of the hair proteins for each mother and her two biological
children showed significantly shorter intra-family Manhattan distances (p < 0.0002) than
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the 5000 ‘simulated’ families with mismatched mothers and children (Figure 2D), revealing
hereditary vs. environmental conservation of hair protein profiles within each family.
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Figure 2. Similarities in hair protein profiles of individuals and families. Note. (A) Spearman rank
correlation matrix with high (purple) to low (orange) correlation coefficients; (B) Euclidean distances
based on protein spectral counts showing individuals more closely related (red) or more distant
(grey) from each other; (C) hierarchical cluster dendrogram based on log spectral counts showing
7/8 mothers grouped into one cluster with older children (4–6 years) (mustard), mostly White or
Asian families, with the highest numbers of proteins and protein spectral matches (PSMs); one
mother in an adjacent cluster with children 2–4 years (pink), mostly Hispanic families, with fewer
proteins and PSMs; the younger children (1–4 years) grouped into one cluster (green), with the fewest
numbers of proteins and PSMs; whereas a wide age range (1–5 years) of children cluster together
(blue) with intermediate numbers of proteins and PSMs; (D) intra-family Manhattan distances from
Boolean hair protein profiles were shorter in mothers matched with their own children (p < 0.0002)
vs. 5000 simulated datasets created with mismatched mothers and children. Individuals are listed on
the X- and Y-axes with their family identifier, with Mo for mother, C1 for the younger child, and C2
for the older child in each family.

3.3. Age- and Sex-Related Differences in Hair Proteins

Both PCA [32–34] and tSNE [35,36] were used to reduce the data dimensionality
and identify the major contributors of hair protein variability. Principal components
1–5 accounted for 61.6% of hair protein variability for all subjects, 57.5% for all children,
84.0% for all mothers, 60.8% for mothers and related children, and 62.3% for mothers and
unrelated children.
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Age differences were observed by plotting the first two principal components (PC1
and PC2) and tSNE dimensions (Figure 3). We observed two separate clusters for the
younger children and the mothers, with the older children dispersed across these groups
(Figure 3A). Similar clusters were observed from the remaining principal components.
The tSNE projections also showed that mothers were located separately from the children
(Figure 3B). The proteins driving these differences showed higher spectral counts in moth-
ers vs. children for SERPINB4 (serine protease inhibitor), POF1B (actin filament binder),
PLEC (cytoskeleton binding protein), A2ML1 (α2-macroglobulin-like proteinase inhibitor),
HIST1H3A (histone), UQCRQ (electron transfer from ubiquinol to cytochrome C), and
AHCY (adenosylhomocysteine hydrolase). By contrast, mammaglobin-B (SCGB2A1), a
heterodimerization protein that binds androgen and other steroids, was observed only in
children (Table 2). Older children had higher spectral counts for PLEC (plectin), EIF3A (eu-
karyotic translation initiation factor 3), AHCY (adenosylhomocysteinase), HAL (histidine
ammonia-lyase), and TUBA1C (tubulin alpha 1c), whereas younger children had higher
protein spectral counts for SCGB2A1 (secretoglobin 2A member 1) and CSN2 (casein beta)
(Table 3).
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Ubiquinol-cytochrome c reductase 
complex III 

UQCRQ –1.716 0.0007 *** Cytoplasm enzyme 

Adenosylhomocysteinase AHCY –1.472 0.0040 ** Cytoplasm enzyme 
Heat shock protein family A (Hsp70-

1A) HSPA1A –1.35 0.0569 Cytoplasm enzyme 

H2B clustered histone 9 HIST1H2BH –1.17 0.5070 Nucleus other 
Histidine ammonia-lyase HAL –1.087 0.0851 Cytoplasm enzyme 

COPI coat complex subunit zeta 1 COPZ1 –0.931 0.158 Cytoplasm transporter 
Eukaryotic translation initiation factor 

3A 
EIF3A –0.8 0.0567 Cytoplasm other 

Tubulin alpha 1c TUBA1C –0.526 0.262 Cytoplasm other 
Casein beta CSN2 –0.269 0.491 Extracellular kinase 

ATP citrate lyase ACLY –0.249 0.0954 Cytoplasm enzyme 

Figure 3. Age and sex-related differences in hair proteins. Note. (A) The first two principal compo-
nents showing spatial separations by age, with children over 2 years old (pink) located between the
children up to 2 years of age (blue, upper right) and the mothers (green, lower left). (B) The first
two tSNE dimensions by age, showing mothers (green) in the left upper quadrant separate from the
younger (0–2 years, blue) and older (3–5 yeas, pink) children. Higher spectral counts for 7/17 hair
proteins occurred in mothers (SERPINB4, POF1B, PLEC, A2ML1, HIST1H3A, UQCRQ, and AHCY)
and one protein (SCGB2A1) in children (Kruskal–Wallis ANOVA and post hoc Benjamini–Hochberg
corrections). (C) PCA analyses of all children showing overlapping circles for girls (blue) and boys
(pink). (D) tSNE dimensions by sex, showing overlap between boys (pink) and girls (blue). Higher
spectral counts were observed for CSN2 (casein beta) in boys (p = 0.0184) and ALMS1 (Alström
syndrome protein 1) in girls (p = 0.0214) (see Table 3).

Sex differences showed slightly higher spectral counts in girls vs. boys (p = 0.038)
but no difference in the number of proteins (Table 1). PCA analyses and tSNE projections
showed overlapping clusters of boys and girls (Figure 3C,D). When comparing individual
proteins, higher spectral counts were observed for CSN2 (casein beta, p = 0.0184) in boys
and ALMS1 (Alström syndrome protein 1, p = 0.0214) in girls (Table 3).
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Table 2. Hair proteins mediating differences between mothers and children.

Entrez Gene Name Gene Symbol:
Human Expr Log Ratio p-Value Location Type(s)

Involucrin IVL –2.85 0.0576 Cytoplasm other
Serpin family B4 SERPINB4 –2.452 0.0009 *** Cytoplasm other

Actin binding protein POF1B –2.097 0.0151 * Membrane other
Plectin PLEC –1.886 0.0004 *** Cytoplasm other

Alpha-2-macroglobulin like 1 A2ML1 –1.858 0.0042 ** Cytoplasm other
H3 clustered histone 1 HIST1H3A –1.743 0.0038 ** Nucleus other

Ubiquinol-cytochrome c reductase
complex III UQCRQ –1.716 0.0007 *** Cytoplasm enzyme

Adenosylhomocysteinase AHCY –1.472 0.0040 ** Cytoplasm enzyme
Heat shock protein family A (Hsp70-1A) HSPA1A –1.35 0.0569 Cytoplasm enzyme

H2B clustered histone 9 HIST1H2BH –1.17 0.5070 Nucleus other
Histidine ammonia-lyase HAL –1.087 0.0851 Cytoplasm enzyme

COPI coat complex subunit zeta 1 COPZ1 –0.931 0.158 Cytoplasm transporter
Eukaryotic translation initiation factor 3A EIF3A –0.8 0.0567 Cytoplasm other

Tubulin alpha 1c TUBA1C –0.526 0.262 Cytoplasm other
Casein beta CSN2 –0.269 0.491 Extracellular kinase

ATP citrate lyase ACLY –0.249 0.0954 Cytoplasm enzyme
Protein disulfide isomerase A3 PDIA3 –0.051 0.884 Cytoplasm peptidase

Scinderin SCIN 0.028 0.221 Cytoplasm other
Alström syndrome protein 1 ALMS1 0.18 0.572 Cytoplasm other

Histone H3.4 HIST3H3 0.64 0.153 Nucleus other
Myeloperoxidase MPO 0.925 0.886 Cytoplasm enzyme
Secretoglobin 2A1 SCGB2A1 5.32 0.0008 *** Extracellular other

Note. Mothers showed higher spectral counts than children for 7/17 hair proteins (negative Expr Log Ratio),
although children had higher spectral counts for SCGB2A1 (positive Expr Log Ratio). Of these, SCGB2A1 showed
the most prominent results, with >5-fold differences from the mothers. Significance was based on Kruskal–
Wallis ANOVA with post hoc Benjamini–Hochberg corrections for multiple comparisons (* p-value ≤ 0.05,
** p-value ≤ 0.01, *** p-value ≤ 0.001).

To further characterize the effects of early childhood and adulthood on hair proteins,
random forest regressions [44] were used to predict the participants’ age from their hair
protein profiles. This model predicted age differences in mothers and children (R2 = 0.37,
Figure 4A), but the regression model improved (R2 = 0.45) when mothers were removed
from this analysis and only children were included in this predictive model (Figure 4B).
Random forest classifier algorithms showed acceptable mean accuracy for classifying
mothers and children based on their predicted vs. observed age (mean area under the ROC
curve = 0.93, Figure 4C; Wilcoxon test p = 0.00011, Figure 4).

Table 3. Hair proteins mediating differences between preschool boys and girls.

Entrez Gene Name Gene Symbol:
Human Expr Log Ratio p-Value Location Type

Casein beta CSN2 −3.046 0.0184 * Extracellular kinase
Serpin family B4 SERPINB4 −1.303 0.391 Cytoplasm other

Secretoglobin family 2A1 SCGB2A1 −1.036 0.0513 Extracellular other
Protein disulfide isomerase A3 PDIA3 −0.78 0.662 Cytoplasm peptidase

ATP citrate lyase ACLY −0.531 0.585 Cytoplasm enzyme
Myeloperoxidase MPO −0.493 0.581 Cytoplasm enzyme

Involucrin IVL −0.476 0.804 Cytoplasm other
Eukaryotic translation initiation factor 3A EIF3A −0.295 0.226 Cytoplasm other

Alpha-2-macroglobulin like 1 A2ML1 −0.254 0.923 Cytoplasm other
Scinderin SCIN −0.187 0.375 Cytoplasm other

Heat shock protein family A (Hsp70-1A) HSPA1A −0.122 0.573 Cytoplasm enzyme
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Table 3. Cont.

Entrez Gene Name Gene Symbol:
Human Expr Log Ratio p-Value Location Type

Actin binding protein POF1B 0.094 0.875 Membrane other
Histone H3.4 H3-4 0.139 0.938 Nucleus other

Histidine ammonia-lyase HAL 0.175 0.522 Cytoplasm enzyme
COPI coat complex zeta 1 COPZ1 0.225 0.536 Cytoplasm transporter

Tubulin alpha 1c TUBA1C 0.245 0.314 Cytoplasm other
H3 clustered histone 1 H3C1 0.249 0.562 Nucleus other

Adenosylhomocysteinase AHCY 0.333 0.202 Cytoplasm enzyme
Plectin PLEC 0.441 0.256 Cytoplasm other

Ubiquinol-cytochrome c reductase complex III UQCRQ 1.415 0.0976 Cytoplasm enzyme
H2B clustered histone 9 H2BC9 1.423 0.221 Nucleus other

Alström syndrome protein 1 ALMS1 1.754 0.0214 * Cytoplasm other

Note. Girls showed higher spectral counts than boys for several proteins (negative Expr Log Ratio), whereas boys
had higher spectral counts for other proteins (positive Expr Log Ratio). CSN2 was significantly higher in boys,
whereas ALMS1 was significantly higher in girls. Significance was based on Kruskal–Wallis ANOVA with post
hoc Benjamini–Hochberg corrections for multiple comparisons (* p-value ≤ 0.05).
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children (R2 0.37, p = 0.00005) and (B) only for children (R2 0.45, p = 0.00004). (C,D) Random forest plot
showing mean accuracy for classifying mothers and children based on hair proteins (mean area under
the ROC curve = 0.93, Wilcoxon test p = 0.00011). (E,F) Random forest plot showing mean accuracy
for classifying by sex based on hair proteins for children (mean area under the ROC curve = 0.60,
Wilcoxon test p = 0.1703). (G,H) Random forest plot improved when classifying all participants,
including mothers and children (area under the ROC curve = 0.73, Wilcoxon test p = 0.00831).

A random forest classifier to predict sex from hair protein profiles in children could
not reliably differentiate boys from girls (mean area under the ROC curve = 0.6, Figure 4E;
Wilcoxon test p = 0.1703; Figure 4F), but predictions improved when classifying all par-
ticipants including mothers and children (area under the ROC curve = 0.73, Figure 4G;
Wilcoxon test p = 0.0083, Figure 4H). The latter result is likely due to the age-based distinc-
tion between mothers and children, although sample size-related effects cannot be ruled
out (25 vs. 17 females).

3.4. Top Contributors to Hair Protein Variability

The top 5% of proteins identified as the most prominent contributors, according to
their total loading scores (TLS), explained 64.3% of hair protein variability in all individuals,
89.5% in all mothers, 57.5% in all children, 49.3% in mothers and related children, and 64.6%
in mothers and unrelated children (Figure 5). A higher TLS indicates a higher influence
of that protein on total variability. Keratins and KAPs are structural components but
are usually considered contaminants in most proteomics experiments due to their high
abundance in common lab analyses. We thus performed PCA analyses for all individuals
with (Figure 5A) and without (Figure 5B) excluding the keratins and KAPs. Structural
proteins contributed to hair protein variability, but they have limited biological significance.
Separate PCA analyses performed to characterize the hair proteins observed in mothers
(Figure 5C), children (Figure 5D), mothers and related children (Figure 5E), and mothers and
unrelated children (Figure 5F) showed the same proteins as those ranked in all individuals
and all children. Other than histones, no other proteins were common between mothers and
children. TUBA1C, PLEC, SERPINB4, and UQCRQ were observed in multiple subgroups.

3.5. Biological Role(s) of the Strongest Contributors to Hair Protein Variability

Using experimentally observed human data in the Ingenuity Knowledge Base, the
log fold change values of the top 5% of proteins from our dataset were used to analyze
direct and indirect relationships between protein molecules. Protein networks for the top
5% of hair proteins contributing to age-related differences between mothers and children
(Figure 6) and similar analyses for sex-related differences between girls and boys were
examined (Figure 7). Using these molecular relationships as input for ingenuity pathway
analysis, we identified protein classes involved in cellular metabolism, such as the pro-
tein ubiquitination pathway, the sirtuin signaling pathway, 14-3-3-mediated signaling, the
Wnt-Ca++ pathway, histidine degradation, mitochondrial function, and oxidative phos-
phorylation (Figure 8). Other proteins were associated with immune responses (including
phagosome maturation, IL-8 signaling, and the regulation of macrophages, fibroblasts, and
endothelial cells) or were involved in the regulation of stress-related pathways, including
corticotropin-releasing hormone signaling, glucocorticoid receptor signaling, and pro-
lactin and aldosterone signaling. Finally, hair proteins associated with brain development,
including axonal guidance and gap junction signaling, were also identified (Figure 8).
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Figure 5. Top 5% of proteins contributing to hair protein variability. Note. The loading scores for each
protein were weighted by the percent variance explained by the corresponding principal component
and then summed to give the total loading score (TLS) for each protein. The top 5% of proteins based
on their TLSs were identified as the most prominent contributors in each group. (A) All individuals
(n = 40, 49% of hair protein variability); (B) all individuals, including keratins and KAPs (n = 40,
64.3% variability); (C) all mothers (n = 8, 89.5% variability); (D) all children (n = 32, 57.5% variability);
(E) mothers (n = 8) and their biological children (n = 16) (49.3% variability); and (F) mothers (n = 8)
and unrelated children (n = 16) (64.6% variability).



Psych 2024, 6 155

Psych 2024, 6, FOR PEER REVIEW 14 
 

including corticotropin-releasing hormone signaling, glucocorticoid receptor signaling, 
and prolactin and aldosterone signaling. Finally, hair proteins associated with brain de-
velopment, including axonal guidance and gap junction signaling, were also identified 
(Figure 8). 

 
Figure 6. Protein network for the top 5% of hair proteins contributing to age-related differences 
between mothers and children. Note. Some hair proteins had higher spectral counts in children (or-
ange), and others had higher spectral counts in mothers (blue); continuous lines show direct rela-
tionships, and interrupted lines denote indirect relationships. Mothers showed higher spectral 
counts mostly for ‘enzymes’ and ‘peptidases’ involved in cellular and metabolic processes, while 
proteins with higher spectral counts in children belonged to the ‘other’ group involved in growth 
and biological maturation. 

Figure 6. Protein network for the top 5% of hair proteins contributing to age-related differences
between mothers and children. Note. Some hair proteins had higher spectral counts in children
(orange), and others had higher spectral counts in mothers (blue); continuous lines show direct
relationships, and interrupted lines denote indirect relationships. Mothers showed higher spectral
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proteins with higher spectral counts in children belonged to the ‘other’ group involved in growth
and biological maturation.
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boys and girls. Some proteins had higher spectral counts in girls (orange), and others had higher
spectral counts in boys (blue); continuous lines show direct relationships, and interrupted lines
denote indirect relationships. Girls showed higher protein spectral counts mostly for ‘enzymes’ or
‘transporters’ associated with cellular localization and metabolic processes. Proteins with higher
spectral counts in boys are ‘enzymes’, like ‘kinases’ or ‘peptidases’, associated with biological
regulation of cellular and metabolic processes.
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Figure 8. Canonical pathways. Note. Canonical pathways associated with biologically significant
proteins from the top 5% of variables in all individuals (n = 40) contributing to age- and sex-related
differences were identified using ingenuity pathway analysis. Most of these proteins are involved in
cellular metabolism, immune responses, brain development, and stress regulatory pathways.

3.6. ELISA Validation of Other Non-Structural Hair Proteins

Select proteins of interest detected via standard UPLC–MS/MS methods were val-
idated and quantified using commercially available ELISA kits. The first portion of the
surplus volumes of individual protein extracts remaining after UPLC–MS/MS and HCC
measures were pooled by low, intermediate, or high HCC values. Hair sample pools were
used to quantify cortisol and arginine vasopressin (AVP), which potentiate the hypotha-
lamic release of corticotropin-releasing hormone [45,46]; Cu/Zn superoxide dismutase
(SOD1), an important cellular defense against reactive oxygen species [47,48]; HTrA serine
peptidase 2 (HTRA2), a mitochondrial protease chaperone that regulates cellular pro-
teostasis and cell-signaling events [49]; and glial fibrillary acid protein (GFAP), a protein
responsible for the cytoskeletal structure of glial cells [50,51] (Table 4).

Table 4. ELISA validation of proteins detected in human scalp hair via UPLC–MS/MS.

Hair Sample Pools Based on Hair
Cortisol Concentration Cortisol ng/mL AVP pg/mL Cu/Zn SOD

ng/mL HTRA2 ng/mL GFAP ng/mL

Low Child pool cortisol (n = 72) 40.84 14.81 0.25 7.54 0.00
Moderate Child pool cortisol (n = 21) 60.34 11.91 0.18 4.61 0.41

High Child pool cortisol (n = 7) 190.89 7.18 0.23 9.14 n/a
Low Father pool cortisol (n = 13) 22.39 8.36 0.63 9.65 2.64
Low Mother pool cortisol (n = 39) 17.24 7.88 0.49 7.71 1.45
High Mother pool cortisol (n = 7) 36.77 11.68 n/a n/a n/a

Note. Groups of children and parents were determined on the basis of low, moderate, or high HCC values. Each
of the six pools of samples was loaded in duplicate on the respective ELISA plates for testing arginine vasopressin
(AVP), Cu/Zn superoxide dismutase (SOD1), HTrA serine peptidase 2 (HTRA2), and glial fibrillary acid protein
(GFAP). Each method passed our criteria for low inter-assay (≤8% CV) and intra-assay (≤6%) variability.
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4. Discussion

The chemical composition of hair [17,52–56] and its structural proteins (keratins, KAPs)
are well-studied [22–25], but minimal data exists on non-structural hair proteins. This
study represents the first description of non-structural hair proteins in mothers and young
children. We found 2269 non-structural hair proteins with important differences between
mothers and children, age- and sex-related differences among preschool children, and
conserved hair protein profiles within families. Hair proteins driving variability in different
populations were found to play vital roles in functions other than those of trichocytes in the
hair follicle, including cellular metabolic pathways, brain development, immune signaling,
and stress regulation.

We observed age-related hair protein profiles in children and mothers, with dis-
tinct patterns emerging in multiple analyses. Differences between mothers and children
were largely driven by increased maternal expression of SERPINB4, PLEC, and UQCRQ.
SERPINB4 is a granzyme inhibitor linked to squamous cell carcinoma and chronic liver
disease [57–59], Plectin mutations are linked to epidermolysis bullosa simplex and may
be a susceptibility gene for testicular germ cell tumors [60–62], and UQCRQ is a nuclear
protein in the mitochondrial respiratory chain complex III essential for brain develop-
ment [63]. Mammaglobin-B (SCGB2A1), which is linked to familial febrile seizures in
preschool children [64,65] and chemoresistant cancers in adults [66], was observed only in
children’s hair.

We found minimal sex differences in early childhood, confirmed by random forest
predictive models. Biological pathways of cellular metabolism and innate immunity
appeared more prominent in girls, whereas brain development and stress regulation were
more prominent in boys. Perhaps sex differences in hair proteins are accentuated following
the onset of puberty [67]. Although hair protein profiles were conserved in mothers
and their biological children, future studies in mother–child dyads and monozygotic vs.
dizygotic twins will be required to explore the gene × environment interactions responsible
for hair protein profiles [68].

From the ingenuity pathway analysis, we identified the hair proteins associated
with axonal guidance [69] and gap junction signaling [70], both signifying important
mechanisms in brain development. By cross-referencing the Uniprot database (https:
//www.uniprot.org/ (accessed on: 24 June 2019)) with the Allen Brain Atlas (https://
human.brain-map.org/static/brainexplorer (accessed on: 26 June 2019)) and the Human
Brain Protein Atlas (https://www.proteinatlas.org/search/brain_category (accessed on:
28 June 2019)), we identified 191 hair proteins that are regionally enriched in the brain.
Further studies will examine whether hair proteomics can complement neuroimaging
and neurophysiological studies of early brain development [12]. A study from Nepal
reported specific plasma proteins associated with higher non-verbal intelligence and pro-
inflammatory proteins associated with lower intelligence in children [71]. That study,
however, used an FDR of 5%, whereas the FDR threshold for our analyses was set at
1% or lower. Future developmental studies with large sample sizes could correlate hair
proteins with cognitive or behavioral outcomes, thus investigating their role in brain
development [72]. Thus, unbiased or targeted protein profiles from serial hair samples
(or sequential hair segments in the same hair sample) could be used as probes for child
development [73,74] or life-course studies [43,75,76].

These findings must be interpreted in light of three limitations. First, our sample
size of 32 children was insufficient to examine developmental differences at each age
in the preschool period. We selected healthy children from homogenous socioeconomic
environments; they did not experience any adverse conditions, and therefore, our data
do not represent the full range of hair protein profiles present in the general population.
Despite this, our sample size was larger than that of most other studies on hair proteomics in
adults, and it is the first to include mothers and children. Our study design also allowed us
to investigate differences in hair protein profiles between related and unrelated individuals,
as well as differences between adults and children.

https://www.uniprot.org/
https://www.uniprot.org/
https://human.brain-map.org/static/brainexplorer
https://human.brain-map.org/static/brainexplorer
https://www.proteinatlas.org/search/brain_category
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Second, our proteomics platform relied on peptide spectral matches, which presented
only semi-quantitative data on the abundance of hair proteins in individuals. Since this is
the first study investigating non-structural proteins from hair in humans, we chose a ‘shot-
gun’ proteomics approach rather than targeted and more quantitative approaches. We did,
however, orthogonally confirm the presence of specific hair proteins using well-validated
ELISA assays. Having established the first hair protein libraries in mothers and children,
future studies can be designed for the quantitation of specific protein targets or protein
groups. Lastly, we did not correlate hair proteins with children’s developmental milestones
or their cognitive and behavioral data. We feel that the sample size limitations at each age
would preclude any generalizable conclusions from such analyses.

Despite these limitations, our initial findings reveal the potential importance of non-
structural hair proteins as biomarkers for brain development or other cellular regulatory
pathways, providing a rich source of chronologically ordered information for life-course
studies and early childhood development.

5. Conclusions

This research shows that exposures to family adversity, chronic stress, parenting and
caregiving practices, and early attachment can be monitored by serial hair sampling to
determine children’s health status, brain development, and physical and mental health. We
found that hair protein profiles are related to age, sex, and family relationships. The top
5% contributors to variability in hair protein patterns were associated with the regulation
of (a) immune pathways (for phagosome maturation, IL-8 signaling, PKR interferon in-
duction, regulation of fibroblasts, macrophages, and endothelial cells); (b) stress signaling
pathways (for corticotropin-releasing hormone, glucocorticoid receptors, prolactin, and
aldosterone); (c) brain development (axonal guidance and gap junction signaling); and
(d) cellular metabolic pathways (for oxidative phosphorylation, mitochondrial dysfunc-
tion, histidine degradation, and caveolar-mediated endocytosis as well as the heat shock
protein, 14-3-3 protein, sirtuin, and Wnt/Ca++ signaling pathways). When amalgamated
with well-established methods for tracking changes in hair hormones, this approach may
provide mechanistic explanations for the developmental sequences leading to HPA axis
(dys)regulation in early life. The assessment of parent–child synchrony, children’s circadian
rhythms, and positive and negative attachments need not depend on subjective question-
naires, invasive blood sampling, or neuroimaging. We propose that non-invasive hair
sampling and tandem mass spectrometry methods can be used to compare non-structural
hair protein profiles in healthy, normal children against hair protein profiles in subpopula-
tions of children with confirmed exposures to toxic stress and/or adverse living conditions.
Future studies will be designed to quantify and characterize panels of related hair proteins
to probe changes in the immune system, stress regulation, brain development, and cellular
metabolism to monitor environmental influences on the health status and development
of children.

6. Patents

Pursuant to the Patent Cooperation Treaty, an international patent was filed on Novem-
ber 10, 2022, identifiable in the United States Patent and Trademark Office by Application
No. US2022/079619.
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