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Abstract: Recent research on the transition period (TP) of dairy cows has highlighted the pivotal
role of immune function in affecting the severity of metabolic challenges the animals face when
approaching calving. This suggests that the immune system may play a role in the etiology of
metabolic diseases occurring in early lactation. Several studies have indicated that the roots of
immune dysfunctions could sink way before the “classical” TP (e.g., 3 weeks before and 3 weeks
after calving), extending the time frame deemed as “risky” for the development of early lactation
disorders at the period around the dry-off. Several distressing events occurring during the TP
(i.e., dietary changes, heat stress) can boost the severity of pre-existing immune dysfunctions and
metabolic changes that physiologically affect this phase of the lactation cycle, further increasing the
likelihood of developing diseases. Based on this background, several operational and nutritional
strategies could be adopted to minimize the detrimental effects of immune dysfunctions on the
adaptation of dairy cows to the new lactation. A suitable environment (i.e., optimal welfare) and
a balanced diet (which guarantees optimal nutrient partitioning to improve immune functions in
cow and calf) are key aspects to consider when aiming to minimize TP challenges at the herd level.
Furthermore, several prognostic behavioral and physiological indicators could help in identifying
subjects that are more likely to undergo a “bad transition”, allowing prompt intervention through
specific modulatory treatments. Recent genomic advances in understanding the linkage between
metabolic disorders and the genotype of dairy cows suggest that genetic breeding programs aimed at
improving dairy cows’ adaptation to the new lactation challenges (i.e., through increasing immune
system efficiency or resilience against metabolic disorders) could be expected in the future. Despite
these encouraging steps forward in understanding the physiological mechanisms driving metabolic
responses of dairy cows during their transition to calving, it is evident that these processes still
require further investigation, and that the TP—likely extended from dry-off—continues to be “the
final frontier” for research in dairy sciences.

Keywords: metabolic disorders; immune dysfunctions; inflammation; parturition; transition
management

1. Introduction

Considerable literature exists on the severe challenges faced by dairy cows at their
transition from calving to lactation. Most studies focus on the transition period (TP) phase,
which begins three weeks before calving and spans the first three weeks of lactation [1].
Typically, this physiological phase implies severe alterations in the metabolic asset of
dairy cows. These alterations are driven by sudden changes in hormonal trends and
nutrient partitioning [2,3] as well as by the adaptation of the animal’s metabolism to the
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negative energy and protein balance conditions driven by late pregnancy and early lactation
requirements [4–9]. Dairy cows are also prone to developing immune dysfunctions in
this phase. Such dysfunctions consist of two phenomena: (1) a reduced competence
of the immune system, triggering a hypo-responsive state in polymorphonuclear cells
(PMN) and lymphocytes starting about 2–3 weeks before calving, and reaching lowest
efficiencies between the time of calving and two days after [10–12], and (2) the occurrence of
systemic inflammation that triggers the acute phase response after parturition [13]. Recently,
Lopreiato et al [14] reported that increasing the release of proinflammatory cytokines
(PICs-interleukin-6 and interleukin-1β) upon PEG-rbG-CSF treatment in dairy cows after
parturition did not result in increased systemic inflammation (as reflected by haptoglobin
and ceruloplasmin plasma levels). This latter finding highlights that mechanisms and/or
molecules other than PICs are likely to drive the acute phase response occurring in dairy
cows after parturition. Thus, despite reduced competence of the immune system and
systemic inflammation commonly appear together in dairy cows at their transition to
calving [15], these should be probably considered as two distinct phenomena. A recent
review [16] hypothesizes that a multifactorial etiology could be responsible for these
dysfunctions and that their severity is directly related to the magnitude of metabolic
changes faced by dairy cows. Together, these metabolic and immunologic challenges
during the peripartal period are important factors that limit the ability of most cows to
achieve optimal performance and balanced immune-metabolic status in early lactation.

The risk ratio of both metabolic and infectious diseases in early lactation is directly
related to the magnitude of metabolic alteration and the degree of immune dysfunction
faced by dairy cows during the periparturient period [17–19]. In turn, the occurrence of
disease (infectious and/or metabolic) in this physiological phase could further challenge the
metabolism of dairy cows and impair the function of leukocytes, increasing the likelihood
of other diseases [20,21]. This vicious circle increases drug costs and could impair fertility
of the animals, frequently resulting in their culling [22,23].

Considerable research efforts have focused on providing best management strategies
to reduce the detrimental effects of a “bad transition” on early lactating cows. However,
recent studies have hypothesized that the roots of health problems occurring at the onset
of lactation could sink way before the “conventional” TP, and that a wider perspective on
the management of the transition to calving could improve the adaptation of dairy cows
to the new lactation. For this reason, the present review provides a new perspective on
the metabolic challenges and immune dysfunctions faced by transition dairy cows. The
aim is to extend the focus of dairy farmers towards a wider time frame as compared to
the “conventional” TP. As such, several strategies to optimize the onset of lactation are
reviewed from a holistic standpoint.

2. The Connection between Inflammation, Immune Dysfunctions, and Metabolic
Disorders: Which Is the Driving Cause?

Metabolic disorders affecting early lactating cows are a relevant concern in modern
dairy herds as they have the potential to affect farmers’ incomes through increasing drug
costs and decreasing milk yields [20,21]. Dairy cows affected by a metabolic disorder in
early lactation often develop several other diseases within a short time frame; this makes the
identification of the etiology of such disorders a challenging issue. As such, prevention may
be the best strategy to address metabolic disorders in early lactation. Recently, considerable
research has suggested that prepartal immune dysfunctions and systemic inflammation
serve as predisposing factors in the etiology of metabolic disorders in early lactation. Thus,
understanding the mechanism driving prepartal immune dysfunctions could improve the
capacity to prevent disease occurrence.

2.1. Prepartal Immune Dysfunctions and Metabolic Disorders: The Ketosis Model

Ketosis is a widely discussed metabolic disease affecting early lactating cows. Its
etiology is classically referred to as a severe negative energy balance (NEB) condition
affecting dairy cows immediately before or after calving. Recently, Mezzetti et al. [24]
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performed a retrospective analysis to detect subclinical ketosis (SCK) in postpartum dairy
cows (blood β-hydroxybutyrate-BHB-higher than 1.2 mmol/L) and tested the relationship
between the onset of SCK in early lactation and trends of plasma analytes during the dry
period. Prepartal trends of plasma analytes in cows affected by SCK in early lactation
revealed an inflammatory condition, impairment of kidney functions, and liver damage
occurring several weeks before calving. These trends in plasma analytes were consistent
with those observed by another study in the same phase [25]. Furthermore, leukocytes
from cows affected by SCK in early lactation had a greater production of interferon-γ
(IFN-γ) during the dry period in response to an ex-vivo challenge with Mycobacterium
avium [26]. These alterations of plasma analytes and increased IFN-γ production by
leukocytes preceding SCK in dairy cows were similar to those affecting women during
preeclampsia [27,28]. Mezzetti et al. [24] also observed that leukocytes from cows affected
by SCK in early lactation had lower production of proinflammatory cytokines (PICs)
during the dry period in response to an ex-vivo challenge with lipopolysaccharides (LPS).

In this scenario, a linkage between altered immune functions during the dry period
and the occurrence of SCK in early lactation is probable. The transient unresponsive state
of leukocytes against endotoxin challenges, known as endotoxin tolerance status [13], is
likely driven by the suppression of genes related to cell survival as well as the upregu-
lation of anti-inflammatory genes in these cells. These could be driven by the systemic
inflammatory condition observed during the dry period in cows developing SCK in early
lactation. Greater IFN-γ production from leukocytes consequential to their activation may
induce insulin resistance during the dry period [29], thus accounting for the simultaneous
increase of plasma concentrations of glucose, nonesterified fatty acids (NEFA), and BHB
before calving. The high circulating glucose levels and the anorexic power exerted by
high circulating NEFA, BHB, and PICs concentrations could reduce feed intake around
calving [30]. Such a feed intake depression, together with the energy requirement re-
lated to the activation of the immune system in the dry period, worsen the NEB in early
lactation [7,31]. Severe NEB in early lactation induces milk yield losses and boosts the
mobilization of lipid sources, increasing the NEFA load on liver metabolism. Despite this,
the oxidizing capacity of the liver against NEFA in early lactation is impaired due to the
metabolic preeclamptic-like status occurring during the dry period, and this could boost
the release of ketone bodies. The onset of a ketosis status in early lactation could increase
the impairment of leukocyte function detected during the dry period, due to a combination
of higher lipomobilization [32,33] and greater expression of anti-inflammatory genes at the
liver level to cope with inflammation and to prevent fatty liver condition [34]. This was
confirmed by Minuti et al. [35] who found an inhibitory effect on transcriptomic pathways
related to cell cycle, DNA replication, and repair in circulating leukocytes from ketotic
cows, likely driven by high circulating BHB levels.

Severe NEB conditions at the onset of lactation could be hypothesized as a common
denominator in all metabolic disorders affecting dairy cows in early lactation [4,36]. Thus,
the role exerted by altered immune function during the dry period in the SCK model
(i.e., an immune response activation occurring before calving and followed by a transient
immune suppressive status) could likely extend to other early lactation diseases [37]. This
is consistent with outcomes of a previous research [38] showing that cows with high plasma
PICs concentrations before calving had a reduced feed intake in the whole TP, and a higher
incidence of metabolic diseases in early lactation compared to cows having low plasma
PICs concentrations before calving.

2.2. The Role of Dry-Off on Immune Dysfunctions

Dry-off is accompanied by alterations in the redistribution of nutrients, changes in the
rumen conformation and in the mammary gland physiology [39–41]. These are typically
paired with psychological challenges related to feed restrictions and the modification of
social structure after regrouping [42]. A fundamental role of dry-off in the development
of immune dysfunctions and systemic inflammations occurring in TP has also been hy-
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pothesized [13]. Mezzetti et al. [43] found that dry-off induces a systemic inflammation in
dairy cows, and that cows with an average milk yield higher than 15 L/d in the last week
prior to dry-off face the most severe inflammatory conditions at milking interruption. It
has been hypothesized that inflammatory conditions occurring after dry-off could arise
from the contribution of leukocytes in the involution phase of the mammary gland [41].
Additionally, deeper metabolic changes observed in high yielding cows could be driven
by greater amounts of milk and parenchymatic tissue being reabsorbed in their mam-
mary glands [44]. Such new perspectives on the inflammatory conditions affecting dairy
cows at dry-off suggest a potential contribution of this management practice to the eti-
ology of immune dysfunctions occurring during TP. In this scenario, high PIC levels at
dry-off could induce the dysfunctional activation of dendritic cells [45], inhibiting the
antiphlogistic role of T-lymphocytes and predisposing dairy cows to developing systemic
inflammations. Furthermore, the exposure of leukocytes to biological stressors at milking
interruption could likely trigger endotoxin tolerances [46]. These phenomena, paired with
the immune suppressive effect of cortisol released at dry-off as a consequence of metabolic
stresses [47], could account for the reduced responsiveness of leukocytes reported during
the dry period [10].

2.3. A Potential Genetic Contribution on the Likelihood of Developing Systemic Inflammations

Although systemic inflammations occurring at the halting of milk removal potentially
contribute to altering the function of leukocytes during the dry period, recent research
dismisses the dry-off as the primary cause of the immune dysfunctions affecting transition
dairy cows. Cattaneo et al. [22] demonstrated that, besides the systemic inflammation
triggered by dry-off, pre-existing inflammatory conditions might significantly affect the
success of the dry period and early lactation. Here, cows were followed from 7 days before
dry-off to 28 days after calving and retrospectively divided into three groups according
to their albumin/globulin ratio (AGR) before dry-off. Compared with cows having the
lowest AGR (reflecting the highest inflammatory condition before dry-off), cows with the
highest AGR showed lower inflammation through the dry period and up to the first month
of lactation. Furthermore, these cows had a lower somatic cell count (SCC) and better
productive and reproductive performances in the subsequent lactation. These outcomes
demonstrate that a mild inflammatory status could occur in some dairy cows since the
late lactation phase and that these animals face greater metabolic challenges during the
transition to the new lactation. A clear explanation behind the mechanism responsible
for the onset of such an early and persistent inflammatory condition in some animals still
lacking. Recently, Milanesi et al. [48] found the expression of two inflammatory biomarkers
related to the acute phase response (paraoxonase and ceruloplasmin) to be primarily under
cis regulation in dairy cattle. This significant genetic association was identified in two
dairy breeds (Italian Holstein and Italian Simmental), characterized by highly different
selection histories, immune-metabolic status and production performances [49–51]. Thus, a
different expression of inflammatory biomarkers driven by genotype could account for the
different inflammatory conditions found by Cattaneo et al. [22] before the dry-off. Despite
that, the relationship between the candidate causative variants identified by Milanesi
et al. [48] and the animals’ performances during the TP has not yet been investigated,
and the contribution of genotype on the successful adaptation of dairy cows to the new
lactation still to be elucidated.

3. Distressing Events Accrue the Severity of Immune and Metabolic Challenges
during the Transition Period

Although the driving cause of immune dysfunctions occurring during the late gesta-
tion phase remains unclear, negative effects of these on the metabolism of early lactating
cows depend on several potentially harmful stimuli occurring during the TP—these may
have additive effects. Some of these stimuli are driven by physiological changes occurring
in the metabolism of dairy cows around the calving time: repolarization of the immune
cells to maintain the pregnancy status, as well as alterations to hormonal patterns, nutrient
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availability, and redox balance [2,4,52–55]. Others are driven by psychological factors
related to regrouping procedures adopted around the calving time [42]. In fact, psychologi-
cal stress can significantly affect feeding and lying behaviors, severely impairing animal
health and performance, in particular in subordinate cows [56]. It can also affect the hy-
pothalamus, boosting the release of PICs [57]. Besides these unavoidable stressors, several
distressing events could increase the degree of immune dysfunction during the TP, boosting
the severity of metabolic challenges affecting dairy cows at the onset of lactation.

3.1. The Role of Energy Level and Diet Changes on Innate Immune Response

A dietary factor that could potentially affect dairy cows’ adaptation to the new lacta-
tion is the energy density of the ration administered, especially during the far-off phase.
Overfeeding dairy cows during this phase could boost adipose tissue deposition. A recent
study [58] found that overfeeding dairy cows through the administration of dry rations
containing 150% of NRC energy requirements could increase lipid deposition and induce
severe changes in adipose tissue-mediated gene expression. The pathways related to
lipid deposition, insulin sensitivity, and immune functions displayed the most significant
changes, suggesting overfeeding during the dry period to be a predisposing factor for lipid
mobilization-related metabolic disorders and immune dysfunctions in early lactation. This
confirms previous observations of the Drackley’s group [59–61] and supports the hypothe-
sis that a prolonged excess of energy could induce a low-grade systemic inflammation in
cows [62], similar to the “metaflammation” state reported in humans which is associated
with obesity and chronic diseases [63].

Besides the contribution of energy level in affecting leukocyte function, another
dietary factor that could impair immune functions of dairy cows while approaching the
new lactation is the contribution of diet changes in affecting gastrointestinal tract (GIT)
integrity. Physiologically, the adaptation of rumen volume to the fetal growth (before
calving) and the empty uterus (in early lactation) lead to sudden changes in the passage
rate of digesta across the GIT of dairy cows around calving [64,65]. Paired with this, dairy
cows raised in commercial TMR systems typically undergo 3 or 4 important changes in
diet composition from dry-off to early lactation (Table 1), to fit with relevant changes in
their requirements [66].

Table 1. Performances inputs, dietary recommendations, and sample diets for a medium-performance dairy cow undergoing
the lactation, far-off, close-up and fresh phases (adapted from NRC [67]).

Item 1 Unit
Phase

Lactation Far-Off Close-Up 4 Fresh

Inputs
Days 2 day 90 240 270 11

Body weight 3 kg 680 730 751 680
BCS - 3 3.3 3.3 3.3
Age months 49 57 58 58

Milk production kg 35 - - 35
Butterfat % 3.5 - - 3.5

True protein % 3 - - 3
Lactose % 4.8 - - 4.8

Dry matter intake kg 23.6 14.4 13.7 15.6
Daily weight change kg 0.3 0.67 0.67 −1.6

Days to gain one condition score day 316 na na -
Days to lose one condition score day - na na 55

Dietary recommendations
NEL Mcal/day 34.8 14 14.4 34.8
NEL Mcal/kg DM 1.47 0.97 1.54–1.62 2.23
MP g/day 2407 871 910 2157
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Table 1. Cont.

Item 1 Unit
Phase

Lactation Far-Off Close-Up 4 Fresh

Diet MP % 10.2 6 6.6 13.8
RDP g/day 2298 1114 1358 1634

Diet RDP % 9.7 7.7 9.9 10.5
RUP g/day 1291 317 172 1405

Diet RUP % 5.5 2.2 1.3 9
Diet NDF min % 25–33 33 33 25–33
Diet ADF min % 17–21 21 21 17–21
Diet NFC max % 36–44 42 43 36–44
Absorbable Ca g/day 65 18.1 21.5 64

Diet Ca % 0.61 0.44 0.45 (0.5–1.5) 0.79
Absorbable P g/day 56.5 19.9 20.3 49

Diet P % 0.35 0.22 0.3–0.4 0.42
Diet Mg % 0.19 0.11 0.35–0.4 0.29
Diet Cl % 0.26 0.13 0.15 (0.8–1.2) 0.4
Diet K % 1.04 0.51 0.52 1.24

Diet Na % 0.23 0.1 0.1 0.34
Diet S % 0.2 0.2 0.2 (0.3–0.4) 0.2

Diet Co mg/kg DM 0.11 0.11 0.11 0.11
Diet Cu mg/kg DM 11 12 13 16
Diet I mg/kg DM 0.5 0.4 0.4 0.77

Diet Fe mg/kg DM 15 13 13 22
Diet Mn mg/kg DM 14 16 18 21
Diet Se mg/kg DM 0.3 0.3 0.3 0.3
Diet Zn mg/kg DM 48 21 22 73

Diet vitamin A IU/kg DM 3169 5576 6030 4795
Diet vitamin D IU/kg DM 864 1520 1644 1308
Diet vitamin E IU/kg DM 23 81 88 35

DCAD meq/kg DM na na 10 (−75 to 0) na
Sample diet (ingredients listed as kg/day DM)

Corn silage, normal - 8.21 - 5.55 (5.40) 36.44
Grass silage, mid-maturity - - 8.1 2.48 (2.42) -

Legume forage silage, mid-maturity - 4.57 - - -
Legume forage hay, immature - - - - 20.17

Grass hay, mid-maturity - 3.21 - - -
Sugar beet pup, dried - - - 2.15 (2.09) -

Corn grain, steam flaked - 4.33 - - 18.29
Soybean meal, 48% CP - 1.62 - 0.79 (0.77) 2.53

Soybean meal, expellers - - - - 7.65
Blood meal, ring dried - - - - 1.02

Cottonseed, whole with lint - - - - 8.41
Calcium soaps of fatty acids - - - - 0.65
Vitamin and mineral premix - 0.49 0.02 0.43 (0.42) 3.18

Calcium carbonate - 0.07 0.46 - 0.56
Calcium phosphate (di-) - - - 0.05 (0.03) -

Calcium chloride - - - - (0.14) -
Monosodium phosphate - 0.02 - - (0.07) 0.4

Sodium chloride - 0.011 5.79 0.03 0.7
Magnesium oxide - - - 0.05 (0.03) -

1 BCS is body condition score; NEL is net energy for lactation; MP is metabolizable protein; RDP is rumen degradable protein; RUP is
rumen undegradable protein; NDF is neutral detergent fiber; ADF is acid detergent fiber; NFC is nonfibrous carbohydrates; DCAD is
dietary cation-anion difference (calculated as [(Na + K) − (Cl + S)]. 2 Days in milk while lactating, pregnant while dry. 3 With conceptus
while pregnant. 4 Values enclosed within brackets are referred to anionic close-up diets. na is “not available”. - is “absent”.

Both the altered passage and fermentability rates of the feedstuffs contribute to altering
the fermentation patterns along with the GIT of transition cows, leading to physiological
alterations in pH. For example, a transient decrease of rumen pH could be expected in
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dairy cows coming from the dry period that are suddenly fed a high starch ration in early
lactation [68,69]. Such changes affect the microbiota composition and the epithelial confor-
mation of transition cows GIT [70–72]. The strict dependence of the height, surface, and rate
of absorption of both rumen papillae and gut microvilli on the severity of the diet changes
occurring during the transition to calving has been well established [73]. Furthermore, a
relationship between changes in peripartum diet in affecting the interaction between GIT
epithelial cells and immune system has been recently hypothesized [74]. Recent studies
have demonstrated that dietary changes occurring after calving affect rumen bacteria and
rumen metabolites through decreasing the rumen pH. These modifications alter rumen
milieu permeability, allowing LPS translocation in blood and likely boosting systemic
inflammatory responses and leukocytes infiltration in the rumen [75,76]. Furthermore,
dietary-driven changes in the rumen pH and bacterial community interplay with rumen
epithelial cells, that regulate the infiltration of several immune mediators in the rumen
through saliva [31]. These immune mediators are known to play a pivotal role in the inter-
actions between rumen bacterial populations, forestomach epithelium, and host immune
system [77,78]. This introduces a new perspective on the role of dietary changes occurring
during the peripartum phase in modulating the immune function of dairy cows.

3.2. Heat Stress Could Boost the Severity of Systemic Inflammation

In dairy cows, heat stress induces severe milk yield losses and DMI reductions. Recent
studies have quantified that reduced energy availability driven by lower feed consumption
accounts for only 50% of milk yield losses registered during heat stress [79]. Furthermore,
heat-stressed cows have greater body weight losses, higher plasma cortisol and insulin
concentrations, and lower plasma NEFA compared with thermoneutral-raised animals,
suggesting that heat stress induces an insulin resistance state [80]. Recently, a common
denominator for metabolic effects caused by heat stress in dairy cows has been found in
a systemic activation of the immune system. Rhoads et al [81] used studies performed
on swine models to hypothesize that the hypoxic state affecting enterocytes during heat
stress could induce “leaky gut”, allowing LPS translocation into blood. Results obtained in
swine models showed blood LPS concentrations to increase six hours after a heat stress
exposure, triggering a massive immune response (i.e., increased plasma LPS-binding
protein and serum amyloid alpha concentrations) [82,83]. Although this mechanism has
not been demonstrated to occur in dairy cows under heat stress conditions, it seems
probable to indicate LPS translocation at the gut level as the most likely mechanism driving
a systemic activation of the immune system. Recent evidence obtained in dairy cows
demonstrates that heat stress occurring at any time during the dry period has profound
effects on cows during the pre- and postpartum periods and could compromise their
performance even after calving [84–87]. In addition to acting as a probable cause for
systemic inflammatory events, heat stress during the dry period impairs mammary gland
development before calving, metabolism in early lactation, and milk production in the
subsequent lactation. Moreover, maternal heat stress in late gestation also negatively affects
placental development, fetal growth, and immune competence of the offspring. These
results suggest that heat stresses occurring during the peripartum phase of dairy cows
present an additional challenge to the metabolism and immune system of the animals while
they are approaching the new lactation.

4. How to Manage a “Good” Transition Period

State the multifactorial etiology of immune dysfunctions and metabolic challenges
concurring in impairing dairy cows adaptation to the new lactation [1,7,16], a key aspect of
transition management is to avoid stressful conditions. Thus, the best strategy to ensure
a “good transition” in dairy herds consists of a holistic approach. This approach should
include management practices aimed at optimizing the welfare condition of the animals,
nutritional aspects and specific treatments aimed at modulating metabolic processes that
are more likely to exceed the control of homeorhetic mechanisms. Furthermore, it should
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consider the adoption of predictive markers aimed at preventing pathological conditions
and genetic selection criteria aimed at increasing animals’ resilience.

4.1. Management Strategies and Facilities to Optimize Animal Welfare

Typically, transition cows flow successively into four pens: dry, prefresh, maternity,
and fresh [88]. Cows should enter the prefresh pen 21 days before expected parturition.
Then, cows should be moved to the contiguous maternity pen, where they should stay
alone for no longer than three days to avoid any distress from prolonged isolation. Fi-
nally, cows should be moved to the fresh pen, where they should stay for approximately
21–30 days postpartum, allowing closer monitoring and perhaps being fed a different diet
from lactating cows (see Table 1).

In all transition pens, a soft and comfortable lying surface and adequate ventilation
should be provided (i.e., dry and deep layer of shavings, straw, or sand as bedding material
and a minimum airspeed of 1 m s−1), as well as feed bunks with headlocks (76 cm wide)—
these are preferred to post-and-rail design [89–94]. These requirements are essential as is
the need for frequent caregiver examinations (keeping in mind that lockup time should be
as short as possible). They also mitigate competition while feeding, providing subordinate
cows a certain level of protection [95]. Overstocking should be minimized to ensure
sufficient bunk and resting space (i.e., at least 13 m2 per cow). Thus, each pen should
be sized using 120–150% average calving rate (depending on average stay of the animals
in each pen) to avoid overstocking when calving rate is higher [88]. Grouping strategies
should be planned carefully to avoid pointless movements that can lead to social stressors.
Regrouping or inclusion of new animals requires the stabilization of social hierarchy,
increasing agonistic and competitive behaviors [42,54,55]; these social interactions can
have detrimental effects during the days closer to calving (i.e., reducing feed and water
intake, increasing standing time and decreasing lying time) [28]. Furthermore, separating
primiparous cows from the herd during their first pregnancy and lactation should be
considered in large dairy farms, as these animals are more susceptible to adverse effects
resulting from social interactions with dominant subjects [96,97].

Dry and prefresh pens can have either freestall or loose bedded pack layout. Maternity
pens should guarantee the expression of innate maternal behavior through ensuring calm
parturition in an appropriate environment, minimizing disturbances and risk of mistaken
identity of the offspring [98]. Good results can be obtained both with individual and group
pens, separated from the rest of the herd. Maternity pens should be designed to ensure
adequate space (>13 m2 per cow), a soft and clean surface (deep straw bedding is preferred),
easy access, proximity to prefresh area, and options for hiding (i.e., a plywood barrier cov-
ering half of the pen) [99,100]. A series of papers [30,32,101] demonstrated that providing
the maternity pen with additional space and a physical blind (created using plastic road
barriers and plywood, a steel gate, and shade cloth) may benefit periparturient cows and
heifers, facilitating natural calving behaviors and reducing inflammation before calving.

Immediately after calving, the calf is usually separated from the dam, although public
concern about this practice is increasing [102]. As reviewed by Johnsen et al. [84] different
dam rearing systems that maintain cow-calf contact for longer can be a viable option even
in modern dairy farms, ensuring special attention is provided to hygiene and the control of
transmissible diseases.

4.2. Nutritional Strategies and Modulatory Treatments to Improve the Adaptation of Dairy Cows
to the New Lactation

Considerable literature exists on the best diet formulation strategies for dairy cows
during the initial dry period, and subsequent new lactation [20,103,104]. These strategies
focus on satisfying nutrient requirements avoiding metabolic challenges driven by sudden
changes in diet composition. Furthermore, there is a growing interest regarding the
inclusion of nutraceuticals on the diet of transition dairy cows due to their specificity
in modulating metabolic pathways (i.e., energy metabolism and the immune functions),
allowing a fine tuning on the metabolic processes that are more likely to exceed the control



Dairy 2021, 2 625

of homeorhetic mechanisms [105,106]. These compounds include probiotics, prebiotics,
dietary lipids, functional peptides, phytoextracts, microminerals, vitamins, and methyl
donors. However, the requirement of dairy cows for most of these active principles is
very low and their direct dietary inclusion is hard to fit with the feeding routine adopted
in most commercial dairy farms. Furthermore, each active principle mentioned above
affects few metabolic pathways through a highly specific mode of action, while molecules
interacting with multiple body compartments could likely provide a greater benefit against
the multifactorial challenges affecting the metabolism of transition dairy cows. Thus,
several commercial products containing a mixture of active substances have been developed
to address these limitations, allowing direct dietary inclusion at the farm level. For example,
Omnigen-AF (OAF) is known as an immune modulator that could be included in the diet
of dairy cows from dry-off to the first month of lactation, providing positive effects on
leukocyte function and a consequent reduction of the incidence of infectious diseases in
TP [24,107]. Although a direct effect of OAF on the gene expression of neutrophils has been
reported [108], a recent study found no effects on neutrophils diapedesis measured in-vivo
or on the amelioration of liver metabolism and inflammation of dairy cows receiving the
feed additive [48,109]. Nevertheless, the same study described dairy cows receiving OAF
to have an increased abundance of lymphocytes at the blood level and improved leukocyte
function after ex-vivo stimulation with LPS (lower lactate production and lower glucose
consumption). These outcomes, paired with the improved rumination time and energy
metabolism found in dairy cows receiving the additive, suggest that OAF has an indirect
effect on immune function, likely mediated by positive effects on energy metabolism and
feeding behavior.

Besides nutritional aspects related to diet formulation, recent interest in the alterations
occurring in the immune functions of dairy cows during the peripartum period have
promoted the development of specific treatments aimed at reducing their negative effects.
Pegbovigrastim (Imrestor; Elanco Animal Health Greenfield, IL, USA) is a commercial
product consisting of pegylated recombinant bovine granulocytes-colony stimulating factor
(PEG-rbG-CSF), aimed at stimulating the circulating numbers, and possibly function of
neutrophils. G-CSF is a cytokine that induces a state of neutrophilia, characterized by a
‘left-shift’ towards progenitor cells with a release of mature neutrophils and band cells from
storage pools in bone marrow [110]. PEG-rbG-CSF only needs to be injected two times (a
15 mg injection approximately a week before parturition and a second injection within 24 h
after parturition), addressing the limitations of rbG-CSF treatment (i.e., daily injections,
leading to an impractical on-farm application). Some studies using this product have
demonstrated substantial increases in circulating neutrophil, monocyte, and eosinophil
counts for several weeks [35,94,111–114]. These were paired with modest increases in
per-cell function, most consistently of extracellular release of myeloperoxidase [112,115].
From a molecular perspective, the abundance of mRNA in most genes involved in the
cell adhesion (ITGB2, ITGAL, TLN1, SELL, SELPLG, and CD44), recognition and immune
stimulation (CD14, CD16, MYD88, TLR2, and TLR4), antimicrobial activity (MMP9, LTF,
and LCN2), and inflammation cascade (CASP1, TNFRSF1A, IL1B, IL1R, IL18, IRAK1, NLRP3,
and S100A8), together with the expression of SOD2 and ALOX5, increased in whole blood
leukocytes from dairy cows treated with PEG-rbG-CSF during the TP [35,111]. Conversely,
treated cows showed lower expression of RPL13A, ALOX15, IL8, and TNF. In another study,
isolated neutrophils from the blood of cows receiving PEG-rbG-CSF had an increased
expression of genes related to the chain of functional steps (ICAM1, TLR2 and PTGS2),
while those isolated from the uterus at 4 and 7 days postpartum showed 11 differentially ex-
pressed genes, which collectively suggested enhanced antimicrobial capacity [116]. Despite
occurring only at the transcriptional level, these differences in gene expression suggest
a possible improvement of migration, adhesion, and antimicrobial ability, and enhanced
inflammatory response of leukocytes (especially neutrophils) with PEG-rbG-CSF. In turn,
this could trigger immune cell activation and enhanced function allowing a complete acti-
vation of the immune machinery against the challenges occurring in post-partum. Recently,
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Lopreiato et al. [14] showed, for the first time, the effect of PEG-rbG-CSF in maintaining
stable (with no drops) PIC levels during the first month after parturition. This reflects
greater regulation of neutrophil recruitment, tracking, and maturation during the inflam-
matory response, providing evidence of the immunomodulatory action of PEG-rbG-CSF
around parturition, when dairy cows are highly immune hypo-reactive. Several random-
ized controlled trials have demonstrated an approximately one-third relative reduction
in the incidence of clinical mastitis in early lactation following treatment with PEG-rbG-
CSF [115,117,118]. Conversely, two studies reported no differences in the incidence risk for
retained placenta [113,115], and one study reported PEG-rbG-CSF to increase the incidence
risk of metritis at 21 days postpartum [115]. Taken together, these results suggest that
PEG-rbG-CSF do not consistently lead to a reduction in the incidence of diseases thought
to be related to neutrophil function(i.e., retained placenta, metritis, and endometritis) [119],
suggesting that a massive increase in the number of neutrophils available in circulation
does not correspond to fewer diseases.

Finally, treatments that are classically adopted in transition cows to modulate rumen
fermentation, recently revealed to have a potential role in mitigating the immune dys-
function occurring immediately before and after parturition. Monensin is known for its
effect on rumen bacteria populations, resulting in increased propionic acid and reduced
lactic acid and methane production [67,120,121]. Thus, modulation of rumen fermentation
through monensin is an effective strategy to address the risk of both ketosis and acidosis
in dairy cows at the onset of lactation [122]. These positive effect of monensin on rumen
fermentation is reflected by trends of several plasma analytes (i.e reduced BHB and NEFA
concentrations and higher plasma glucose) in cows treated with monensin [120,121,123].
A recent study [124,125] found reduced infiltration of T and B leukocytes in the rumen
fluid from transition dairy cows that received a controlled-release capsule of monensin
21 days before the expected calving date (expected release rate, 335 mg/d for 95 days).
Such an outcome suggests monensin promotes the stabilization of rumen milieu, probably
through mitigating pH alterations related to the adaptation of dairy cows to the lactation
diet. This provides a new perspective on the utilization of ionophores to modulate the
immune system of early lactating cows.

4.3. Early Detection of Risky Animals through Plasma Analytes Trends and Behavioral Patterns

Several studies have been performed on biological fluids of transitioning dairy cows
(i.e., urine, blood, saliva, rumen fluid) using different analytical procedures. Research ef-
forts have focused on identifying candidate biomarkers that might reflect ‘at risk’ condition
for developing early lactation diseases (i.e., ketosis, mastitis, metritis, lameness, retained
placenta, and milk fever) [126–128]. Considering the extent of this topic, this review will
be only focused on predictive markers allowing a close monitoring of the immune status
of dairy cows that are approaching to calving. Plasma analytes reflecting metabolic and
immune conditions represent a promising tool in this respect [13,129,130]. Besides consid-
ering single analytes as biomarkers for specific metabolic patterns of dairy cows, a valuable
strategy could be the calculation of indexes aggregating trends of multiple plasma analytes
detected at specific time points relative to the calving date. Several promising indexes
have been developed on postpartal trends of plasma analytes reflecting liver function
and the acute phase response. Bertoni et al. [8] calculated the liver activity index (LAI)
by aggregating the albumin, cholesterol, and retinol concentrations measured 5, 15, and
30 days after calving. Similarly, Trevisi et al. [131] calculated the liver functionality index
(LFI) aggregating the albumin, cholesterol, and bilirubin concentrations measured 3 and
28 days after calving. Retrospectively dividing a group of transition dairy cows based on
their liver condition (as reflected by these indexes), three studies [19,132,133] consistently
found animals with the lowest LAI or LFI values to have the most severe inflammatory
condition in early lactation (i.e., higher PICs and oxidant species concentrations in blood
and higher SCC in milk). Furthermore, animals with the lowest LAI or LFI values had
the lowest milk yield, worst reproductive performances, and greatest disease incidence
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in early lactation. This suggests LAI and LFI calculations are valuable tools for following
up the adaptation of dairy cows to the new lactation [15,134]. Recent research by the
same group [135] provided new perspectives on the use of blood indexes as predictive
biomarkers as they found the plasma AGR of late lactating cows to reflect their adaptation
to subsequent calving and lactation.

Other promising predictive indicators include those related to the animal’s behavior,
such as rumination, activity, and lying times. The availability of sensors automatically
monitoring these behavioral measures allows the detection of alterations that might reflect
illness or disease risk in an animal [81,136,137]. Chewing and rumination times are affected
by several factors [138], and their trends around calving reflect the likelihood of dairy cows
developing severe inflammatory conditions or diseases in early lactation [139–141]. Cows
with reduced rumination time before calving are known to maintain this even after calving,
and these animals are more likely to develop health disorders during the peripartum phase
(i.e., metabolic and digestive disorders and severe cases of mastitis and metritis) compared
to cows with a greater rumination time ante-partum [140,142]. Recently, Abuelo et al. [1]
extended such a relationship way beyond the TP, demonstrating that cows with the greatest
reduction of rumination time at dry-off were more likely to develop ketosis or lameness in
early lactation. Moreover, peripartum trends of plasma analytes from cows with a reduced
rumination time during the first few days of lactation typically reflect a more marked
inflammatory condition compared with those from cows having high rumination time at
the onset of lactation [140,141]. This suggests that the occurrence of severe inflammation
around parturition is associated with a slower increase of rumination time after calving.
Ref. [142] have found that cows undergoing a subclinical rumen acidosis condition (as
reflected by the increased VFAs content, altered acetate to propionate ratio and decreased
pH of the rumen fluid) spent a similar amount of time ruminating during the day as
compared to healthy animals, but their RT differed after the morning feeding. Besides
rumination time, time spent lying can predict the onset of several diseases, although this
relationship has not been fully elucidated. Itle et al. [77] reported clinically ketotic cows to
have a reduced lying time in the week preceding calving. Conversely, Rodriguez-Jimenez
et al. [138] hypothesized that longer lying time (and reduced standing time) during the
days leading to parturition could predispose dairy cows to postpartal ketosis through
reducing DMI. Such a hypothesis is supported by the positive relationship between lying
time, changes in plasma NEFA concentration, and the risk of developing ketosis (alone or
paired with other diseases) detected by others during the first weeks of lactation [143,144].
In a recent paper on multiparous cows, Cattaneo et al. [23] reported cows developing
retained placenta to have increased lying time during the last 3 weeks before calving, but
no alterations in prepartal lying time were found for cows developing metritis. Conversely,
Neave et al. [118] found that cows later diagnosed with metritis had reduced lying time
and fewer lying bouts before calving, while Barragan et al. [3] detected an opposite trend in
prepartal lying time for primiparous and no differences for multiparous cows developing
metritis.

4.4. Genomic Information to Prevent Metabolic Dysfunctions

As TP severely challenges the metabolism and immunity of dairy cows, breeding cattle
displaying lower susceptibility to disturbances could be a key step towards establishing
resilient animal production systems [145]. The existence of genetic differences in dairy
cattle to common health disorders was investigated and confirmed over the years [131].
Consequently, a growing interest in including health-related traits in genetic selection
programs led to the concept of a comprehensive diseases prevention strategy, accounting
also for genetic information [38,146,147]. The feasibility of such kind of breeding program
has been reported by scientific literature [148,149] and implemented with the introduction
of the genomic prediction Wellness Trait Index [150], which includes six disease resistance
traits (mastitis, metritis, ketosis, retained placenta, displaced abomasum and lameness)
in estimating differences in expected lifetime profit. Moreover, in 2018, the US genetic
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selection index (NM$18) was updated with the insertion of the Health Trait Subindex,
which accounted for six disease resistance traits (milk fever, displaced abomasum, ketosis,
mastitis, metritis and retained placenta) [151].

A feasible solution to improve the efficiency of current breeding programs at prevent-
ing transition cows diseases could be understanding the genetic architecture of specific
biomarkers related to metabolism, immune system, and inflammation. Indeed, the genomic
prediction quality of a model strictly depends on the trait’s genetic architecture [152,153],
and a control exerted by a large number of genes with small additive effect (polygenic con-
trol) is often to take into account when dealing with complex traits—such as health-related
ones—[154]. Thus, identifying some intermediate phenotypes (or “endophenotypes”),
which are measurable markers correlated to an illness—expected to be characterized by
a simpler genetic control than the end-point phenotype—could improve our power in
detecting candidate genes underlying the resistance to a disease [108,155,156].

In this respect, increased evidence of the role of genotype in modulating the inflam-
mation process (mostly related to APOE genes) has already been reported in murine
models [157,158]. Significant associations between genetic variants expressing different
levels of inflammatory biomarkers and the occurrence of several diseases have been well
investigated in human medicine [108,159,160]. Thus, identifying similar associations in the
genome of dairy cows has the potential to drive breeding programs aiming to improve the
effectiveness of animal responses to physiological and environmental stressors [161]. This
represents a promising solution against the metabolic challenges occurring during the TP.

Recently, the genetic structure of several blood, hair, and milk biomarkers related
to metabolism, immunity, inflammation, and oxidative stress response in Holstein and
Simmental cows has been investigated [162]. Specific and precise genomic regions were
identified to be associated with three biomarkers levels, namely serum gamma-glutamyl
transferase, paraoxonase and ceruloplasmin, all involved in anti-oxidant functions. More-
over, paraoxonase and ceruloplasmin are considered biomarkers of inflammation, as they
are involved in the acute phase response as negative and positive acute phase proteins,
respectively [15]. Interestingly, the identified genomic regions included the genes that
directly code for each protein (GGT1 and GGT5 genes on chromosome 17 for gamma-
glutamyl transferase, PON1 on chromosome 4 for paraoxonase and CP on chromosome 1
for ceruloplasmin), suggesting cis-regulation. Candidate causative variants were identified
but are not yet validated.

Genetic resistance to ketosis and NEB-related diseases has already been explored
and promising results have been obtained in dairy cows. RNA-seq studies performed
on dairy cows undergoing different degrees of NEB have revealed that genes involved
in fat metabolism have the greatest differences in transcription levels [163]. Although
transcriptional and post-transcriptional regulation of gene expression do not relate differ-
ences in RNA transcripts found in this study to differences at the genotype level, energy
metabolism genes were selected as suitable targets for genetic selection in subsequent years.
Polymorphisms on the gene encoding for apolipoprotein B receptor (APOBR gene on
chromosome 25) have been suggested to affect the likelihood of Holstein cows developing
ketosis [164,165]. Accordingly, that gene was found to be significantly associated with
glycerophosphocholine-phosphocholine ratio in milk, which was previously proposed as a
ketosis biomarker [166]. It was suggested that cows with a high glycerophosphocholine-
phosphocholine ratio were disposed to a greater ability in utilizing blood phosphatidyl-
choline as a source for milk fat synthesis. This likely reflects their lower susceptibility to
developing severe lipomobilization processes that precede ketosis status. APOBR gene was
suggested as promising candidate gene associated with metabolic status of dairy cattle also
by Huang and colleagues [167]. In this study a genome wide association study (GWAS)
on ketosis resistance in Chinese Holstein cattle was performed, finding out that genes
explaining largest variance portions were all involved in either insulin or lipid metabolism.
Several other SNPs and genes mostly located on chromosomes 6, 14, and 20 were found
to have a significant genetic association with milk BHB concentration in dairy cows [168].
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In particular, five genes (HSD17B10 and HTR2 on chromosome X; ABCA1 and ABCA2
on chromosome 8; LIPC on chromosome 10) were found to be positively related to the
longitudinal concentration of BHB in Holstein milk [169].

Finally, further research is related to the resistance of infectious diseases, as the TP
alters immuno-competences. A genetic effect on this phenotype was demonstrated in
Canadian Holstein cattle [170] and subsequent studies focused on resistance to specific
diseases, such as Bovine Respiratory Disease (BRD), tuberculosis and mastitis (reviewed in
Raszek et al. [134]).

To conclude, genomics is helping in adding valuable information to the development
of an efficient health management system. Each disease is characterized by a specific genetic
architecture and correlations with other traits which should be properly investigated;
independent functional validation of candidate causative variants is also crucial for the
implementation of breeding programs. Finally, additional efforts in improving current
disease recoding systems are required to ensure an easier estimation of genetic prediction.

5. Conclusions

Recent advances in molecular biology and genomics provide greater understanding
of the alterations occurring in the metabolism, immune system functioning, and gene
expression regulation of dairy cows that are approaching calving, and the linkages between
these. Such advances allow for a wider perspective on the mechanisms driving the cow’s
adaptation to parturition as well as greater understanding of the etiology of early lacta-
tion diseases. These new perspectives challenge the “classical” definition of TP, driving
researchers and dairy farmers to extend their focus to a wider time frame (even preceding
the dry-off day) to successfully identify animals that are most likely to undergo poor
adaptation to the new lactation. The best approach to manage a “good transition” relies on
ensuring optimal welfare conditions and balanced diets for the whole herd, to minimize
distressing events that could accrue the metabolic challenges around calving. This general
principle could be combined with the adoption of prognostic indicators to detect risky
subjects, allowing early intervention through specific treatments aimed at minimizing the
stressing conditions occurring around calving. In the near future, the interest of genomics
on the genetic asset behind the adaptation of dairy cows to early lactation challenges could
provide more resilient animals through specialized genetic breeding programs. Despite
these encouraging perspectives on transition period management, it is clear that our un-
derstanding of physiological processes occurring in dairy cows’ metabolism during this
crucial phase of the lactation cycle requires further investigation. Therefore, the TP (likely
extended from dry-off) remains “the final frontier” for research in dairy sciences.
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