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Abstract: Adequate supply of amino acids can improve the efficiency of nitrogen use. Casein is
the predominant milk protein, and its supplementation can improve milk protein synthesis and
nitrogen efficiency. We evaluated the effects of post-ruminal supplementation of casein on milk
yield and composition and whole-body protein deposition. Two ruminally cannulated Holstein
dairy cows (599 kg) were used in a switch-back design, and treatments were an abomasal infusion
of 0 or 400 g/day casein. Cows were fed a diet consisting of corn silage, alfalfa hay, wet corn
gluten feed, whole cottonseed, and grain mix, and they received 320 g/day dextrose via abomasal
infusion to increase energy:metabolizable protein. The experiment used three 8-day periods. Milk,
urine, and feces samples were collected to evaluate milk production, milk composition, and nitrogen
retention. Abomasal casein infusion increased (p < 0.01) milk protein percentage and milk urea
nitrogen. Nitrogen retention (p = 0.03) and urinary N excretion (p < 0.001) were increased and fecal
N excretion (p < 0.001) was decreased by casein infusion. Results suggest casein stimulated protein
deposition and altered nitrogen use in lactating dairy cattle. Adaptation periods of 4 days were
appropriate for evaluating responses to casein supplementation. Our data provide elements that can
aid the design of future experiments.

Keywords: casein; nitrogen efficiency; milk composition

1. Introduction

To study amino acid use of lactating dairy cattle, it is necessary to have a model
where the cow can respond to amino acid supplementation with increases in milk protein
production, body protein deposition, or both. A large number of trials have evaluated
methionine and lysine supplementation to lactating cows [1,2], but fewer have evaluated
other potentially limiting amino acids [3,4]. In part, the study of amino acid use has been
hampered by a lack of models that consistently demonstrate responses to amino acid
supplementation, particularly in cows fed typical diets and with typical levels of lactational
performance.

Post-ruminal casein supplementation serves as an excellent model for determining
if lactating cows can demonstrate positive responses to amino acid supplementation [5].
Many casein supplementation studies with dairy cattle have used diets based on grass
silages [6–10], which can limit basal supplies of metabolizable protein and therefore ex-
aggerate the responsiveness of cows to supplemental protein. Some of the key studies
with casein supplementation to lactating cows have used cows with low levels of milk
production [11].

Our objective was to develop a model useful for evaluating amino acid use by dairy
cows fed a diet typical of that used by dairy farms in the United States. This pilot study
was designed to determine if cows with industry-relevant milk production levels were
responsive to abomasal casein supplementation when fed a diet resembling that typical for
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the dairy industry in the United States but without added protein sources. Additionally,
we determined the appropriate adaptation period for assessing lactational performance
and whole-body protein deposition following changes in post-ruminal protein supply.

2. Materials and Methods
2.1. Animals and Experimental Design

The Institutional Animal Care and Use Committee at Kansas State University provided
prior approval for all research activities involving the cattle.

Two ruminally cannulated Holstein dairy cows (599 ± 17 kg initial BW) were used in a
38-day experiment, composed of 14 days for adaptation to facilities and diet and three 8-day
periods, with samples collected daily. At the start of the adaptation, one cow was 188 days
in milk and not pregnant, and the other cow was 242 days in milk and 124 days pregnant.
The experiment used a switch-back design. With this design, cows were provided one
treatment, then switched to the other treatment, then switched back to the first treatment.
The two treatments were provided in opposite sequences to the 2 cows. Cows were housed
in tie-stalls with ad libitum access to water and fed twice daily (0500 and 1700 h) a diet
consisting of corn silage, alfalfa hay, wet corn gluten feed, whole cottonseed, and grain
mix (Table 1) at 27 kg dry matter/day. Cows were observed daily, and the health status
of each animal was evaluated and recorded. The basal diet was formulated to provide
limiting amounts of protein to create amino acid deficiencies. The diet contained adequate
ruminally degradable protein (10.3% of dietary dry matter; Table 1) to ensure that changes
in N recycling, which could be affected by treatments, did not affect ruminal microbial
growth. To prevent energy from being limiting without increasing microbial protein supply,
additional energy was supplied to cows through nearly continuous abomasal infusion of
320 g/day dextrose (providing 291 g/day glucose). The glucose was provided to increase
the energy:metabolizable protein ratio to augment amino acid deficiencies and increase the
responsiveness of the cows to protein supplementation.

Table 1. Composition of experimental diet.

Item % of Dry Matter

Ingredient
Corn silage 19.9
Alfalfa hay 21.8

Wet corn gluten feed 24.4
Whole cotton seed 5.0

Grain mix 28.9
Nutrient

Organic matter 92.5
Crude protein 14.7

Rumen-degradable protein 10.3
Neutral detergent fiber 31.7

Acid detergent fiber 21.4
Grain mix composition: 90.5% ground corn, 2.86% sodium bicarbonate, 4.29% calcium carbonate, 1.07% trace
mineralized salt (>95.5% NaCl, 0.24% Mn, 0.24% Fe, 0.05% Mg, 0.032% Cu, 0.032% Zn, 0.007% I, and 0.004% Co),
0.71% MgO, 0.039% vitamin A premix (30,000 IU/g), 0.027% vitamin D premix (30,000 IU/g), 0.29% vitamin E
premix (44 IU/g), 0.18% Zinpro 4-plex (5.15% zinc from zinc methionine, 2.86% manganese from manganese
methionine, 1.80% copper from copper lysine, and 0.36% cobalt from cobalt glucoheptonate), and 0.036% Se
premix (600 ppm Se). Nutrient composition: organic matter and crude protein are based on laboratory analyses of
diet. Rumen-degradable protein, neutral detergent fiber, and acid detergent fiber calculated using values from
NRC [12].

Treatments were abomasal infusions of (1) no protein supplementation (control) and
(2) 400 g/day casein. The basal abomasal infusate for each 12 h infusion period was pre-
pared as follows. First, 200 g of sodium caseinate (as is weight) was solubilized in approxi-
mately 1600 g of water with a blender. Because the casein solution contained air bubbles,
the solution was allowed to sit for 8 h for air bubbles to escape. Then, 160 g dextrose
was added and mixed until dissolved. Water was then added to bring the final weight
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of abomasal infusate to 2000 g for each 12 h infusion period. For the cow on the control
treatment, dextrose was simply dissolved in water.

Treatments were provided as nearly continuous infusions into the abomasum to
preclude ruminal degradation. Treatments were infused using a peristaltic pump (Model
CP-78002-10; Cole-Parmer Instrument Company, Vernon Hills, IL, USA). The infusions
were pumped through Tygon tubing (i.d. = 3.32 mm; Saint-Gobain North America, Valley
Forge, PA, USA) into the abomasum with the lines passing through the ruminal cannula,
the reticulo-omasal orifice, and the omasum. The infusion line was held in the abomasum
with a 10 cm rubber flange. The infusion lines were disconnected from the pump while the
cows went to the milking parlor and reconnected when cows returned to their stalls.

2.2. Data and Sample Collection and Analysis

Feed offered and feed refusals were recorded daily to measure feed intake. Samples
of the total mixed ration, orts, and feed ingredients (corn silage, alfalfa hay, wet corn
gluten feed, grain mix, and whole cottonseed) were collected daily and frozen (−20 ◦C) for
subsequent analysis. Samples were mixed within each period to obtain composite samples,
dried in a 55 ◦C forced-air oven for 72 h to determine the partial dry matter, ground to pass
through a 1 mm screen (Thomas-Wiley Laboratory Mill Model 4, Thomas Scientific USA,
Swedesboro, NJ, USA), and stored for subsequent analysis. Samples of feed, orts, and feces
were analyzed for ash by combustion at 450 ◦C for 8 h.

Cows were milked 3 times daily (0, 1000, and 1700 h). Milk weights were recorded
at each milking, and milk samples (25 mL) from individual cows at each milking were
collected after mixing all of the milk within the collection vessel, preserved with 2-bromo-2-
nitropropane-1,3 diol, and stored at 4 ◦C for analysis of milk components. Milk samples
were analyzed for fat, true protein, lactose (B-2000 Infrared Analyzer; Bentley Instruments
Inc., Chaska, MN, USA), milk urea-N (MUN spectrophotometer; Bentley Instruments Inc.),
and somatic cells (SCC 500, Bentley Instruments Inc.) at the Heart of America DHIA,
Manhattan, KS, USA.

Fecal and urine samples were collected 3 times daily (0730, 1030, and 1330 h). Fecal
samples (200 g) were collected either when cows spontaneously defecated or directly from
the rectum, if necessary, and then were mixed to obtain a single composite for each day.
Urine samples (20 mL, mixed to obtain a composite for each day) were collected either when
cows spontaneously urinated or following stimulation of the vulva to induce urination.
Samples of urine (60 mL) were diluted with 15 mL of 1.5 M H2SO4 and frozen (−20 ◦C) for
analysis of creatinine, and N. Urinary creatinine concentrations were measured using HPLC
as described by Brake et al. [13]. Urinary creatinine excretion was estimated as body weight
(kg) × 29 mg/kg of BW, and daily urine volumes were estimated from urinary creatinine
concentrations [14]. Samples of the feed, ort, and feces were analyzed for indigestible acid
detergent fiber (internal marker for determining diet digestibility and fecal output). An in
situ experiment was performed to measure indigestible acid detergent fiber. The samples
(feed, ort, and feces pooled across each period) were weighed (approximately 0.5 g) into F57
filter bags (Ankom Technology, Macedon, NY, USA) to produce 6 replicates of each sample,
placed in duplicate into mesh bags along with duplicate blank F57 filter bags for each mesh
bag (n = 32 for each mesh bag), and inserted into the rumen of 3 heifers (one mesh bag per
heifer) for 192 h of incubation. After 192 h, the Ankom filter bags were removed from the
rumen, rinsed under running cold water by hand, and allowed to dry at room temperature.
Next, the dried bags were analyzed for acid detergent fiber [15] using the batch procedure
of Ankom Technology. For calculating digestibilities, abomasal infusates were not included
as part of the intake. Fecal output was calculated as indigestible acid detergent fiber intake
divided by fecal indigestible acid detergent fiber concentration. Nitrogen concentrations
of casein, feed, ort, wet feces, and urine samples were determined through combustion
(Nitrogen Analyzer Model FP-2000, Leco Corporation, St. Joseph, MI, USA). Milk N was
calculated by dividing milk protein yield by 6.38. Nitrogen retention was determined as
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the difference between N intake (feed refusals + casein infused) and N lost as feces, urine,
and milk.

2.3. Statistical Analyses

Treatments were arranged in a switch-back design and included 0 and 400 g/day
casein. This design allowed us to control for differences between cows and experimental
periods in a manner similar to that for a Latin square. Data were analyzed using the MIXED
procedure of SAS System 9.3 for Windows (SAS Inst. Inc., Cary, NC, USA). Data were
analyzed with a repeated-measures analysis with a model including fixed effects of period
(3 periods during which treatments were applied), treatment (0 or 400 g/day casein), day
within period (8 days within each of the 3 periods), and the interaction between treatment
and day. Cow was included as a random effect. Significance was declared at p ≤ 0.10
due to the preliminary nature of this study. Treatment means were calculated using the
LSMEANS option. Because data demonstrated that adaptation required 4 days (see Results
and Discussion), data from days 5 through 8 were used to analyze the overall effects of
treatment. These analyses were completed as described above, but with only the data from
days 5 through 8 included.

3. Results and Discussion
3.1. Adaptation Time

Our work was conducted as a pilot study to provide information about casein use by
dairy cattle and to develop a model for evaluating amino acid use by high-producing dairy
cows. The time course data that was used to determine the necessary adaptation periods for
responses to abomasal casein infusion are presented for milk urea-N (Figure 1A), N intake
(Figure 1B), milk N secretion (Figure 1C), urinary N excretion (Figure 1D), fecal N excretion
(Figure 1E), retained N (Figure 1F), productive N (Figure 1G), N efficiency (Figure 1H), total
dry matter intake (Figure 2A), milk yield (Figure 2B), milk protein yield (Figure 2C), milk
protein content (Figure 2D), milk fat yield (Figure 2E), milk fat content (Figure 2F), milk
lactose yield (Figure 2G), and milk lactose content (Figure 2H). We observed interactions
between treatment and day for urinary N excretion (Figure 1D; p = 0.06), N retention
(Figure 1F; p = 0.06), and N efficiency (Figure 1H; p = 0.09) for the data from days 1 through
8. For the 400 g/day casein infusion, urinary N excretion increased over the initial 4 days
of the period, whereas retained N and N efficiency decreased over these initial 4 days, with
these effects demonstrating the time required for equilibrium to be reached. For the control
infusions, urinary N excretion decreased over the initial 4 days, with N efficiency increasing
over the initial 4 days. Retained N demonstrated some variation for the control treatment
on days 3 and 4 but nonetheless appeared to reach equilibrium before day 5. Although
other response criteria did not demonstrate significant treatment by day interactions, most
criteria followed similar patterns (or inverse for responses moving in opposite directions),
suggesting that a 4-day adaptation period would be appropriate for evaluating responses
to post-ruminal protein supplementation. Notably, data indicated that a 4-day adaptation
period was appropriate to allow cows to reach a stable response for milk protein percentage
(Figure 2D) and milk fat percentage (Figure 2F). The appropriateness of a 4-day adaptation
is further supported by a lack of interaction between treatment and day for any of the N
output responses when data from days 5 through 8 were analyzed (p ≥ 0.66; Table 2). The
appropriateness of short adaptation periods is not surprising because ruminants adapt
rapidly to changes in the post-ruminal supply of nutrients where there is no need for
ruminal adaptation to take place [16,17]. This rapid adaptation is in agreement with the
findings by Whitelaw et al. [11] that examined the effects of casein supplementation on
cows using short adaptation periods (5 days) between treatments. The results [11] indicated
that milk yield and composition responded rapidly to abomasal infusion of casein, and the
major changes in milk yield and composition were observed within 24 h. These authors
suggested that short adaptation periods, considering no change in basal diet and intake
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level among treatments and high digestibility of casein infused into the abomasum can
be adequate.
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Figure 1. Effect of casein supplementation on milk urea-N and measures of N use from days 1
through 8 of each period. (A) milk urea-N: casein, p < 0.001; casein × day, p = 0.61. (B) N intake:
casein, p < 0.001; casein × day, p = 0.33. (C) milk N secretion: casein, p = 0.08; casein × day, p = 0.75.
(D) urinary N excretion: casein, p < 0.001; casein × day, p = 0.06. (E) fecal N excretion: casein, p = 0.01;
casein × day, p = 0.31. (F) retained N: casein, p < 0.001; casein × day, p = 0.06. (G) productive N:
casein, p < 0.001; casein × day, p = 0.21. (H) N efficiency: casein, p = 0.001; casein × day, p = 0.09.
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Figure 2. Effect of casein supplementation on dry matter intake, milk production, milk composition,
and milk component yields from days 1 through 8 of each period. (A) total dry matter (DM) intake:
casein, p = 0.77; casein × day, p = 0.33. (B) milk yield: casein, p = 0.32; casein × day, p = 0.73. (C) milk
protein yield: casein, p = 0.08; casein × day, p = 0.75. (D) milk protein content: casein, p < 0.001;
casein × day, p = 0.32. (E) milk fat yield: casein, p = 0.90; casein × day, p = 0.71. (F) milk fat content:
casein, p = 0.97; casein × day, p = 0.92. (G) milk lactose yield: casein, p = 0.49; casein × day, p = 0.76.
(H) milk lactose content: casein, p < 0.001; casein × day, p = 0.37.
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Table 2. Effect of casein supplementation on nitrogen (N) intake, excretion, balance, efficiency, and
diet digestibilities from days 5 through 8 of each period.

Treatment p-Value

Item Control Casein SEM Treatment Treatment × Day

Total N intake, g/day 548.3 601.5 20.8 0.008 0.82
Dietary N intake, g/day 548.3 543.6 20.8 0.78 0.82
Casein N infused, g/day 0.0 57.9 - - -

Milk N, g/day 164.5 170.4 5.1 0.42 0.93
Fecal N, g/day 169.3 155.7 2.5 0.002 0.79

Urinary N, g/day 167.0 195.7 4.8 <0.001 0.84
Retained N, g/day 48.4 78.9 13.3 0.03 0.83

Productive N, g/day 215.0 247.2 16.6 0.17 0.66
N efficiency, % 38.7 41.3 1.7 0.28 0.76

Dry matter digestibility, % 63.1 63.1 2.6 0.96 -
Organic matter digestibility, % 64.7 65.4 2.6 0.55 -

Productive N = Milk N + Retained N; N efficiency = Productive N/Total N intake.

3.2. Dry Matter Intake and Lactation Responses

Due to the necessity of 4-day adaptation periods, as discussed above, the data pre-
sented in Tables 2 and 3 are from days 5 through 8 of each period. Total dry matter intake
and milk production and composition are presented in Table 3.

Table 3. Effect of casein supplementation on dry matter intake (DMI) and milk production and
composition from days 5 through 8 of each period.

Treatment p-Value

Item Control Casein SEM Treatment Treatment × Day

Total DMI, kg/day 22.4 22.8 0.86 0.64 0.81
Dietary DMI, kg/day 22.1 22.1 0.86 1.00 0.81
Glucose DMI, kg/day 0.291 0.291 - - -
Casein DMI, kg/day 0 0.385 - - -
Milk yield, kg/day 31.5 32.0 0.97 0.67 0.93

Milk protein yield, kg/day 1.05 1.09 0.03 0.42 0.93
Milk protein, % 3.31 3.44 0.11 0.01 0.90

Milk fat yield, kg/day 1.13 1.24 0.10 0.45 0.83
Milk fat, % 3.63 3.92 0.42 0.63 0.85

Milk lactose yield, kg/day 1.54 1.55 0.07 0.94 0.96
Milk lactose, % 4.90 4.85 0.05 0.28 0.81

Milk solids-not-fat yield, kg/day 2.86 2.92 0.10 0.68 0.95
Milk solids-not-fat, % 9.11 9.15 0.07 0.68 0.69
Milk urea-N, mg/dL 7.82 8.89 0.25 0.002 0.26

Milk somatic cell count, per µL 12.9 25.9 4.70 0.02 0.74

Total dry matter intake was not affected by casein supplementation (p = 0.64). A
meta-analysis [18] investigated the effects of supplemental casein in dairy cows, and they
observed that dry matter intake tended to increase by 0.18 kg/day with casein supple-
mentation across 48 studies in the literature. With our limited number of observations, we
would not have been able to detect a difference of 0.18 kg/day.

No differences in milk production were observed in response to casein administration
(Table 3). Milk fat yield (1.24 vs. 1.13 kg/day) and percentage (3.92% vs. 3.63%) were
numerically greater when cows received casein with the responses being potentially im-
portant, but these effects lacked significance (p ≥ 0.45) due to large variation and lack
of adequate sample size. In terms of model development, we conclude that substantial
increases in the number of observations would be required for the evaluation of effects on
milk fat concentration and yield.
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Hanigan et al. [19] demonstrated that dairy cows in late lactation, which received
abomasal infusions of four levels of casein (200, 400, or 600 g/day) for 10 days, did not
show any significant differences in fat percentage, but fat yield increased quadratically
for cows receiving casein supplementation. Cohick et al. [20] investigated the effect of
post-ruminal infusion of 395 g/day casein compared with water in four Holstein cows;
results indicated that casein supplementation decreased milk fat percentage and increased
milk yield.

When casein was infused, milk protein percentage and milk urea-N were greater
(p < 0.01) than for the control. Milk protein yield was not statistically different (p = 0.42)
from control when casein was infused, but infusion of casein improved milk protein
yield by about 4%, indicating that casein supplementation may have stimulated protein
synthesis [21], although our experiment was not designed to detect differences of this
size. Supplementing deficient essential amino acids into the intestinal digesta can similarly
improve milk production [22]. Somatic cell count was greater (p = 0.02) for cows receiving
post-ruminal casein infusions, although this effect was largely driven by high somatic cell
counts for one cow in one period when it received the casein treatment.

Hurtaud et al. [23], using ruminally and duodenally fistulated Holstein cows fed a diet
consisting of 70% forage and 30% concentrate and receiving ruminally infused volatile fatty
acids, demonstrated a tendency for elevated milk protein yields in response to duodenal
infusion of sodium caseinate. This suggests that casein supplementation increased supplies
of amino acids that were limiting for milk protein synthesis. Broderick et al. [21] used
cows averaging 31 kg/day milk to evaluate the effects of abomasal infusions of 800 g/day
of methionine-supplemented sodium caseinate. Casein supplementation significantly
enhanced milk protein concentration and milk protein yield, and these authors suggested
that the increases in milk protein were due to the provision of amino acids that limited
milk protein synthesis. Griinari et al. [24] observed increases in milk yield (11%) and milk
protein yield (10%) following abomasal casein infusion in rumen-fistulated Holstein cows
(184 days postpartum). They also suggested that the increased milk protein yield could
be a consequence of improved amino acid supply. Clark [25] suggested that enhanced
milk protein after treatment with casein might be associated with: (1) supplementation of
amino acids that are limiting for milk protein synthesis, (2) improvement in the supply of
glucogenic amino acids [26], and (3) alteration in hormonal status, such as growth hormone,
prolactin, and insulin [27]. Consistent with our observations, other authors have reported
that post-ruminal casein infusions in cows fed grass silage-based diets increased milk
urea-N [7–9]. The increases in milk urea-N might result from the catabolism of amino acids,
which can significantly affect blood urea-N [28] and a positive correlation between blood
urea and milk urea [29].

Martineau et al. [5] conducted a meta-analysis based on 23 experiments that post-
ruminally supplemented casein to lactating dairy cows. They found that casein infusion
increased milk true protein concentration and milk and component yields; however, sup-
plemental casein decreased milk concentrations of fat and lactose. Results also illustrated a
positive effect of casein on N retention and an increase in milk and blood urea concentra-
tions. Elevations of urea suggest that some of the amino acids, following administration of
casein, were catabolized, resulting in elevated urea synthesis.

3.3. Nitrogen Retention

Nitrogen retention was measured as an estimate of lean tissue deposition and was
used in conjunction with milk protein yield to calculate the efficiency of N use. Table 2
shows the N retention responses of dairy cows to supplementation with casein. By design,
the casein treatment increased (p = 0.008) total N intake. Abomasal infusion of casein
increased N excreted (p < 0.001) in urine by 29 g/day and reduced fecal N output by
14 g/day compared to control. There were no differences between the control and casein
groups for organic matter or dry matter digestibility (Table 2).
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In general agreement with our observations, Cohick et al. [20], working with rumen-
fistulated Holstein cows that received 0 or 395 g/day casein abomasally, showed total N
intake (55 g/day), absorbed N (54 g/day), urinary N excretion (28 g/day), and milk N
(13 g/day) were increased through abomasal casein infusion. These authors also indicated
that casein tended to increase N retention. Elevated urinary N excretion might suggest
that amino acids supplied by casein were more than the cow’s requirement for protein
synthesis [30], and therefore increased deamination and greater urinary losses of dietary
protein were taking place [31]. Huhtanen et al. [9] also indicated a significant increase
in urinary N excretion in lactating Ayrshire cows in response to duodenal infusion of
400 g/day of casein.

A potential explanation for the reduction in fecal N in response to casein supplemen-
tation is that casein may have improved small intestinal starch digestion by increasing
pancreatic amylase secretion, activity of small intestinal carbohydrases, or both [32]; this
would reduce the amount of fermentable substrate entering the large intestine, which
could reduce large intestinal microbial protein synthesis and, ultimately, microbial N ex-
cretion in the feces. Some experimental observations that support this hypothesis include
Bruckental et al. [33], who fed a high-starch diet based on cracked corn and observed that
abomasal casein infusion decreased fecal N excretion, as well as Whitelaw et al. [11], who
fed a very low starch diet and observed that abomasal casein infusion led to a small but
significant increase in fecal N excretion.

Nitrogen retention was significantly augmented (p = 0.03) with casein supplementation
compared with control. Consistent with our observations, other authors have reported that
casein infusion into the abomasum increased N retention in steers [33–35].

Productive N and N efficiency were not affected by treatment, although the effect of
casein supplementation on productive N was larger than the significant effect of casein
on N retention. Increases in N retention, instead of alterations in milk N secretion, in re-
sponse to supplemental casein in our experiment, demonstrate that dairy cattle do not use
supplemental protein only for milk synthesis. Given the lack of change in milk protein se-
cretion, we would conclude that the basal diet had already met the amino acid requirement
for maximal production of milk protein. However, cows also can partition some protein
toward body reserves even when milk production is not maximal. Whitelaw et al. [11]
illustrated concurrent use of supplemental casein for milk protein synthesis and body pro-
tein deposition. They observed progressive increases in milk N for casein supplementation
levels of 200, 400, or 600 g/day with 42%, 23%, and 15%, respectively, of the supplemental
casein N being used for milk protein synthesis, whereas the use of infused casein N for
productive N (milk N plus retained N) was consistently near 64%. These observations
demonstrate partitioning of the supplemental casein N between milk N and retained N
across all levels of casein supplementation. Because supplemental protein can be used for
protein deposition, instead of just milk synthesis, it is important to consider N retention as
part of the response by the lactating cow.

4. Conclusions

The results of this experiment demonstrate that post-ruminal casein supplementa-
tion is a useful model for evaluating the efficiency of protein use in lactating dairy cows.
Supplementation of casein led to increased urine N output, but at the same time, it in-
creased productive N. Based on increases in N retention, casein supplementation improved
whole-body protein deposition, presumably by providing an increased supply of amino
acids. Changes over time for key response variables indicated that a 4-day adaptation
period was appropriate. Data from this experiment can be used in power analyses dur-
ing the development of future experiments to ensure adequate replication is available to
evaluate treatments.
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