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Abstract: Direct Yaw Moment Control (DYC) is an effective way to alter the behaviour of electric cars
with independent drives. Controlling the torque applied to each wheel can improve the handling
performance of a vehicle making it safer and faster on a race track. The state-of-the-art literature
covers the comparison of various controllers (PID, LPV, LQR, SMC, etc.) using ISO manoeuvres.
However, a more advanced comparison of the important characteristics of the controllers’ per-
formance is lacking, such as the robustness of the controllers under changes in the vehicle model,
steering behaviour, use of the friction circle, and, ultimately, lap time on a track. In this study, we have
compared the controllers according to some of the aforementioned parameters on a modelled race car.
Interestingly, best lap times are not provided by perfect neutral or close-to-neutral behaviour of the
vehicle, but rather by allowing certain deviations from the target yaw rate. In addition, a modified
Proportional Integral Derivative (PID) controller showed that its performance is comparable to other
more complex control techniques such as Model Predictive Control (MPC).

Keywords: direct yaw moment control; electric race car; FSAE; limit handling; yaw rate control;
lap time simulation

1. Introduction

The irruption of electric technology in the automotive industry is setting a new and
important milestone in automotive history. The proliferation of electric vehicles in the
coming years seems clear, not only by looking at the different roadmaps but also by consid-
ering the necessities that are arising from the social, economic, mobility, and ecology fields.
Electric technology brings also several advantages to the field of vehicle dynamics control.
The ability (and ease) of installing an electric motor in every single wheel introduces another
degree of freedom in terms of vehicle handling [1–3]. Apart from this, the short response
time of the electric motors provides a more effective transmission of the motor torque to
the wheel [4]. Direct Yaw Moment Control (DYC) systems, also recently denominated
as Torque Vectoring (TV), take advantage of these benefits on vehicles with independent
motor configurations, as motor torque can be distributed independently on each wheel.
In the last three decades, DYC has been intensively investigated. Many contributions have
been proposed to the employment of different control methods for DYC, especially in
the last ten years, given the torque distribution freedom of electric powertrains with in-
dependent motors, but also in some cases due to the advancements made in electronic
differentials. Control methods such as PID (Proportional Integral Derivative), LPV (Linear
Parameter-Varying), LQR (Linear Quadratic Regulator), LQG (Linear Quadratic Gaussian),
H-infinity, Fuzzy Logic, SMC (Sliding Mode Control), and MPC (Model Predictive Control)
have been investigated in recent years, some of them with a combination of feedforward
techniques. Typical control variables in such controllers are yaw rate and sideslip angle.

PID controllers regulate based on the error, the derivative, and the integral of the
error between a reference and an actual value. PID controllers have two main advantages.
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The first one is the ease of implementation resulting in easier tuning and minimal computa-
tional requirements. Secondly, PID controllers are known to be relatively robust, i.e., able to
withstand changes in the vehicle modelling without compromising the stability of the
vehicle. There are also some drawbacks: because of its simplicity, a PID controller cannot
exploit a complete knowledge of the vehicle. If the plant is perfectly identified, a PID
controller is outperformed by other algorithms. PID are quite spread as yaw rate controllers.
Table 1 shows several studies using PID controllers as main control algorithms [5–15].

Table 1. Proportional Integral Derivative (PID) controllers in the literature on Direct Yaw Moment
Control (DYC).

Ref(s). FF 1

Terms
Comments

[5] No Reduces slip angle difference between front and rear axle to achieve
maximum lateral acceleration.

[6] Yes Focuses on rear cornering stiffness to avoid instability, evaluates
control using a driving simulator.

[7] Yes Derives an analytical formula to improve the steady and transient
dynamics of the vehicle.

[8] Yes Minimizes sideslip angle.

[9] Yes Minimizes yaw rate error between a reference model and the real
vehicle.

[10] Yes Combined with active front steering.

[11] No Reference tracking and proposes a tuning method. Tested on the ISO
3888-2 Double Lane Change Test at 40 km/h and 90 km/h.

[12] Yes Estimates sideslip angle and cornering stiffness through a Kalman filter.
Compared vs. friction brake actuation.

[13] Yes Wheel torque distribution criteria using offline optimization and
Control Allocation (CA).

[14] Yes Performance comparison with H-infinity controller.
[15] No Uses a cubic-error PD controller for yaw rate and sideslip control.

1 FF: feed Forward terms.

Sliding Mode Control (SMC) uses an arbitrarily large gain to force the behaviour of
a dynamic system to follow a trajectory of a reduced-order system (usually order one or
two). The main strength is robustness against modelling uncertainties. From the point of
the drawbacks, the controller is usually extremely active (the actuators are continuously
saturated), which in turn provokes chattering. Dead-band controllers, low-pass filters,
or integral actuation can improve this problem. Table 2 summarizes the main publications
on SMC controllers related to DYC [16–25].

Linear Quadratic Regulators (LQR) are optimal controllers that balance the tracking
performance of the state variables (minimization of the overall error of the yaw rate)
with the actuation (commanded asymmetrical torque on the wheels). The simplest LQR
controllers minimize the integral of a weighted sum of the squared error and the square
of the actuation. The gains for these types of controllers can be obtained by solving the
corresponding Ricatti equation [26]. LQR is an optimal controller and the proper selection
of the function to minimize provides very effective results. On the downside, they are
very sensitive to mismodelling the vehicle or perturbations and are usually applied to
linear systems. Linear Quadratic Gaussian (LQG) is a variant of LQR that also includes
disturbances (e.g., side winds) modelled as Gaussian noise. If properly tuned, the effect of
disturbances can be minimized. Table 3 shows the literature related to optimal controllers
(both LQR and LQG) for DYC [27–35].
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Table 2. Sliding Mode Control (SMC) controllers in the literature on DYC.

Ref(s). Order 1 Comments

[16] 2
Two second-order sliding-mode controllers are evaluated against a
feedforward controller combined with either a conventional or an

adaptive Proportional Integral Derivative (PID) controller.
[17] −1 Implements Integral Sliding Mode Control (ISMC) to avoid chattering

[18] 1 Combines SMC with PID. Include a low pass filter to reduce chattering.
Reduces the difference between front and rear slip angles.

[19] 1 Includes saturation to reduce chattering.

[20] −1, 2

Compares Internal Mode Control (IMC) and Second-Order Sliding
Mode Control (SOSM), both using feedforward terms. With both

control techniques, stability in demanding oversteering conditions,
such as braking in a high-speed turn, can be worse than the

uncontrolled case, depending on the longitudinal deceleration level.
[21] 1 Multiple Adaptive Sliding Mode Control (MASMC).

[22] -
Compares Integral Terminal Sliding Mode (ITSM) and Nonsingular

Fast Terminal Sliding Model (NFTSM) to improve the transient
response of the vehicle sideslip angle and yaw rate.

[23] 1 Adaptive. Lyapunov-based stability analysis. Performance studied on
a double lane change test simulation.

[24] 1, 2
Compares first order, SOSM, and PID controllers. SOSM is the winner

of the comparison based on a Sine with Dwell test manoeuvre (no
chattering, best tracking performance, better slip-angle).

[25] −1
Integral Sliding Mode Control (ISMC) compared LQR controller with
and without non-linear feedforward. ISMC outperforms LQR both in

tracking performance and yaw damping.

1 Order is 1 for first order SMC, 2 for Second-Order Sliding Mode Control (SOSM) and −1 for Integral Sliding
Control.

Table 3. Optimal controllers applied to DYC.

Ref(s) Controller Comments

[27,28] LQR Applied to production vehicles.

[29] LQR Tracks vehicle yaw rate, minimization of the optimal handling
performance index.

[30] LQR Tracks yaw rate and sideslip angle, minimizes the use of external yaw
moment.

[31] RLQR Robust controller. Robustness is achieved through gain-scheduling and
additional closed-loop control terms. Outperforms standard LQR.

[32] LQR Applied to Formula Student vehicle. Showed promising results
compared to PD controller.

[33,34] LQG Improved disturbance rejection ability if compared to LQR.

[35] LPV DYC combined with torque and slip limitation applied to a
front-wheel-drive electric vehicle.

LQR and LQG were developed to control linear systems. A vehicle is not linear
(especially at handling limits) and the application of these controllers requires the lin-
earization of the vehicle for a particular working point. MPC, discussed later, tries to fix
this problem by solving an optimization equation online. MPC are more computationally
demanding compared to LQR and LQG controllers. Another possible approach is to use a
gain scheduling method as performed in linear parameter-varying controllers (LPV).

Fuzzy logic controllers have also been applied to DYC. They consist of three main
parts: fuzzification, rule processor, and defuzzification. The rules are usually stated by the
control designer intuitively; e.g., “if the yaw error is large, apply a large torque to diminish
it”. The fuzzification part converts the input measurements into qualitative quantities; i.e.,
state if a specific yaw error is “large” or “huge”. Usually the regions between the qualitative
measurements (“large” and “huge”) overlap. The defuzzification consists of generating the
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specific control action according to the output rules; e.g., a large torque is at least 60 Nm.
These three parts of the controllers (fuzzification, generation of rules, and defuzzification)
require an in-depth knowledge of the process under study. Nevertheless, fuzzy controllers
have been successfully applied to DYC or even to unstable systems (Table 4) [36–39].

Table 4. Fuzzy controllers applied to DYC.

Ref(s) Comments

[36] A high-level supervisory module operated by a genetic fuzzy
yaw moment controller.

[37] Comparison to an LQR. Fuzzy logic shows better results on
ISO3888-2 and Sine with Dwell manoeuvres.

[38]
A unified controller with three control layers based on fuzzy

control strategy is designed for this purpose and applied on a
vehicle with an electronic differential.

[39]

A neuro-fuzzy vertical tire forces estimator combined with a
fuzzy yaw moment controller is compared to a more traditional
PID controller using a high-fidelity vehicle dynamics simulator;
results show that the proposed controller can increase vehicle

efficiency by 10%.

Model Predictive Control (MPC) is similar to LQR controllers with some key differ-
ences. They are similar as long as both solve an optimization problem that trades off the
tracking ability and the actuation. However, the approach is different since the optimiza-
tion problem is solved online, with the additional computational cost, and can include
non-linearities (such as actuator saturation) as long as the optimization solver can deal with
them. Moreover, the optimization problem is solved for a finite-time horizon; i.e., MPC min-
imizes a figure of merit that includes some samples, not an infinity summation as in LQR.
Table 5 includes a summary of the DYC controllers that use the MPC approach [40–51].

Table 5. Model Predictive Control (MPC) applied to DYC.

Ref(s) Controller Comments

[40] Non-linear Nearest point approach. Applied to step steer and split braking
manoeuvre.

[41] Standard Applied to U-turn and double lane change. Outperforms LQR.

[42] Non-linear

Robust controller. Robustness achieved using gain-Model In
combination with an SMC to compute the necessary torques on

the rear wheels based on the requested longitudinal slips.
Outperforms LQR.

[43] Standard
The linear vehicle model is used for the MPC and compared
with an equal torque algorithm. Evaluation is performed by

simulation.

[44] Adapted to deal
with delay

Yaw response of the vehicle is improved through torque
vectoring to track the desired yaw rate, even with the presence

of delays in the control loop which could degrade controller
performance. Effectiveness is verified by simulation and by

experiments with a rear-wheel-drive electric vehicle

[45]
2 controllers:
Standard and

non-linear

Applied to Formula Student car. Both use the qpOASES solver
[46]. The nonlinear model uses ACADO code generation tool

[47]. Tested for U-turn and step steer.

[48] Standard Requires no road friction information. Estimated using the
relative difference between front and rear slip angles.

[49] Non-linear
Both torque vectoring and Electronic Stability Control (ESC).
Non-linearity includes constraints in the actuators. Tested on

line-change and J-turn manoeuvres.
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Table 5. Cont.

Ref(s) Controller Comments

[50]
Standard with

physical
constraints

Applied to 4WD. Tested on step steer and double lane-change
manoeuvres. Outperforms LQR.

[51] Non-linear

Concurrent optimization of the reference yaw rate and wheel
torque allocation. Cost function weights on-line varied using

fuzzy logic to adaptively prioritize vehicle dynamics or energy
efficiency.

In most of the previous works, performance evaluation was performed by comparing
specific manoeuvres (ISO 3888-2 Double Lane Change, Sine with Dwell test, etc.), but only a
few were evaluated on a complete race track. In a race car, ISO 3888-2 or other manoeuvres
have little or no importance at all: the critical ones are the lap time and the robustness
of the method under different circumstances (wet asphalt, a significant change of the
aerodynamic behaviour because of a crash, etc.)

Besides, a comprehensive and systematic comparison of different control techniques
for DYC is missing in the literature, to the knowledge of the authors. This manuscript will
perform a systematic comparison of the main control approaches (PID, LQR, SMC, MPC,
and NMPC) and their performance is evaluated on two race tracks in this study.

These studies have been performed using the IPG CarMaker software using an “expert
driver model”, since a race car is being studied. The vehicle powertrain and the controllers
have been programmed in MATLAB Simulink, which is connected to IPG CarMaker.

Results show the difference in actuation for each controller, as well as the impact
on yaw and sideslip dynamics and finally on the lap time. Interestingly, there are some
counterintuitive conclusions in the results: best lap times are not achieved using a neutral
behaviour. On the other hand, PID controllers withstand the comparison with other
control techniques.

2. Vehicle Modelling
2.1. Vehicle Specifications

A two-wheel-drive Formula Student vehicle is considered with two rear independent
motors which can be controlled individually. The total power output of the battery is
limited to 80 kW, according to the competition rules. Each motor can deliver a peak torque
of 90 Nm, which is translated into 450 Nm of torque at each wheel owing to the 1:5 gear
reduction factor. The vehicle features a complete aerodynamic package with a rear-biased
downforce which increases its understeering behaviour with the rising speed. Stiff chassis,
a low centre of gravity, and small vehicle mass and inertia, in combination with high
grip tyres, allows very good handling behaviour in terms of yaw rate response, also at
combined acceleration.

2.2. Linearized Bicycle Model

A linearized bicycle model [52,53] is considered to describe the yaw and sideslip
dynamics of the vehicle, as shown in Figure 1.
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Figure 1. Linearized bicycle model.

Yaw and lateral motions are defined as follows:

∑ Fy = Fy, f ront + Fy ,rear = mvx

( .
β + r

)
(1)

∑ Mz = Fy, f ronta− Fy,rearb + Mz,tv = Iz
.
r (2)

Assuming linear tyres around the operating point and their respective cornering
stiffnesses Cα,front and Cα,rear and relating front and rear slip angles αfront and αrear to vehicle
sideslip angle β, yaw rate r, and front-wheel steer angle δ, we have:

Fy, f ront = α f rontCα, f ront Fy,rear = αrear · Cα,rear α f ront = β +
r · a
vx
− δ αrear = β− r · b

vx

.
β =

Cα, f ront + Cα,rear

m · vx
· β +

(Cα, f ront · a− Cα,rear · b
m · v2

x
− 1
)
· r−

Cα, f ront

m · vx
· δ (3)

.
r =

Cα, f ront · a− Cα,rear · b
Iz

· β+
Cα, f ront · a2 + Cα,rear · b2

Iz · vx
· r−

Cα, f ront · a
Iz

· δ+ 1
Iz
·Mz,tv (4)

Equations (3) and (4) can be expressed in state-space representation form:

.
x = A · x + B · u (5)
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Being:

x =

(
β
r

)
A =

(
a11 a12
a21 a22

)
B =

(
b11 b12
b21 b22

)
u =

(
δ

Mz,tv

)
a11 =

Cα, f ront + Cα,rear

m · vx
a12 =

Cα, f ront · a− Cα,rear · b
m · v2

x
− 1 a21 = d

Cα, f ront · a− Cα,rear · b
Iz

a22 =
Cα, f ront · a2 + Cα,rear · b2

Iz · vx
b11 = −

Cα, f ront

m · vx
b12 = 0 b21 = −

Cα, f ront · a
Iz

b22 =
1
Iz

Bicycle model properties, including both axles cornering stiffness change over the
vehicle speed range, are summarized in Table 6. Yaw rate reference for all the controllers is
based on the yaw rate response to front-wheel steer angle input transfer function derived
from the state-space equation. For simplicity, and due to the good handling properties of
the passive vehicle, yaw rate reference is approximated by a first-order transfer function,
as exposed in [15]. State-space matrixes are used to calculate the optimal gain matrix for
LQR and also as an internal vehicle model for the MPC controllers.

Table 6. Linearized bicycle model properties.

Parameter Value

Vehicle mass (driver included), m 296 kg
Yaw Inertia, Iz 153 kg m2

Wheelbase, L 1.58 m
Distance from the front axle to the centre of gravity, a 0.798 m
Distance from the rear axle to the centre of gravity, b 0.782 m

Front axle cornering stiffness, Cα,front (absolute value)
At 20 km/h 37,530 N/rad
At 40 km/h 42,660 N/rad
At 60 km/h 47,780 N/rad
At 80 km/h 52,900 N/rad
At 100 km/h 58,000 N/rad

Rear axle cornering stiffness, Cα,rear (absolute value)
At 20 km/h 39,400 N/rad
At 40 km/h 49,100 N/rad
At 60 km/h 58,800 N/rad
At 80 km/h 68,500 N/rad
At 100 km/h 78,200 N/rad

3. Controllers Description

The general scheme for the controllers is shown in Figure 2. Baseline vehicle charac-
teristics are calculated from the state space equations and translated into yaw rate gain Yg
and yaw rate delay time constant τ for the first order simplified vehicle response. The tar-
get yaw rate rtarget is bounded according to the vehicle’s maximum cornering capability
considering aerodynamic downforce and tarmac grip. rtarget is then compared to actual
yaw rate r, and the difference is sent to the yaw rate controller. The controller will then
compute the necessary corrective yaw moment Mztv and convert it into throttle signals
to be combined with the actual longitudinal force command coming from the driver gas
pedal. Left and right throttle signals are bounded to [−1,1], the maximum electric motor
commands in a back-and-forth direction.

Before sending the throttle command to the motors, the signal passes through a
supervisor traction controller which limits the torque command according to the maximum
longitudinal force capability of the tire.



Vehicles 2021, 3 134

Vehicles 2021, 3, FOR PEER REVIEW 8 
 

 

Left and right throttle signals are bounded to [–1,1], the maximum electric motor com-

mands in a back-and-forth direction. 

+

+

+

-

Baseline Vehicle 

characteristics

Steering Wheel Angle δ

Lateral Acceleration ay

Longitudinal Speed Vx

Yaw Rate Gain Yg

Yaw Rate Delay τ

- +Yaw Rate r

Target Yaw Rate rtarget
Yaw Rate Error e1

When turning left:

Pos itive error:  

Understeering

Negative error:  

Oversteering

 

Splitter
Gas Pedal

Left Throttle

Right Throttle

Traction 

Control

Left Motor

Right Motor

1

Yg

s +

Yaw Rate 

Controller
Side Slip Angle β 

 

Figure 2. General controller scheme. 

Before sending the throttle command to the motors, the signal passes through a su-

pervisor traction controller which limits the torque command according to the maximum 

longitudinal force capability of the tire. 

3.1. PID 

An error-cubic PD controller introduced in [15] is used. This controller applies a non-

linear transform of the error prior to the application of the proportional and derivative 

gains. The gains are chosen according to the minimum lap time achieved in the simula-

tions. The overall arrangement is shown in Figure 3. 

Yaw Rate Error e1
3x Cubic gain

+
+

PD Controller

Linear gain

 

Figure 3. Error-cubic PD controller. 

3.2. Sliding Mode Controller 

A first-order SMC controller which is based on [19] is employed. A low pass filter is 

added on top of the saturation function to further eliminate control chattering and 

smoothen the control output. The gains are chosen by iteration and minimum lap time in 

the simulations. The overall scheme is shown in Figure 4. 

Figure 2. General controller scheme.

3.1. PID

An error-cubic PD controller introduced in [15] is used. This controller applies a
non-linear transform of the error prior to the application of the proportional and derivative
gains. The gains are chosen according to the minimum lap time achieved in the simulations.
The overall arrangement is shown in Figure 3.
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3.2. Sliding Mode Controller

A first-order SMC controller which is based on [19] is employed. A low pass filter
is added on top of the saturation function to further eliminate control chattering and
smoothen the control output. The gains are chosen by iteration and minimum lap time in
the simulations. The overall scheme is shown in Figure 4.
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3.3. Linear Quadratic Regulator

The LQR gains are calculated by the state-space representation coefficients for the
speed range mentioned in Section 2. The optimal gain matrix K is calculated using Matlab
lqr function. The state feedback law u = −k·x minimizes the following cost function [54]:

J(u) =
∫ ∞

0

(
xT ·Q · x + uT · R · u + 2 · xT · N · u

)
· dt (6)

The chosen weight matrixes being:

Q = 1e7 ·
(

0 0
0 1

)
· · · · · R = 1 · · · · · N = 0

It can be observed that the chosen weight on the sideslip angle is zero, and the yaw
rate error is much more penalized than actuation. A function obtained from the fitting of
these gains over speed is calculated. A dead zone function is added to the yaw rate error to
prevent the controller actuation for small yaw rate errors, as shown in Figure 5.
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3.4. Linear Model Predictive Control

The following linear MPC formulation is considered:

min
U,X

np−1

∑
i=0
‖ xk+i − xre f ‖2

Q + ‖ uk+i ‖2
R (7)

Subject to:

xk = x̂(k)
xk+i+1 = Ad · xk+i + Bd · uk+i

−2138 ≤ Mz,tv ≤ 2138 [Nm]

i = 0, 1, . . . , np − 1
Ad and Bd being the discrete state space matrixes of (5) with a time discretization of

Td = 0.01 seconds. These matrixes update every time step with the vehicle speed, as shown
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in Figure 6. A horizon of np = 40 steps. For the algorithm implementation, ACADO Code
Generation Tool [47] is used.
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3.5. Linear Parameter Varying Model Predictive Control

Another MPC controller is used with similar characteristics to the previous one,
but this time an online linearization of the cornering stiffness of both axles is performed for
a more accurate internal model. Figure 7 illustrates the control scheme.
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4. Simulation Model
4.1. Vehicle Parameters

Simulations are performed using IPG CarMaker. The full vehicle model is parametrized,
including chassis bending and torsional stiffnesses. Tyres are parametrized using Magic
Formula 5.2 [53], including the relaxation length. Sprung and unsprung mass and inertia, sus-
pension kinematics, and aerodynamic map are also included. Controllers and powertrain and
modelled on Matlab Simulink, which runs on co-simulation with IPG CarMaker. Two track
models are used for the simulations: a go-kart track [55] and the Formula Student Germany
2010 Endurance track [56] (included in the IPG Formula CarMaker sponsorship programme).
The driver is characterized using IPG Racing Driver model. The main parameters for the
driver model are the learning rate and the driver combined acceleration target.

4.2. Olaberria Circuit

Circuito de Olaberria is an existing go-kart track located in northern Spain. Two chi-
canes, two 180 degrees corners, and one delicate braking point after a high-speed left corner
distinguish this track, which combines tight corners, which can be similar to the ones that
can be found on a Formula Student Endurance event and relatively high-speed areas that
are very exigent to the vehicle and driver and exploit the aerodynamic package potential
of the vehicles.

The track in this chosen configuration (pathway can be altered for different configura-
tions) is 695 m long. Chosen coefficient of friction is µ = 1. The modelling of some patches
of the tarmac is also included, with a coefficient of friction of µ = 0.9. The track layout is
described in Figure 8.
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4.3. Hockenheim 2010 Formula Student Endurance Track

The Endurance track of the 2010 Formula Student Germany event is also employed
for the simulations, taking advantage of fact that this track is already modelled and
included in the IPG Formula CarMaker sponsorship programme. The highlights of this
track are multiple medium speed linked corners (which are typical in this kind of Formula
Student Endurance events), one long straight on which typically the vehicles achieve their
maximum speed, and three long right corners. The length of this track is 774 m and,
lap times are higher than in Olaberria, due to the longer track length and the amount of
aforementioned linked medium speed corners. A coefficient of friction µ = 1 has been set
for the road grip. Track aerial view is shown in Figure 9.
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5. Results

Several simulations were performed on IPG-CarMaker for each controller configu-
ration to find the quickest lap time. For this, an iterative process is required, varying the
learning rate and the driver target for combined acceleration. Best times are usually
achieved at high learning rates and combined acceleration usage targets. Besides lap time,
two more key performance indicators have been calculated to evaluate controller actuation:

• Integral of the absolute yaw rate error (IAE):

IAE =
∫ tlap

0
‖ e(t) ‖ dt (8)

• Integral of the absolute value of the control action (IACA):

IACA =
∫ tlap

0
‖ u(t) ‖ dt (9)

Lap times at the Olaberria circuit are shown in Table 7. As can be observed on the
table, the best lap times are achieved by the most aggressive driving style and highest
combined acceleration target. Higher driver target G-G exponents lead to vehicle loss of
control due to front wheel lock with heavy braking (there is no ABS (Anti Lock Braking
System) in the vehicle [57]).

Table 7. Lap times at Olaberria.

Race Driver Parameters Lap Times
Learning Rate:

0: Sensitive
1.5: Aggressive

Driver Target
G-G Exponent PID SMC LQR MPC LPV-MPC

0 1 36.92 36.94 36.73 36.78 36.80
0.5 1.2 36.13 36.26 35.97 35.99 36.07
0.7 1.4 35.68 35.78 35.50 35.55 35.62
1 1.6 35.33 35.48 35.14 35.28 35.32

1.5 1.8 35.12 35.42 34.98 35.16 35.11
1.5 2 35.1 35.27 34.80 35.13 35.00
1.5 2.2 34.85 35.23 34.82 34.82 34.78
1.5 2.3 DNF DNF DNF DNF DNF

DNF = Do not finish. Numbers in bold indicate fastest lap for each controller.

Among the controllers, the LPV-MPC is the one that achieves the fastest lap time.
The PID intervenes less than the other controllers by looking at the IACA values. The MPC,
on the other hand, keeps the error between the target and the actual yaw rate to the
minimum, but at the expense of a busy controller intervention, as can be seen in Table 8.

Table 8. Controller performance at Olaberria.

Controller
Best Lap Olaberria

Lap Time (s) IACA (Nm·s) IAE (rad)

PID 34.85 3103 7.34
SMC 35.23 6660 7.70
LQR 34.80 6867 6.77
MPC 34.82 8105 5.63

LPV-MPC 34.78 5130 8.39

Regarding the simulation results at Hockenheim circuit, the best lap times are also
achieved by the maximum value of learning rate and maximum driver target G-G expo-
nent, as can be observed in Table 9. However, there is a difference with Olaberria track
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simulations: in Hockenheim, the driver never loses vehicle control. There are two reasons
for this:

• The braking locations at Hockenheim require less combined G (the vehicleheads
straight when braking).

• Vehicle speed at the braking areas at Hockenheim is lower than in the critical braking
point of Olaberria, where the front axle lock occurs. At lower speed, the ratio of
apparent front wheels weight over the apparent weight on the rear wheels is higher,
so it is more difficult to lock the front wheels.

Table 9. Lap times at Hockenheim 2010 Formula Student.

Race Driver Parameters Lap Times (s)
Learning Rate:

0: Sensitive
1.5: Aggressive

Driver Target
G-G Exponent PID SMC LQR MPC LPV-MPC

0 1 49.97 49.96 49.96 49.97 49.95
0.5 1.2 49.28 49.19 49.30 49.31 49.21
0.7 1.4 48.84 48.73 48.90 48.89 48.71
1 1.6 48.46 48.36 48.53 48.51 48.37

1.5 1.8 48.28 48.24 48.38 48.36 48.20
1.5 2 48.14 48.07 48.19 48.17 48.09
1.5 2.2 48.06 47.95 48.12 48.08 48.01
1.5 ∞ 47.34 47.31 47.41 47.38 47.28

Nevertheless, the combined G-G usage during vehicle acceleration is controlled by
the torque vectoring and traction control system, so no instability happens during heavy
longitudinal accelerations at a corner exit. If these controllers are removed, the vehicle
spins at a corner exit when targeting high combined acceleration.

With regards to controller comparison, the LPV-MPC achieves again the best lap,
but the differences among them in these terms are tiny. PID is again the least intrusive
controller, and the MPC again achieves the best tracking performance at the cost of having
the highest intervention, as indicated on Table 10.

Table 10. Controller performance at Hockenheim.

Controller
Best Lap Hockenheim

Lap Time (s) IACA (Nm·s) IAE (rad)

PID 47.34 2499 4.69
SMC 47.31 5414 5.29
LQR 47.41 3881 4.22
MPC 47.38 5483 4.02

LPV-MPC 47.28 3229 5.90

6. Discussion

This work compares different controller architectures for torque vectoring. Instead of
using ISO manoeuvres, they are compared using lap times in two different circuits. Simula-
tions were performed using IPG CarMaker software, with a Formula Student 2WD vehicle
model on two race tracks, using IPG Race Driver model.

The difference in lap times across different controllers is tiny: the best lap times for
different controllers are within the same tenth of a second, except for SMC which is the
slowest in Olaberria. Nonetheless, there are interesting differences across the controllers.

The most important factor is the driver: aggressive driving with a large G-G exponent
provides faster laps. In Olaberria, tough, hard braking at the fastest point of the circuit
provokes front axle locking, and if the G-G exponent is over 2.2 the car is not able to finish
the lap with any controller.
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Interestingly, the error in the yaw rate is not critical for lap times: both in Hockenheim
and Olaberria, MPC and LPV-MPC have the largest and smallest IAE, and the correspond-
ing lap times are within the same tenth. Interestingly, MPC, whose IAE is smaller, is in fact
slower in both circuits than LPV-MPC. This suggests that in order to extract the maximum
tyre force, the target yaw rate function could be improved. A comparison between a “fast”
and a “slow” lap can be seen in Figure 10.
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It can be observed that the “slow” lap has a much smaller IAE value than the “fast” lap.
The reason is that the slip angle of the maximum lateral force of the tyre varies constantly
during demanding driving. The target yaw rate is based on a fixed relation between the
front and rear slip angles; it is constrained to this relation and does not take into account
the exact slip angle for maximum lateral performance of the tyre (it simply assumes that
both axles slip angles need to be always similar, or the front should be always slightly
higher for understeering behaviour).

Tables 8 and 10, and Figure 11 comparethe control action of each controller. In this case,
the differences are much clearer than in lap times. The PID controller is much less intrusive
than the others are, and its lap time is less than one-tenth slower than the LPV-MPC in
each circuit. Despite its simplicity, the performance of the PID controller is remarkable.
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7. Conclusions

A review of the typical controllers for direct yaw moment control applied on an
electric race car with independent motors was performed. The comparison shows that all
controllers perform similarly in terms of minimum lap time according to the simulations
performed on IPG CarMaker. However, there are some differences in terms of controller
actuation: the cubic-error PID is the least intrusive controller, whereas the MPC controller
shows the best yaw rate tracking performance. Nevertheless, tracking performance is not
directly correlated with minimum lap time, due to the continuous variation of the tyre
peak slip angles during race-style driving. Therefore, future works include the design of
a target yaw rate function considering the peak performance of each tyre. Besides this,
the evaluation of the controllers using a moving base driving simulator is also considered
to evaluate the intrusiveness and the interaction with a human driver.
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