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Abstract: In order to reduce carbon emissions and address global environmental concerns, the au-
tomobile industry has focused a great deal of attention on electric vehicles, or EVs. However, the
performance and health of batteries can deteriorate over time, which can have a negative impact
on the effectiveness of EVs. In order to improve the safety and reliability and efficiently optimize
the performance of EVs, artificial intelligence (AI) approaches have received massive consideration
in precise battery health diagnostics, fault analysis and thermal management. Therefore, this study
analyzes and evaluates the role of AI approaches in enhancing the battery management system (BMS)
in EVs. In line with that, an in-depth statistical analysis is carried out based on 78 highly relevant pub-
lications from 2014 to 2023 found in the Scopus database. The statistical analysis evaluates essential
parameters such as current research trends, keyword evaluation, publishers, research classification,
nation analysis, authorship, and collaboration. Moreover, state-of-the-art AI approaches are critically
discussed with regard to targets, contributions, advantages, and disadvantages. Additionally, several
significant problems and issues, as well as a number of crucial directives and recommendations, are
provided for potential future development. The statistical analysis can guide future researchers in
developing emerging BMS technology for sustainable operation and management in EVs.

Keywords: battery management; lithium-ion battery; electric vehicles; optimizations; algorithms

1. Introduction

The vehicle industry has made great efforts in creating dependable and effective tech-
nologies to guarantee the security of passengers [1]. However, as the number of cars grows,
so does the amount of air pollution in urban areas [2]. Approximately 27% of greenhouse
gas (GHG) emissions are produced by the transportation industry, with vehicle transporta-
tion accounting for more than 70% of those emissions, according to data from the European
Union [3]. Electric vehicles (EVs) have gained widespread popularity and recognition as
a solution to these emissions problems due to their ability to reduce GHG emissions and
address global warming issues [4]. EVs have replaced fossil-powered automobiles and
delivered enhanced performance in terms of simplicity, accuracy, and dependability [5].
Nevertheless, EVs have some limitations, including a short travel distance, a long charging
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interval, and battery performance degradation under various uncertainties [6]. Thus, in
order to address crucial problems, including thermal runaway, cell unbalancing, overcharg-
ing, over-discharging, overheating, and fire dangers, an enhanced and intelligent battery
management system (BMS) is required [7].

The BMS plays a key role in managing and optimizing the performance of EVs. The
BMS is a critical component of EVs, ensuring the safety, longevity, and performance of the
battery pack while enhancing the overall driving experience for users [8]. The development
of an effective and intelligent BMS is essential to estimate remaining useful life (RUL),
state of energy (SOE), state of charge (SOC) and state of health (SOH), as well as to
perform charge balancing, temperature management, and fault diagnostics, [9]. The BMS
employs various circuit devices and power electronics components as well as algorithms
and methods to implement various functionalities such as SOC management, overvoltage
and undervoltage protection, temperature control, battery cell balancing, energy efficiency
and battery life expansion [10,11]. The inefficient algorithms for the BMS in EVs can
lead to a range of issues, including reduced battery performance, safety concerns, and a
shorter battery lifespan. To address these issues, it is crucial to develop and implement
well-designed BMS algorithms that take into account factors like data accuracy, advanced
modeling techniques, sensor quality, real-time monitoring, and adaptability to different
driving conditions and user behaviors.

Artificial intelligence (AI) approaches have the potential to significantly enhance the
functionality and performance of BMS in EVs [12]. AI-driven BMS in EVs offers a range of
benefits, including improved performance, safety, energy efficiency, and user experience,
while also helping to extend the lifespan of the battery. Several state-of-the-art research
articles have demonstrated the significance of the AI approach in examining the effective-
ness of EV applications [13]. AI methods have several advantageous features compared to
traditional approaches. For instance, AI techniques need less knowledge and require less
development time to design complicated battery systems as compared with conventional
model-based frameworks [14]. Moreover, AI algorithms and optimization schemes do not
require comprehensive domain knowledge about battery physics, chemistry, and chemical
reactions but rather a large pool of data and high computing power [15]. Additionally, they
operate very effectively in the presence of sufficient data and are exceptionally efficient
in dealing with the existence of uncertainties such as noise, temperature fluctuations, and
aging effects. Moreover, they have self-learning operations to execute the parameterization
as well as fast online execution [16].

There are two distinct ways to estimate SOC, SOH, and RUL in EV BMS technology:
online measurement systems and AI algorithm-based techniques. Although they use
different methods and strategies to accomplish this, both approaches intend to evaluate the
performance and health of a battery. AI algorithms employ data-driven methodologies to
examine both historical and current battery system data. Large datasets are used to train
machine learning algorithms, like neural networks and support vector machines, to find
patterns and correlations between different battery condition parameters. In addition, they
need a significant volume of current and historical data to execute training and testing
operation. Temperature profiles, charge–discharge cycles, and other essential operational
data are examples of possible data sources [17]. On the other hand, online measurement
systems use sensors and direct measurements to continuously monitor the electrical and
physical characteristics of a battery. Voltage, current, temperature, and other relevant
indicators may be sensed by them. The SOH is directly calculated using the data gathered
from these measurements [18].

Analytical analysis is a research technique in library and information science that
makes use of statistics and quantitative approaches to supply the necessary information [19].
It is an essential tool for revealing insights regarding specific and past discoveries that
may be used to build future study avenues for researchers [20,21]. Universities, research
organizations, corporations, and industries frequently utilize a variety of metrics, such as
current status, citations, impact factors, h-index, research networks and collaboration to
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evaluate the capacity and expertise of researchers [22]. Numerous statistical investigations
on BMS and EVs have been conducted, including bibliometric and technical evaluations of
BMS [15], bibliometric analysis of optimized energy management [23], bibliometric analysis
of thermal management systems [24], energy management schemes for hybrid EVs [25],
recycling methods for lithium-ion batteries [26], battery storage systems integration, and
renewable resources [20]. To the best of the authors’ knowledge, no study has carried
out a detailed investigation of AI approaches for BMS technology in EVs. Therefore, this
paper utilizes a variety of statistical parameters to examine the evaluation of AI in BMS
technology in the previous ten (10) years, i.e., from January 2014 to July 2023. This paper
also comprehensively explains the AI algorithms used in BMS, focusing on contributions,
results, merits, and demerits. Furthermore, the unresolved problems, difficulties, and
potential directions for future research are provided. The significant contributions of the
paper are highlighted below.

• This statistical assessment examines 78 relevant manuscripts in AI-driven BMS tech-
nology for EV applications, focusing on several vital aspects, such as keywords, the
categories of manuscripts (review paper as well as original research work), the names
of the journals, the names of the publishers, the year of publication, the name of the
affiliated country of the authors and the overall quantity of citations.

• This survey provides a critical analysis of AI methods, algorithms, optimizations,
and controllers for BMS in EVs regarding contributions, outcomes, advantages, and
disadvantages.

• The study investigates the issues and concerns of AI-based BMS in EV implementa-
tions.

• Useful future research directions and opportunities are presented for the advancement
of BMS in EVs.

The organization of the paper is divided into five main sections. The main findings
of the study, data extraction techniques, publishing trends, and data selection criteria are
covered in Section 2. Section 3 covers analytical topics such as citation analysis, distribution
of highly cited articles, keyword analyses, study fields, publications, and authorship.
Section 4 outlines the novel AI methods and algorithms for BMS. Section 5 narrates the
future research opportunities. Section 6 presents the conclusions.

2. Survey Methods

Since the Scopus database (www.scopus.com) has more articles than other platforms
and databases like the Web of Science, the Scopus database was employed as an article
source in this analytical study [27]. This section describes the process used to choose
78 articles for analysis, including the criteria for inclusion and exclusion of articles, screening
techniques, research methodology, data extraction, study aspects, and findings.

2.1. Criteria for Inclusion and Omission of Articles

The documents were selected using certain criteria from the Scopus record. The
essential keywords used for relevant article selection in the Scopus catalogue are shown in
Table 1. The top 78 articles on the subject of AI in BMS for EVs used the following standards
for article inclusion and exclusion.

• The relevant articles were chosen between 2014 and 2023.
• This statistical analysis examined English-language manuscripts.
• Key indicators such as machine learning, deep learning, battery management systems,

and electric vehicle applications were utilized.
• The results of a database search based on topics such as battery chemistry, material

composition, electrolysis analysis, and electrochemical reactions were not taken into
consideration while making the final selection.

• The information that was taken out of the 78 relevant manuscripts had the following
features: (1) type of research activity (formulation and review of problems), (2) research

www.scopus.com
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topic, (3) name of the publisher; (4) the name of the journal; (5) the journal impact
factor; (6) the most active authors in the relevant fields, and (7) affiliated countries and
universities.

Table 1. The Scopus database search for relevant manuscripts using various keyword codes.

Step Types of Filtering Search Code Number of Articles

Step-1
Machine learning, Battery

Management Systems, Electric
Vehicle

TITLE-ABS-KEY (machine AND learning; AND battery
AND management; AND electric AND vehicle) 449

Step-2 Publication Year: 2014–2023

Vehicles 2024, 6, FOR PEER REVIEW  4 
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2.2. Screening Technique

Because the quantity of available articles varies between different records, the follow-
ing standards as well as measures were employed to choose the most relevant article from
the Scopus record. The entire process was broken down into five parts, which are explained
below and presented in Figure 1.

• Using the basic selection method, 449 (n = 449) manuscripts were chosen in total.
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• A total of 435 (n = 435) research documents were chosen using a year constraint range
of 2014 to 2023.

• By creating subject areas, 185 (n = 185) articles were chosen in total.
• The “English Language” filter was used to select a total of 150 (n = 150) items.
• The final article selection was made based on relevance. Accordingly, 78 (n = 78)

manuscripts from the Scopus database were chosen for the final assessment. Table 1
shows the keywords used in searching for relevant manuscripts in the Scopus database.
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2.3. Research Pattern

Scholars are heavily researching AI in order to create a more effective BMS for EV
applications [25–28]. An increasing number of studies have been published in the field
of ML-integrated BMS in EV implementations. To manage battery energy storage more
efficiently and optimize the EV operation, researchers have been utilizing several machine
learning, deep learning, and optimization and controller schemes. Figure 2 shows the
upward trend in research from January 2014 to December 2023. Figure 2 shows that the
number of research papers has been growing steadily, highlighting AI’s importance in the
BMS sector. For example, the field of BMS in EV applications saw the publication of 58, 85,
and 134 articles in 2020, 2021, and 2022, respectively, that highlight the deployment of AI as
an emerging research area. Between 2014 and 2023, 435 articles were published in total.
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2.4. Data Extraction

The author’s name, AI categories, shortened keywords, types of manuscripts (review
papers and original research papers), objectives, targets, journal names, publisher names,
publication years, names of the affiliated countries of the conforming authors, and the total
number of citations were all used to mine information from the 78 manuscripts that were
judged to be the most relevant. To present a thorough picture of AI-integrated BMS tech-
niques for EV applications, statistical analysis included analysis of co-occurring keywords,
research categories, distribution of article publishers, document authorship and collabora-
tion, and network and collaboration analysis. In addition, a technical assessment of BMS
in EV applications was extensively conducted, highlighting the cutting-edge AI methods,
various optimization schemes, and control strategies. In line with this, the key findings,
contributions, advantages, and disadvantages of the state-of-the-art AI approaches for BMS
in EV applications were thoroughly discussed. Moreover, the open issues, limitations, and
challenges were explored to identify the recent research gaps. Lastly, based on the statistical
and technical evaluation, several useful and constructive suggestions are presented for the
advancement of BMS in EV applications.

2.5. Study Structures and Key Findings

The final relevant 78 papers are shown in Table 2, which outlines the authors’ names,
DOI numbers, author keywords, algorithms, shortened journal names, publisher names,
publication years, article types, origin countries, and citations. The selected publications
had a total of 2059 citations, ranging from 0 to 350. Six papers among the 78 publications
obtained more than 100 citations. The publications by Hu et al. [28] with the highest impact
factor (8.162) and most citations in the ‘IEEE Transactions on Industrial Electronics’ journal
in 2016 had 350 citations.
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Table 2. Detailed explanation of the most relevant 78 articles on AI-integrated BMS in EVs.

Rank Ref.
No. Authors Author Keywords AI Algorithm

Used Goal/Target Abbreviated
Source Title Publisher Year Document

Type
Correspondence

Address
Cited

by

1 [28] Hu et al.
Bayesian Inference;

EV; ESS; Health
Monitoring; LIB; ML

Bayesian Inference
Health prognosis

for electric
vehicles.

IEEE Trans
Ind Electron IEEE 2016 Article China 350

2 [29] Chemali
et al.

BMS; DNN; ESS; LIB;
ML; SOC estimation

Deep neural
networks

State-of-charge
estimation of

Li-ion batteries

J Power
Sources Elsevier B.V. 2018 Article Canada 316

3 [30] Hu et al. BM; EV; ES; ML; state
estimation

Genetic
algorithm-based
fuzzy C-means

Battery State
Estimation in

Electric Vehicles

IEEE Trans.
Transp.
Electrif.

IEEE 2016 Article China 225

4 [31] Feng et al. Batteries; EV; ES; state
estimation; SOH

Support vector
machines

State-of-Health
Estimation for
Li-Ion Battery

IEEE Trans.
Veh. Technol. IEEE 2019 Article China 166

5 [32] Xiong et al.
Battery; EMS; HESS;

Topologies;
Ultracapacitor

Wavelet transform HESS Topologies
for EV batteries.

J. Clean.
Prod. Elsevier Ltd. 2018 Article China 112

6 [33] Zahid et al.
BMS; Battery state

estimation; EV; ESS;
ML; SOC

Fuzzy neural
networks; Elman
neural network

State of charge
estimation for
electric vehicle

Energy Elsevier Ltd. 2018 Article China 99

7 [34] Hannan et al. LIB, BMS, SOC, ML Lightning search
algorithm

State of Charge
Estimation of
Lithium-ion

Batteries.

Sci. Rep. Nature
Research 2020 Article Malaysia 97

8 [35] Li et al.

ANN; data-driven
modeling; EV; LIB;

ML; safety
standardization

Artificial neural
network

Safety Envelope of
Lithium-Ion

Batteries.
Joule Cell Press 2019 Article United States 89

9 [36] Li et al.
BES; BMS; Big data;

DL; EV; Temperature-
dependent model

Extreme learning
machine

Big data driven
lithium-ion battery
modeling method

Appl.
Energy Elsevier Ltd. 2019 Article China 70
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Table 2. Cont.

Rank Ref.
No. Authors Author Keywords AI Algorithm

Used Goal/Target Abbreviated
Source Title Publisher Year Document

Type
Correspondence

Address
Cited

by

10 [37] Babaeiyazdi
et al.

EV; Electrochemical
impedance

spectroscopy; LIB; ML

Gaussian process
regression; Linear
regression models

State of charge
prediction of EV
Li-ion batteries

Energy Elsevier Ltd. 2021 Article Canada 60

11 [38] Li et al.

Aging-considered
battery model; Battery

degradation
quantification; BES;

BMS; DL; EV

Rain-flow cycle
counting

Battery modeling
and management

method

Appl.
Energy Elsevier Ltd. 2020 Article China 51

12 [39] Tang et al.

Battery aging
assessment; battery

aging dataset
generation; LIB

management; ML

General
supervised

training
algorithms

Recovering
large-scale battery

aging dataset
Patterns Cell Press 2021 Article United Kingdom 50

13 [40] Sulzer et al.

applications; battery;
data; knee point;

lifetime; LIB;
prognostics

Feature-based
data-driven

approach

Challenge of
battery lifetime

prediction
Joule Cell Press 2021 Review United Kingdom 49

14 [41] Abdullah
et al.

AI; EV; ML;
management; smart

grids

Reinforcement
learning

EV Charging
Management

Systems
IEEE Access IEEE 2021 Review Qatar 34

15 [42] Yavasoglu
et al.

ANN; EV; EMS; fuel
cell; HESS; ML;
ultra-capacitor

Artificial neural
network; convex

optimization

Energy
management of

multi-source
(battery/UC/FC)
powered electric

vehicle

Int. J. Energy
Res.

John Wiley
and Sons

Ltd.
2020 Article Turkey 30

16 [43] Lei et al.

hybrid AC-DC
microgrid; Optimal

EM; Security;
Sequential hypothesis

testing

Whale
optimization

algorithm

Hybrid electric
vehicle charging

demand

Int J Electr
Power

Energy Syst
Elsevier Ltd. 2021 Article China 25



Vehicles 2024, 6 30

Table 2. Cont.

Rank Ref.
No. Authors Author Keywords AI Algorithm

Used Goal/Target Abbreviated
Source Title Publisher Year Document

Type
Correspondence

Address
Cited

by

17 [44] Rehman
et al.

EV; ESS; Experimental
analysis; ML

Integer
programming

Optimization of
integrated

photovoltaic panel,
battery and

electric vehicles

Energy
Convers.
Manage.

Elsevier Ltd. 2020 Article Finland 14

18 [45] Vidal et al.
ANN; batteries; BMSs;
ESS; hybrid EV; HESS;
ML; SOC estimation

Artificial neural
network

State-Of-Charge
Estimation of
hybrid Energy
Storage System

IEEE Transp.
Electr. Conf.
Expo, ITEC

IEEE 2018 Conference
Paper Canada 14

19 [46] Zahid et al.

AI; Charging
(batteries); Lead acid
batteries; LIB; SOC

estimations; Training
and testing; BMS

Filtering algorithm
State of charge of

energy storage
devices

Electron.
Lett. IET 2017 Article China 14

20 [47] Srithapon
et al.

BES system; carbon
emission; DL;

probabilistic power
flow; transformer loss

of life;

Multi-objective
differential

evolution; Zhao’s
point estimation

method

Probabilistic
Optimal Power

Flow
measurement of
Electric Vehicles

IEEE Access IEEE 2021 Article Thailand 12

21 [48] Sidhu et al.
AI; BMSs; Gaussian

processes; Lithiumion
batteries; ML

Random Forest
regression

State of charge
estimation of
lithium-ion

batteries

IECON Proc IEEE 2019 Conference
Paper Canada 12

22 [49] Chaoui et al.

EMS; Charging
(batteries); DL; EV;

Energy resources; ML;
Secondary batteries

Reinforcement
learning

energy
management
system for EV

batteries.

IEEE Veh.
Power

Propuls.
Conf.,

VPPC—
Proc.

IEEE 2019 Conference
Paper Canada 11

23 [50] Bansal et al.

Driving cycle
uncertainties; EV;

HESS; ML; Optimal
sizing

Particle swarm
optimization

Energy storage
sizing in plug-in
Electric Vehicles

J. ES Elsevier Ltd. 2021 Article India 10
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24 [51] Shi et al.

Driving pattern
recognition; HESS;

Unsupervised
learning;

Vehicle-to-cloud
connectivity

Dynamic
programming

Energy
management
strategy for

battery

Energy Elsevier Ltd. 2022 Article United States 9

25 [52] Jin et al. BMS; LIB; ML; RUL
prediction

Support vector
machine

Lithium-ion
battery remaining

useful lifetime
prediction

Electronics
(Switzer-

land)
MDPI 2021 Article Denmark 9

26 [53] Garg et al.

Energy conversion
and storage; energy

dispersive
spectroscopy; HES;
LIB; remaining life

- Performance of
Li-ion batteries

Int. J. Energy
Res.

John Wiley
and Sons

Ltd.
2020 Article China 9

27 [54] Alaoui et al. ANN; DL; EV; LIB;
Supercapacitor

Deep learning
(DL) model

Battery states
estimation

Proc.—Int.
Conf. Intell.
Syst. Adv.

Comput. Sci.,
ISACS

IEEE 2019 Conference
Paper Morocco 9

28 [55] Jiang et al.
HESS; Parameter
matching; Power

allocation; Pure EV

Dynamic
programming;

Extreme learning
machine

Power allocation
for the hybrid
energy storage
system of pure
electric vehicles

Energies MDPI AG 2018 Article China 9

29 [56] Liu et al.

Climate changes by
2050; Green vehicle

storage; ML; Net-zero
energy community;

Peer-to-peer trading;
Uncertainty energy

planning

Regression
analysis

Uncertainty
energy planning

for EV

Appl.
Energy Elsevier Ltd. 2022 Article China 8
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30 [57] Mazzi et al.
CNN; data-driven;

LIB; ML; quantization;
state of charge

Gated recurrent
unit neural

network

State of charge
estimation of an
electric vehicle’s

battery

Int. J. Energy
Res.

John Wiley
and Sons

Ltd.
2022 Article Morocco 7

31 [58] Meng et al.
AI; disassembly; EV

battery; ML; recycling;
sustainability

Neural network

Intelligent
disassembly of
electric-vehicle

batteries

Resour.
Conserv.
Recycl.

Elsevier B.V. 2022 Review United States 6

32 [59] Driscoll et al.
ANN; Data-driven;

Estimation; LIB; ML;
SOH

Artificial neural
network

Lithium-ion
battery state of

health estimation
J. ES Elsevier Ltd. 2022 Article Spain 6

33 [60] Basnet et al.

Charging (batteries);
Controllers; Data

acquisition; Digital
storage; EV; ESS;

BESS; DL

Long short-term
memory

Cybersecurity
issues in 5G

enabled electric
vehicle charging

station

IET Gener.
Transm.
Distrib.

John Wiley
and Sons Inc 2021 Article United States 5

34 [61] Herle et al. data augmentation;
DL; EV; LIB; ML

Coupled neural
network

Battery data
challenges

Int. J. Energy
Res.

John Wiley
and Sons

Ltd.
2021 Article India 5

35 [62] Zhou et al.

DSM; Dynamic power
Dispatch; ESS; ML;

RE; Techno-economic-
environmental
performance

Reinforcement
learning

Advances of
machine learning
for battery states

estimation

Energy. AI. Elsevier B.V. 2022 Review China 4

36 [63] Jafari et al. EV; LIB; SOH Extreme gradient
boosting

Lithium-Ion
Battery Health

Prediction
Energies MDPI 2022 Article South Korea 4

37 [64] Tao et al.

EV; EMS; ML; Power
dispatch;

Thermostatically
controlled loads

Active distribution
networks

Data-Driven
Management

Strategy of Electric
Vehicles

IEEE Trans.
Transp.
Electrif.

IEEE 2022 Article Australia 4
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38 [65] Bhatt et al.

Aging and
regeneration; charging

and discharging
profile; ML model;
second life battery

Back-propagation
algorithm

Useful capacity
prediction of
second-life

batteries

Int. J. Energy
Res.

John Wiley
and Sons

Ltd.
2021 Article Thailand 4

39 [66] Sree et al.
DER; EV; RES

gridable EV; V2G;
V2H; V2L; V2V

-

Electric vehicles
integration with

renewable energy
sources

Lect. Notes
Electr. Eng. Springer 2020 Conference

Paper Czech Republic 4

40 [67]
Al-

Gabalawy
et al.

DER; EV; ML;
optimization; virtual

power plants

Reinforcement
learning

Optimization of
electric vehicle
virtual power

plants

Int. Trans.
Elecr. Energy

Sys.

John Wiley
and Sons

Ltd.
2021 Article Egypt 3

41 [68] Mabuggwe
et al.

DER; EV; Prosumers;
Unsupervised ML

Unsupervised
machine learning

unsupervised
machine learning
techniques for EV

IEEE Electr.
Power
Energy

Conf., EPEC

IEEE 2020 Conference
Paper Canada 3

42 [69] Lamprecht
et al.

Automotive batteries;
Balancing; EV; ESS;
LIB; Active charge

balancing

Decision trees;
Random Forest

State of Health
Estimation
Method for

Electric Vehicle
Batteries

Int. Conf.
Omni-Layer
Intell. Syst.,

COINS

IEEE 2020 Conference
Paper Singapore 3

43 [70] Ghalkhani
et al.

AI-based monitoring
systems; BMSs; EV;

LIB

Convolutional
neural network

Thermal
Management of

EV batteries
Energies MDPI 2023 Review Canada 2

44 [71] Hossain
Lipu et al. EV; LIB; SOC

Random forest
regression;

Differential search
algorithm

State of Charge
Estimation of
Lithium-ion

Batteries

IEEE Trans.
Intell. Veh. IEEE 2023 Article Malaysia 2
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45 [72] Eagon et al.

Charging (batteries);
Digital storage; PHEV;

Secondary batteries;
Uncertainty analysis;

Forecasting

Recurrent neural
network

Electric Vehicle
Range Prediction

for Smart
Charging

Optimization

J Dyn Syst
Meas

Control
Trans ASME

ASME 2022 Article United States 2

46 [73] Nguyen et al.

Automotive battery;
clustering; electrical
ESS; LIB; silhouette

coefficient

Unsupervised
segmentation

model

Analyzing the
driving load on
electric vehicles

Int. Conf.
Ecol. Veh.

Renew.
Energies,

EVER

IEEE 2018 Conference
Paper Germany 2

47 [74] Wang et al. Hybrid EV; Hybrid
ESS; Prediction; SOC

Bayesian extreme
learning machine

SOC Prediction of
HES

ICIC Express
Lett Part B

Appl.

ICIC Express
Letters Office 2014 Article China 2

48 [75] Vasanthkumar
et al.

BMS; DL; Hybrid EV;
Internet of things;
SOC estimation

Hyperparameter
tuning

Battery
management

system hybrid
electric vehicles

Sustainable
Energy
Technol.
Assess.

Elsevier Ltd. 2022 Article India 1

49 [76] Kim et al. Hybrid EV; optimal
power split; real-time

Deep
reinforcement

learning

Real-Time Joint
Optimal Power
Split for Battery

Electronics
(Switzer-

land)
MDPI 2022 Article South Korea 1

50 [77] Dineva et al.

BMS; Battery test and
measurement;

E-Mobility; EV;
Estimation; LIB; ML;

SOC

Genetic
algorithm-based
fuzzy C-means

State-of-charge
prediction of

Li-ion batteries

Conf. Electr.
Mach.,
Drives

Power Syst.,
ELMA—

Proc.

IEEE 2021 Conference
Paper Hungary 1

51 [78] Bandara
et al.

FNN; LIB; LSTM; ML;
SOH

Long Short-Term
Memory Network

State of Health
Estimation

IEEE Veh.
Power

Propuls.
Conf.,

VPPC—
Proc.

IEEE 2021 Conference
Paper Spain 1
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52 [79] Shimizu
et al. EV; ML; V2G Markov model

Vehicle fleet
prediction for V2G

system

VEHITS—
Proc. Int.

Conf. Veh.
Technol.

Intell.
Transport

Syst.

SciTePress 2018 Conference
Paper Japan 1

53 [80] Ren et al. LIB; ML techniques;
SOC; SOH

Support vector
machine

State-of-charge
and state-of-health

estimation
algorithms for

lithium-ion
batteries

Energy Rep. Elsevier Ltd. 2023 Review China 0

54 [81] Mosayebi
et al.

Charger; EV; fast
charger; ML

Sliding mode
control

Fast Portable
Charger for

Electric Vehicles

IEEE Trans.
Circuits Syst.

Express
Briefs

IEEE 2023 Article Denmark 0

55 [82] Shen et al.

EV; Energy
consumption;

Estimation; ML; ANN;
Predictive models;

Roads; Transformers;
Vehicles

Transformer
neural network

Energy Prediction
for Electric

Vehicles

IEEE Trans.
Transp.
Electrif.

IEEE 2023 Article United States 0

56 [83] Liu et al.

FBG sensor;
linear/nonlinear

model; LIB thermal
management

Fast recursive
algorithm

Thermal
monitoring of

lithium-ion
batteries

Trans Inst
Meas

Control

SAGE
Publications

Ltd.
2023 Article United Kingdom 0

57 [84] Wang et al.

HESS; Power battery;
Power distribution;

Subtractive clustering;
Super-capacitor

Adaptive fuzzy
neural network

Power distribution
control strategy of

hybrid electric
vehicles

Cluster
Comput. Springer 2022 Article China 0
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58 [85] Sukkam et al. EV, PHEV, BTMS -

Battery Thermal
Management

Systems in Electric
Vehicles

AIP Conf.
Proc. AIP 2022 Conference

Paper Thailand 0

59 [69] Joshi et al. EV, LIB, SOH, BMS,
ML

Regression
analysis

Energy
management in a

hybrid electric
vehicle

SAE Techni.
Paper.

SAE
International 2022 Conference

Paper India 0

60 [86] Perumal
et al.

Cost minimization; EV
in hybrid; EMS; ML Genetic algorithm

Predictions for
Capacity Fade of
Li-Ion Batteries

AIP Conf.
Proc. AIP 2022 Conference

Paper Ethiopia 0

61 [87] Penjuru et al.

BMS; Digital storage;
Electrochemical

impedance
spectroscopy;

Forecasting; ML;
Battery degradation;

LIB

Support vector
regression

Capacity
State-of-Health
Estimation of

Electric Vehicle
Batteries

J
Electrochem

Soc

Institute of
Physics 2022 Article India 0

62 [88] Barragán-
Moreno et al.

Battery aging; battery
impedance; BMS;

capacity degradation;
EV; LIB; ML; SOH

neural networks

State-of-Health
Estimation of

Electric Vehicle
Batteries

Electronics
(Switzer-

land)
MDPI 2022 Article Denmark 0

63 [89] Wen et al. FESS; EV; ML; PCA;
RUL

Empirical mode
decomposition

Safety risk
analysis in

flywheel-battery
J. ES Elsevier Ltd. 2022 Article Poland 0

64 [90] Rippstein
et al.

BEV; ML;
optimization; V2H

Ad-hoc machine
learning approach

Optimization for
smart home

energy systems
with V2X

IEEE Veh.
Power

Propuls.
Conf.,

VPPC—
Proc.

IEEE 2022 Conference
Paper Germany 0
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65 [91] Benlamine
et al. EV; LIB; ML; SOH Predictive

prognostics

Sate of Health
optimization of EV

batteries

IEEE Veh.
Power

Propuls.
Conf.,

VPPC—
Proc.

IEEE 2022 Conference
Paper France 0

66 [92] Khezri et al.

Batteries; Costs;
Degradation; DER; EV;

fast-charging; Load
modeling; ML;
optimal sizing

Supervised
learning

Sizing of a
Renewable-

Battery System

IEEE Trans.
Sustainable

Energy
IEEE 2022 Article Germany 0

67 [93] Babaeiyazdi
et al.

BES Systems; Power
Systems; SOC; SOH

Gaussian process
regression

State-of-Charge
Prediction of

Degrading Li-ion
Batteries

IEEE Power
Energy Soc.
Gen. Meet.

IEEE 2022 Conference
Paper Canada 0

68 [94] Fouka et al.
BMS; battery state

prediction; data
analytics; EV; ML

Computer
programming

Li-Ion Battery
Lifetime

Prognostics

Int. Conf.
Inf., Intell.,
Syst. Appl.,

IISA

IEEE 2022 Conference
Paper Greece 0

69 [95] Chen et al.

Autonomous vehicle;
EV; project-based

learning;
zero-emission vehicles

-
Energy-

Harvesting
Electric Vehicles

IEEE
Eurasian

Conf. Educ.
Innov., ECEI

IEEE 2022 Conference
Paper China 0

70 [96] Li et al.

EV; Electrochemical
Impedance

Spectroscopy; LIB;
ML; SOH;

Gaussian process
regression

State of Health
Indicator

Modeling of
Lithium-ion

Batteries

IEEE Int.
Conf. Electro

Inform.
Technol.

IEEE 2022 Conference
Paper United States 0
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71 [97] Liu et al.

Electrochemical
impedance

spectroscopy; LIB;
Electrochemical-

impedance
spectroscopies; SOH;

SVM

Deep neural
networks

online
state-of-charge
estimation for

lithium-ion
batteries

IEEE Int.
Conf. Electro

Inform.
Technol.

IEEE 2022 Conference
Paper China 0

72 [98] Showers
et al.

Adaptive boosting;
BMSs; Charging

(batteries); Digital
storage; EV; PSO;

SOC; SOH;

Particle swarm
optimization

Hybrid electric
vehicle energy
management

systems

Proc SPIE Int
Soc Opt Eng SPIE 2022 Conference

Paper China 0

73 [99] Mehta et al.

EMS; Fuel storage;
HEV; LIB; Power

distributions; Fuel
cells

Metaheuristic
search methods

Estimating State of
Charge for Li-ion

Battery

AIMS
Energy AIMS Press 2022 Article South Africa 0

74 [100] Hasib et al.

Charging (batteries);
Digital storage; EV;

Ions; Learning
algorithms; LIB; ML;

BES; SOC

-
Prediction of SOC

for Electric
Vehicles

Proc.—IEEE
Int. Conf.

Artif. Intell.
Mach. Vis.,

AIMV

IEEE 2021 Conference
Paper India 0

75 [101] Hossain
Lipu et al.

ML; Secondary
batteries; Vehicles;

Driving range; Green
energy technologies;

Rapid transitions;
Storage capacity;

Forecasting

Linear regression

State of Charge
Estimation in

Electric Vehicle
Batteries

Int. Conf.
Electr. Eng.

Inf.
Commun.
Technol.,
ICEEICT

IEEE 2021 Conference
Paper Bangladesh 0
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76 [102] Mahajan
et al.

BMSs; Charging
(batteries); Digital

storage; EV; LIB; ML;
SOC

Decision trees;
Differential search

algorithm;
Random Forest

regression

Energy
Management
Strategy for

Electric Vehicle
Battery

Conf Rec IAS
Annu Meet IEEE 2021 Conference

Paper Malaysia 0

77 [103] Singh et al.

Battery life; EMS; ML;
Range of vehicle;

Regenerative braking;
Ultracapacitors

Regenerative
braking control

algorithm

State of Charge
Estimation for EV

Lect. Notes
Mech. Eng. Springer 2021 Conference

Paper India 0

78 [104] Herle et al.

Charging (batteries);
EV; ML; Secondary

batteries; Turing
machines; Virtual

storage; SOC

Support vector
data descriptor

State of charge
estimation for

li-ion batteries on
various drive

cycles

Adv. Intell.
Sys.

Comput.
Springer 2021 Conference

Paper India 0
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Table 2 information encompasses a wide spectrum of research efforts directed at en-
hancing EV battery management by leveraging various AI and ML techniques. Numerous
studies target crucial aspects of battery management, such as state estimation, encompassing
SOC and SOH estimation, vital for understanding and optimizing battery performance. For
instance, Chemali et al. focus on employing Deep Neural Networks (DNN) for precise SOC
estimation of Li-ion batteries, highlighting the trend of utilizing complex neural network archi-
tectures for accurate parameter predictions [45]. Additionally, various studies utilize diverse
AI algorithms, including Bayesian Inference (Hu et al., 2016), Genetic Algorithm-based fuzzy
C-means (Hu et al., 2016), Support Vector Machines (Feng et al., 2019), Wavelet Transform
(Xiong et al., 2018), Extreme Learning Machine (Li et al., 2019), and Reinforcement Learning
(Abdullah et al., 2021), among others, showcasing the versatility in methodologies adopted
for addressing battery-related challenges [30–32,105–107].

Furthermore, the geographical distribution of these studies across different countries—
China, Canada, the United States, the United Kingdom, Qatar, Turkey, Finland, and
Thailand—underscores the global interest and collaboration in advancing EV battery man-
agement technologies. This collective research effort signifies the multi-faceted approaches
adopted to improve the performance, reliability, and longevity of EV batteries, essential
for the evolution of sustainable and efficient electric transportation systems worldwide.
The amalgamation of AI/ML/DL algorithms, diverse target objectives, and international
collaborations in these studies reflects the comprehensive and interdisciplinary nature of
the quest to optimize EV battery performance and management.

3. Statistical Analysis

Statistical analysis is essential for identifying and understanding current research
trends as well as investigating the most influential articles on a specific topic. Through this
analytical discussion, readers will gain a thorough understanding of the most significant
papers, present research trends, conclusions, and critical debate relating to AI-integrated
BMS in EV applications.

3.1. Distribution of the Papers

Figure 2 displays the distribution of the 78 papers in AI-integrated BMS for EV
applications that were selected for the time period between 2014 and 2023. Figure 3
shows that 2022 had the highest rate of article publishing (27 research papers), while 2014
and 2017 had the lowest rates (1 research article each). There were nearly identical numbers
of papers published in 2018, 2019, and 2020, with 7, 6, and 9 publications, respectively. The
trend in the number of papers published from 2014 to 2023 generally exhibited exponential
growth, with few deviations.
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3.2. Analysis of Co-Occurring Keywords

The coincidence keyword breakdown from the 78 most pertinent articles using the
Scopus platform is shown in Figure 4. The top 15 most frequent keywords used in a variety
of articles between 2014 and 2023 were selected from the Scopus database. “Machine
Learning”, “Digital Storage”, “Charging (batteries)”, and “Battery Management Systems”
were the four most frequently used keywords. The total for “Machine Learning” was 57,
while “Digital Storage”, “Charging (batteries)”, and “Battery Management Systems” had
numbers of 46, 42, and 41, respectively. The most common phrases in recent years have also
included “Electric Vehicles”, “Energy Storage”, and “Secondary Batteries”, which reflects
the rising need for AI-integrated BMS in EV applications.
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3.3. Research Categories in the Most Relevant 78 Papers

The research classifications of the papers that were chosen as being the most pertinent
are shown in Table 3 and Figure 5. Additionally, the relationships among research styles, time
periods, and citation ranges are demonstrated. Experimental work, development, and perfor-
mance assessment made up the majority of publications (45%), followed by conference papers
(35%) and state-of-the-art technical overviews (8%). In the fourth slot, reviews (systematic
and nonsystematic) and observational papers were combined, with 5 manuscripts each, with
citation ranges of 3–232 and 20–171, respectively. With the broadest range of citations (1–355),
experimental work, development, and performance assessment had the most publications
(40%). The majority of articles from 2014 to 2023 fell under the issue formulation and original
research work categories (modelling, simulation, and performance assessment).

Table 3. Research articles categories of the most relevant 78 articles on AI-driven BMS in EVs.

Categories of Articles Publications Rate Year Range Citation

Experimental work, development, and
performance assessment 35 2014–2023 1–355

Conference paper 27 2015–2019 0–14

State-of-the-art technical
overview 6 2014–2022 9–191

Review (systematic/nonsystematic) 5 2016–2020 3–49

Observational papers 5 2017–2021 20–171
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3.4. Distribution of Article Publishers

Figure 6 reveals that the top 78 pertinent articles were released by 14 different publish-
ers. Out of the 78 publications, the Institute of Electrical and Electronics Engineers (IEEE)
issued the most (37%). Elsevier came in second with 21% of the publications, followed by
John Wiley & Sons, Inc. (9%), and MDPI AG (8%). The rest of the publishers were Springer
(5%), Cell Press (3%), American Institute of Physics Inc. (2%), SAGE Publishing (1%),
Nature Research (1%), IET (1%), ASME (1%), ICIC Express Letters Office (1%), SciTePress
(1%), SAE International (1%), Institute of Physics (1%), AIMS Press (1%), etc.
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Figure 7 shows the number of papers published in various journals, together with
the impact factor for each journal. The top seven journals produced 29% of the 78 papers
that were chosen, and their impact factors varied from 2.6 to 11.4. The “International
Journal of Energy Research” journals published the most papers, with five manuscripts.
“Applied Energy”, “Electronics Switzerland”, “Energies”, “Energy”, “IEEE Transactions on
Transportation Electrification”, and “Journal of Energy Storage” journals each published
three articles. “IEEE Access” and “Joule” each published two articles. Less than two articles
from the chosen database were published by the remaining journals and conferences, and
only a small number of them were Electronics Letters, Energy And AI, Energy Conversion
And Management, Energy Reports, IECON Proceedings Industrial Electronics Conference,
IEEE International Conference On Electro Information Technology, IEEE Power And Energy
Society General Meeting, IEEE Transactions On Circuits And Systems II Express Briefs,
IEEE Transactions On Industrial Electronics, IEEE Transactions On Intelligent Vehicles,
IEEE Transactions On Sustainable Energy, IEEE Transactions On Vehicular Technology,
ICIC Express Letters Part B Applications, IET Generation Transmission And Distribution,
International Journal Of Electrical Power And Energy Systems, International Transactions
On Electrical Energy Systems, Journal Of Cleaner Production, Journal Of Dynamic Systems
Measurement And Control Transactions Of The ASME, Journal Of Power Sources, Jour-
nal Of The Electrochemical Society, Patterns, Scientific Reports, and Sustainable Energy
Technologies And Assessments.
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3.5. Document Authorship and Collaboration

The research contours of the well-known writers who have written three or more
of the 78 documents are shown in Table 4. Ten different authors contributed to the top
78 pertinent articles. M. A. Hannan from Malaysia’s Universiti Tenaga Nasional was the
primary author of three publications. With a comparable number of publications, Aini
Hussain from the Universiti Kebangsaan Malaysia came in second. With two submissions,
Ali N. Emadi, a reputed international researcher at McMaster University in Canada, came
in third. The remaining top 10 authors each released two articles during the same time
period. With 24,867 citations and an h-index of 69, Ali N. Emadi of McMaster University in
Canada was in the lead, followed by Xiaosong Hu of Chongqing University in China, who
had 18,566 citations and an h-index of 78.

Table 4. Manuscript authorship and collaboration of the most relevant 78 articles on BMS in EVs
using AI technology.

Rank Author Affiliation Country Articles Citations h-Index Author’s
Position

1 Hannan, M. A. Universiti Tenaga
Nasional Malaysia 3 11,890 52 1-1st author

2-Co-author

2 Hussain, Aini
Universiti

Kebangsaan
Malaysia

Malaysia 3 8526 40 3-Co-author

3 Emadi, Ali N. McMaster
University Canada 2 24,867 69 2-Senior

author

4 He, Hongwen Beijing Institute of
Technology China 2 12,998 54 2-Co-author

5 Hu, Xiaosong Chongqing
University China 2 18,566 78 2-1st author

6
Khooban,

Mohammad
Hassan

Aarhus Universitet Denmark 2 5639 45 2-Senior
author

7 Hossain Lipu,
Molla Shahadat

Green University of
Bangladesh Bangladesh 2 3780 25 2-1st author

8 Babaeiyazdi, Iman York University Canada 2 71 2 2-1st author

9 Channegowda,
Janamejaya

Ramaiah Institute of
Technology India 2 98 5 2-Co-author

3.6. Network and Collaboration Analysis of the Most Relevant 78 Papers

The top 10 nations and co-occurring countries that dominate the AI-integrated BMS
in EV applications are depicted graphically in Figures 8 and 9. After China, which had 23
published manuscripts, the United States came in second with 13 manuscripts. India was in
third place with 12 articles. Figure 9 depicts the network of co-occurrences among all of the
countries that contributed to the production of the 78 articles that were selected. Figure 9
also demonstrates that, after India and the United States, China had the greatest number of
foreign connections. “National Natural Science Foundation of China” is the guarantor of
the most manuscripts out of the 78 that were determined to be the most pertinent, with 7,
followed by “Ministry of Higher Education, Malaysia”, which placed second.
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4. Technical Assessment of AI Approaches in BMS of EVs

This section covers a technical assessment of the state-of-the-art AI approaches for
BMS in EV applications. The AI methods and algorithms were categorized into machine
learning, deep learning, optimization and rule-based approaches. Battery parameters are
pivotal in determining the SOC, SOH, and RUL of a battery, with ML methods harnessing
a diverse range of these parameters for more precise estimations. Primary parameters
like voltage provide insights into SOC, yet may lack accuracy in dynamic scenarios or
aging batteries. Incorporating current measurements enhances SOC estimation accuracy
by evaluating the battery’s current flow. Temperature influences internal resistance and
capacity, impacting performance and lifespan, thus adjusting SOC estimations. Monitoring
internal resistance reveals a battery’s health, guiding ML algorithms to estimate SOH and
RUL based on resistance changes. Capacity fade, derived from historical data, predicts
degradation trends, vital in determining SOH. ML algorithms scrutinize cycling behavior,
electrochemical impedance spectroscopy (EIS) data, calendar aging factors, and operat-
ing conditions to develop models accurately predicting SOC, SOH, and RUL. These ML
techniques, employing regression, neural networks, or other sophisticated algorithms,
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integrate parameters’ dynamic relationships to enhance accuracy, although the significance
of parameter selection varies based on battery type, application, and estimation goals. The
amalgamation of multiple parameters via ML amplifies estimation precision and reliability.

Machine learning involves the use of algorithms and statistical models that enable
computer systems to progressively improve their performance on a specific task with-
out explicit programming. When applied to EV battery management, machine learning
algorithms analyze data from various sensors and historical patterns to predict battery
performance, estimate degradation, and optimize charging strategies. Deep learning, a
subset of machine learning, involves neural networks with multiple layers capable of
learning complex patterns in data. In EV battery management, deep learning models can
provide more sophisticated insights by extracting intricate patterns from vast datasets,
enabling more accurate predictions and optimal control strategies. Optimization algo-
rithms, on the other hand, focus on finding the best possible solution among a set of feasible
alternatives. These algorithms are used in EV battery management to fine-tune charging
and discharging schedules, maximizing battery lifespan and performance. Neural-based
networks encompass a broader category that includes deep learning models but also covers
other architectures and paradigms inspired by the structure and functionality of the human
brain. In EV battery management, neural-based networks encompass various approaches,
including deep learning, reinforcement learning, and other network architectures, utilized
to optimize thermal management, predict battery degradation, and enhance overall bat-
tery efficiency and safety. Each of these methodologies plays a crucial role in leveraging
data-driven insights and computational techniques to enhance EV battery performance,
longevity, and reliability.

4.1. Machine Learning Approaches
4.1.1. Backpropagation Neural Networks (BPNN)

Backpropagation Neural Network is a type of ANN that utilizes a supervised learning
technique for training. It is a foundational concept in the field of deep learning and machine
learning. The basic idea behind backpropagation is to train a neural network by adjusting
its weights and biases in order to minimize the difference between its predicted output and
the actual output for a given set of training examples. The network learns by continuously
adjusting these weights through multiple iterations, gradually reducing the error or the
difference between predicted and actual outputs.

The BPNN algorithm, which is structured with an input layer, a hidden layer, and
an output layer, has been widely used in SOC estimation for BMS applications. It is
executed using an appropriate training algorithm and activation function. For instance, Ma
et al. [108] developed a model for estimating SOH and RUL for lithium-ion BMS. Particle
swarm optimization (PSO) was integrated with BPNN to find the optimal parameters
and improve the outcomes. The results showed that the root mean squared error (RMSE)
and average absolute error were 0.78% and 1.01%, respectively. A BPNN is excellent
at modelling complicated relationships in battery data, which makes it appropriate for
SOC estimation. Moreover, BPNNs can handle non-linear patterns and adjust to shifting
battery conditions. Nonetheless, they have several limitations, such as the requirement for
a sizable quantity of labelled data for training, vulnerability to overfitting, and processing
requirements that might not be appropriate for real-time applications. To successfully use
BPNN advantages in battery management, proper data preparation, model tuning, and
careful consideration of computing resources are important. Vidal et al. [45] used the BPNN
method to estimate SOC for lithium iron phosphate (LFP) and lead acid (LA) batteries. The
proposed model was tested using five light vehicle test cycles. The RMSE was calculated
to be 0.33% and 0.84% for the LFP and the LA batteries, respectively. Driscoll et al. [59]
predicted SOH with the BPNN model based on the NASA Ames PCoE Battery data set.
A feature-based SOH model was developed using the current, voltage, and temperature
profiles during the charging process. High accuracy of SOH prediction was obtained under
varying conditions with coefficients of determination between 0.896 and 0.992. Barragán-
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Moreno et al. [88] applied the BPNN model to predict the maximum capacity of EV batteries.
The performance of the proposed model was verified using diverse degradation data from
real EV batteries. According to the findings, the suggested model produced mean absolute
errors as low as 0.9%.

The contributions of BPNN are fundamental in predicting battery states, optimizing
energy management, and ensuring efficient utilization of battery power. Through contin-
uous learning, BPNNs enable BMS to accurately forecast battery life, anticipate failures,
and regulate charging/discharging processes. This predictive capability enhances battery
safety, prolongs lifespan, and maximizes performance. The advantages of BPNN in BMS
for EVs include their adaptability to nonlinearities in battery behavior, capability to handle
complex data patterns, and potential for real-time decision-making. However, drawbacks
include the need for substantial data for effective training, vulnerability to overfitting, and
challenges in interpreting the decision-making process due to their inherent black-box
nature. Nonetheless, BPNN remains a cornerstone technology in optimizing BMS for EVs,
significantly improving their efficiency and reliability.

4.1.2. Radial Basis Function Neural Network (RBFNN)

RBFNN is a type of artificial neural network that uses radial basis functions as acti-
vation functions. It is a three-layered network consisting of an input layer, a hidden layer
with radial basis function neurons, and an output layer.

RBFNN is used in a variety of tasks, including pattern recognition, function approxi-
mation, and clustering. An input layer, a hidden layer made up of radial basis function
neurons, and an output layer are the three main layers of an RBFNN. The hidden layer of
RBFNN is where each neuron computes its output as a radial basis function of the distance
between the input data and a center point specific to that neuron. RBFNN has been demon-
strated to be appreciated in battery SOC estimation. For example, Wu et al. [109] proposed
an improved RBFNN-based method for SOH estimation of lithium-ion batteries, and the
results showed that this method can accurately estimate the SOH within a maximum ±4%
estimation error. Zhang et al. [110] developed a PSO-based RBFNN hybrid model for
lithium-ion battery SOH prediction. The experimental results reported that this hybrid
model was able to reduce average absolute error (AAE) and RMSE by 0.23% and 0.34%,
respectively. RBFNN performs satisfactorily in complex and nonlinear battery applications
due to its greater ability to efficiently estimate complex functions utilizing radial basis
functions. Despite their advantages, RBFNNs may need careful parameter adjustment to
work at their best, including adjusting the locations of the radial basis functions. However,
because of their ability to recognize complicated patterns and nonlinearity, they are a
helpful tool in the study of neural networks and machine learning.

RBFNNs excel in capturing nonlinear relationships within battery data, enabling ac-
curate state estimation and enhancing overall BMS performance. Their outcomes include
improved battery lifespan through better charge management, increased safety by predict-
ing faults or anomalies, and enhanced energy utilization in EVs. The advantages of RBFNN
in BMS for EVs encompass their ability to handle complex data patterns, faster conver-
gence during training, and their relatively simpler architecture compared to other neural
networks. However, challenges arise in determining the appropriate number of radial basis
functions, which can impact model accuracy, and in interpreting the reasoning behind the
network’s decisions due to its inherent complexity. Despite these challenges, RBFNNs
continue to play a crucial role in optimizing BMS for EVs, contributing significantly to their
efficiency, reliability, and longevity.

4.1.3. Extreme Learning Machines (ELM)

ELM is a type of machine learning algorithm used for supervised learning tasks,
particularly in the realm of neural networks. They were proposed as an alternative to tradi-
tional gradient-based learning methods for training neural networks. The core principle of
ELM is to minimize the computational burden associated with training neural networks,
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especially in terms of the time required for training. Unlike traditional neural networks
like feedforward neural networks (FNN) or BPNN, where both the input-to-hidden and
hidden-to-output connections are subject to training, ELM follows a unique approach.

A set of machine learning algorithms called Extreme Learning Machines was created
to effectively and quickly train artificial neural networks. ELM is particularly well known
for its proficiency in managing huge datasets and challenging issues. The primary principle
of ELM is to use hidden neurons with straightforward activation functions, such as the
sigmoid or radial basis functions, to randomly set the weights between the input and hidden
layers of a neural network, often in a single hidden layer configuration. ELM is applied in
BMS applications due to its improved scalability, greater training speed, and generalization
performance. Pan et al. [111] presented a model of SOH estimation using the ELM algorithm.
This model has shown excellent performance in terms of speed and accuracy. The results
indicated that the maximum estimation error is less than 2.5%. ELM has benefits in terms of
training speed and ease of use, but it might not be as adaptable as other DL approaches when
it comes to managing incredibly complicated hierarchical data structures. Li et al. [36] used
the ELM algorithm to develop a cloud-based BMS with a new training method combined
with a data preprocessing approach. The proposed model achieved satisfactory outcomes
with SOC and terminal voltage errors of 3% and 2%, respectively. Jinag et al. [55] established
a novel ELM controller-based hybrid energy storage system. The effectiveness of the ELM
controller was verified with the rule-based controller, and reports illustrated the superiority of
the ELM over the rule-based controller, indicating a reduction in electricity consumption and
battery life loss of 3.78% and 6.51%, respectively.

ELMs contribute by swiftly and accurately predicting battery states, optimizing charg-
ing and discharging strategies, and enhancing overall energy management in EVs. Their
outcomes include improved efficiency in battery utilization, prolonged battery lifespan, and
heightened safety by predicting potential faults or irregularities. The advantages of ELMs
in BMS for EVs lie in their rapid training process, requiring minimal tuning of parameters
compared to traditional neural networks. Additionally, ELMs exhibit robustness against
overfitting, making them suitable for handling large volumes of data efficiently. However,
drawbacks include their reliance on randomly generated hidden layer parameters, leading
to less interpretability and potential challenges in fine-tuning model performance. Never-
theless, ELMs remain instrumental in optimizing BMS for EVs, contributing significantly
to their reliability, performance, and effective energy management.

4.1.4. Random Forest (RF)

Random Forest is a versatile and popular machine learning algorithm used for both
classification and regression tasks. It operates by constructing a multitude of decision
trees during training and outputs the mode (for classification) or average prediction (for
regression) of the individual tree.

The application of RF in the field of BMS has been demonstrated to be quite advan-
tageous. In comparison to some other algorithms, RF is strong against overfitting and
requires less hyperparameter adjustment. However, the computational complexity of RF
models may be a drawback for real-time applications with strict reaction-time constraints.
To exploit the advantages of RF in battery management, careful evaluation of computing
resources and post-model interpretation approaches may be required. Wang et al. [112]
used an RF model to predict both SOH and RUL of a lithium-ion battery. The mean error
of the calculated SOH, according to the authors, was 1.8152%, which is lower than that of
other, traditional models. The authors in [71] applied the RF approach to estimate SOC
using different materials of lithium-ion batteries. The validation was performed under
experimental tests at room temperature and EV drive cycles at varying temperature con-
ditions. RF illustrated satisfactory outcomes with RMSE of 0.382% in the HPPC test and
mean absolute error (MAE) of 0.193% in the DST drive cycle at 25 ◦C.

RF models contribute by accurately predicting battery performance, enabling efficient
charge and discharge control, and aiding in fault detection within EV batteries. The
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outcomes include improved battery lifespan, enhanced safety by detecting anomalies or
potential failures, and optimized energy utilization in EVs. The advantages of using RF
models in BMS for EVs encompass their ability to handle large datasets, mitigate overfitting,
and provide feature importance rankings for better interpretability. Additionally, RF
models are less prone to outliers and noise in the data compared to other machine learning
methods. However, challenges associated with RF include longer computational time for
training with extensive datasets and potential complexities in parameter tuning for optimal
performance.

4.1.5. Recurrent Neural Network (RNN)

An artificial neural network type called the recurrent neural network (RNN) is made
to process sequential data by keeping an internal state or memory. Relational RNNs display
dynamic temporal activity because they feature connections that form directed cycles,
in contrast to standard feedforward neural networks, where information flows in one
direction (from input to output).

The use of RNN in BMS has recently become more popular. RNNs are especially adept
at processing time-series data, making them very useful for assessing and enhancing battery
performance. RNNs are able to capture temporal dependencies and sequential patterns,
which is critical for comprehending how batteries deteriorate over time. RNNs present a
possible path for more precise and adaptable battery management solutions, which will
increase performance, sustainability, and cost-effectiveness as battery technology develops.
Tao et al. [113] presented a study about the SOC estimation for EVs by the RNN model,
where the authors mentioned that the three most important features of the RNN compared
to others are accuracy, robustness against measurement uncertainties, and adaptability
against different battery aging cycles, which make this model more efficient than other
models. In order to optimize smart charging, Eagon et al. [72] proposed RNN-based EV
range prediction. Despite daily route unpredictability, the suggested technique displayed
remarkable accuracy, with an RMSE of less than 6%.

Their primary contribution lies in their ability to model sequential data, making them
adept at predicting battery states over time, optimizing charging and discharging strategies,
and enabling accurate forecasting of battery health. The outcomes of employing RNNs in
BMS for EVs include improved efficiency in managing battery resources, better estimation of
battery degradation, and enhanced safety by identifying patterns associated with potential
faults or anomalies. The advantages of RNNs in this domain include their capacity to
handle sequential data effectively and learn temporal dependencies, and their suitability for
time-series prediction tasks. However, RNNs are prone to vanishing or exploding gradient
problems, which can hinder learning over longer sequences, and they might require substantial
computational resources, especially with deep architectures or extensive datasets.

4.1.6. Gaussian Process Regression (GPR)

GPR is a probabilistic non-parametric approach used for regression tasks, particularly
in machine learning and statistics. It is a powerful method that allows for flexible modeling
of complex relationships between input variables and their corresponding outputs.

In the field of BMS, GPR has shown to be an invaluable tool by providing a probabilis-
tic and data-driven strategy for forecasting battery behavior and enhancing its efficiency.
GPR has found applications in various domains, from EVs to renewable energy storage,
where accurate predictions of battery degradation and remaining lifespan are essential
for efficient and cost-effective operations. In essence, GPR offers a robust and versatile
approach to battery management, enabling precise monitoring and optimization of battery
performance while considering the uncertainties inherent in real-world conditions. Meng
et al. [114] proposed a GPR-based end-of-life (EOL) prediction model. The authors found
that compared to the other popular model, the mean EOL cycle predicted by the GPR
base technique was more accurate and had a narrower range of prediction uncertainty.
Deng et al. [115] presented a model of GPR for estimating the SOC of a lithium-ion battery.
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The authors reported three strong superiorities of the GPR method: the ability to approxi-
mate nonlinearity accurately, nonparametric modeling, and probabilistic predictions. The
experimental results showed that the estimation error was less than 3.9% in different dy-
namic cycles, temperatures and ageing conditions. Li et al. [96] utilized GPR based on
electrochemical impedance spectroscopy (EIS) and the cycle number to predict the SOH of
lithium-ion batteries. The effectiveness of the proposed model was verified using publicly
available battery datasets. The suggested GPR model achieved an increased accuracy rate
if the discharging and cycle number of charging were added as a new feature in addition
to the impedance measured by the EIS measurement. Babaeiyazdi et al. [37] used EIS and
linear regression model-based GPR to estimate SOC for lithium-ion batteries. The results
demonstrated that SOC error was less than 3.8%. Another study by Babaeiyazdi et al. [93]
employed GPR using lithium-ion battery degradation profiles. The GPR was compared
with RF, in which GPR outperformed RF with an MAE of 0.0204.

GPR helps by precisely estimating battery health and performance, helping to opti-
mize charge and discharge procedures, and accurately modeling and predicting battery
behavior. Using GPR in BMS for EVs leads to better assessment of battery deterioration,
increased safety by spotting possible faults or anomalies, and more efficiency in managing
battery resources. One of GPR’s benefits is that it may provide estimates of uncertainty
in addition to predictions, which enables better decision-making. GPR can also handle
tiny datasets well and provides flexibility in selecting several kernel functions to capture
various relationships in the data. But because GPR depends on the full training dataset,
it has drawbacks such as higher computing cost for large datasets and trouble scaling to
high-dimensional data.

4.1.7. Support Vector Machine (SVM)

SVM is a supervised learning algorithm used for classification and regression tasks. It
is primarily utilized for classification problems, where the goal is to separate data points
into different classes by finding an optimal decision boundary.

In BMS applications, SVMs have several advantages, including high accuracy in
classification and regression tasks, robustness to noise and outliers, adaptability, and
efficiency in handling high-dimensional data. Nonetheless, they do have limitations,
including computational complexity, sensitivity to parameter adjustment, interpretability
issues, and difficulties dealing with unbalanced data. Feng et al. [31] designed an online-
based SOH estimation model with a partial charging segment. Two commercial Li-ion
batteries were employed to execute training, validation, and testing, and reports indicated
SOH with less than 2% error. Jiang et al. [87] applied support vector regression (SVR) and
principal component analysis to predict the capacity fade of lithium-ion batteries. The
results demonstrated that SVR has better accuracy than GPR, with an R2 score of 0.9194.
Hu et al. [28] evaluated the performance and complexity of SOH prediction using the
SVM technique under temperature effects, where the authors demonstrated the superiority
of SVM over conventional approaches. Patil et al. [116] used a novel multistage SVM
approach for prediction of lithium-ion battery RUL, considering voltage and temperature
profiles and cycling data under different operational settings. The results indicated faster
computations that are potentially suitable for real-time RUL estimation. In another study,
Yan [117] presented an SOC estimation technique using the SVM method. In this model,
voltage current and temperature were used as the input parameters of the training model,
and SOC was considered as the output of this model. The experimental results showed
that the maximum relative error was less than 3%, and average relative error was less than
2.5%, which indicated the high accuracy of the SVM model. SVMs may be an effective tool
for optimizing battery performance and health when set up and used correctly, but their
appropriateness relies on the unique use cases and data properties.

SVM contributes by effectively modeling battery behavior, aiding in predicting battery
states, and facilitating fault detection within EV batteries. The outcomes of employing
SVM in BMS for EVs include improved efficiency in managing battery resources, enhanced
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safety by identifying anomalies or potential failures, and accurate estimation of battery
degradation. The advantages of SVM lie in its ability to handle high-dimensional data effi-
ciently, effective performance with smaller datasets, and its robustness against overfitting.
Additionally, SVM allows for the use of different kernel functions to capture nonlinear
relationships within the data. However, SVM can be computationally intensive, especially
with larger datasets, and its performance might be impacted by the choice of kernel and
the need for appropriate parameter tuning. Despite these challenges, SVM remains a
valuable and widely used tool in optimizing BMS for EVs, contributing significantly to
their reliability, performance, and overall battery health management.

4.1.8. Reinforcement Learning (RL)

RL is a type of machine learning paradigm in which an agent learns to make sequences of
decisions by interacting with an environment in order to achieve a particular goal or maximize
a cumulative reward. It is inspired by the way humans and animals learn through trial and
error, by taking actions in an environment and learning from the consequences of those actions.

RL can provide dynamic and adaptive control schemes suitable for operating various
functionalities of BMS. Heba et al. [41] presented a comprehensive reinforcement learning-
based EV charging management system review. In comparison to conventional BPNN
and RBFNN approaches, which have shortcomings, including the need for a large amount
of training data and real-time feasibility uncertainty, RL has demonstrated considerable
advantages such as in energy utilization and extending battery life. Jin et al. [41] conducted
a critical survey on EV charging management systems based on RL. Chaoui [49] suggested a
resource allocation scheme-based RL framework to develop an energy management scheme
for EVs. Multiple energy storage systems were used to validate the proposed approach,
achieving SOC equalization across all batteries and extending battery life. The RL approach
was used by Gabalawy [67] to optimize EV virtual power plants. The outcomes showed
that RL can enhance robustness, shorten convergence times, and enable smart grid VPP
optimization. RL reduced the fleet’s charging costs by 25% while increasing balancing
power by 48% to 82%. Minho et al. [118] presented an RL-based model to estimate SOC
for lithium-ion batteries. The authors found that the training accuracy of RL for SOC
estimation can increase with large amounts of data. The proposed model was verified
by simulation with battery charge/discharge data. RL can optimize battery management
under dynamic and uncertain environments, making it well-suited for applications where
the optimal strategy may change over time. It can learn from experience and adapt to
various battery states and usage patterns, potentially leading to efficient energy utilization
and prolonging battery life. The necessity for a large quantity of training data, which can be
problematic or expensive in battery management circumstances, is one of RL’s drawbacks.
It also requires careful design and exploration strategies. Moreover, RL algorithms can
be computationally demanding, limiting their real-time feasibility in EV applications. A
summary of ML techniques used in BMS is depicted in Table 5.

RL contributes by optimizing charging and discharging strategies, dynamically adapting
to varying driving conditions, and maximizing the efficiency of energy usage in EVs. The
outcomes of employing RL in BMS for EVs include improved adaptability to diverse driving
patterns, enhanced energy management leading to increased range, and the potential for
real-time decision-making to optimize battery usage. The advantages of RL in this context
involve its ability to learn from interactions with the environment without requiring a labeled
dataset, adapt to changing conditions, and find optimal strategies through trial and error.
However, challenges with RL in BMS for EVs include the time-consuming training process,
complexities in reward design, and the need for careful fine-tuning of hyperparameters. RL’s
application in BMS for EVs shows promise in revolutionizing energy management strategies,
although it currently necessitates further research and development to address its challenges
and harness its full potential in enhancing the efficiency and longevity of EV batteries.
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Table 5. ML techniques used for advanced BMS applications.

Refs. ML Method Target Key Findings Advantages Disadvantages

[117] SVM SOC

− Maximum Relative
error less than 3%.

− Average relative
error less than
2.5%.

− High Accuracy
− Robustness against

noisy data.
− Flexibility for

non-linear data.

− Computational
Intensity.

− Difficulties with
large data set.

− Model complexity
and interpretability.

[108] BPNN RUL and
SOH

− RMSE is 0.78%.
− AAE is 1.01%

− Nonlinear Modeling.
− Automatically

feature Modeling.
− Adaptability.

− Complexity and
overfitting.

− Lengthy training
time.

− Lack of
interpretability.

[110] RBFNN SOH

− The average
absolute error and
route mean square
error may be
decreased by 0.23%
and 0.34%,
respectively, using
this hybrid model.

− Nonlinearity and
function
approximation.

− Local learning and
generalization.

− Interpretability.

− Selection of Radial
Basis Function.

− Limited scalability.
− Lack of sequential

learning.

[111] ELM SOH

− Maximum
estimation error is
less than 2.5%.

− Fast training.
− Simple

implementation.
− Scalability.

− Limited control over
model complexity.

− Overfitting in noisy
data.

− Lack of
interpretability.

[112] RF SOH and
RUL

− The calculated
SOH’s average
inaccuracy is
1.8152%.

− Higher Accuracy
− Robustness to noisy

data.

− Lack of
interpretability.

− Overfitting potential.
− Expensive memory

and computational
resources.

[119] RNN SOC
− Estimation error is

less than 3%.

− Sequential Modeling
− Adaptability of

varying time
intervals

− Online based
real-time control

− Complexity and
training time

− Required Huge
amount of data.

− Lack of
Interpretability.

[115] GPR SOC

− The estimation
error of this model
is less than 3.9%.

− Flexible Modeling
− Able to predict

uncertainty
− Interpretability.

− Sensitive to noise.
− Computational

complexity.
− Limited Scalability.

[118] RL SOC

The error of estimation
depends on the training
of RL with a sufficient
amount of data.

− Autonomous
learning

− Generalization of
Algorithms

− Flexibility and
adaptability.

− Required Significant
amount of data

− Training complexity
− Interpretability

issues
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4.2. Deep Learning
4.2.1. Deep Neural Network (DNN)

DNN is a type of ANN that is composed of multiple layers of interconnected nodes or
neurons, typically arranged in an input layer, one or more hidden layers, and an output
layer. Chemali et al. [29] used DNN to estimate SOC under diverse EV drive cycles and
varying temperature conditions. The DNN obtained an MAE of 1.10% over a dataset
at 25 ◦C after being validated across numerous datasets. Lipu et al. [14] presented a
comprehensive review of the methods, implementation issues and prospects of DNN for
battery management systems, where the authors clearly demonstrated that DNN is able to
achieve precise efficiency estimation of SOC, SOH, and RUL for BMS, which can improve
battery reliability, safety and longevity. However, one of the major drawbacks of this
model is that it requires a huge amount of data. Zafar et al. [120] presented a three-layer
DNN model for estimation of lithium-ion battery SOC. This module used a large dataset
of real-world EV batteries with different temperatures. The experimental results showed
that MSE and RMSE were 0.1% and 0.3%, respectively. DNN is adaptable and may be
used for a variety of BMS activities. However, since large datasets are frequently required,
DNN in BMS confronts issues linked to data needs. Due to their complexity, they may
experience overfitting and be difficult to design and optimize. Additionally, DNN’s lack of
interpretability in safety-critical BMS applications might be troublesome. It is crucial to
provide resilience across a variety of scenarios in order to preserve safety and dependability.

The outcomes of employing DNNs in BMS for EVs include improved efficiency in
managing battery resources, enhanced safety by identifying anomalies or potential failures,
and precise estimation of battery degradation. The advantages of DNNs lie in their capa-
bility to learn complex patterns from data, handle large datasets efficiently, and offer high
prediction accuracy. Additionally, DNNs can automatically extract features, reducing the
need for manual feature engineering. However, challenges with DNNs in BMS for EVs
involve the need for substantial computational resources during training and the risk of
overfitting with complex architectures or insufficient data. Despite these challenges, DNNs
remain a pivotal technology in optimizing BMS for EVs, significantly contributing to their
reliability, performance, and overall battery health management.

4.2.2. Long Short-Term Memory (LSTM)

LSTM is a type of RNN architecture designed to address the vanishing and explod-
ing gradient problems often encountered in standard RNNs. LSTMs are well-suited for
processing and making predictions based on sequential data, such as time series, natural
language, speech, and more.

LSTM networks are extremely useful for state estimation, fault detection, and optimiza-
tion in BMS since they are excellent at precisely simulating and predicting the complicated
temporal behavior of batteries. The accuracy of decision-making is increased by their capac-
ity to collect long-term dependencies in battery data, thus enhancing battery performance
and longevity. On the other hand, the data appetite of LSTM networks is their primary flaw
when it comes to battery management. Effectively training LSTM often requires substantial
battery data, which can be difficult and resource-intensive to gather, particularly for certain
battery chemistries or uncommon fault circumstances. This need for data may restrict their
application in circumstances when there is a dearth of data. Basnet and Ali [60] explored
cybersecurity concerns on the 5G platform for EV charging stations based on LSTM. This
model had approximately 100% detection accuracy when it came to identifying cyberat-
tacks in the monitoring system. En and Du [80] compared LTSM, SVM, and GPR to predict
SOH for lithium-ion batteries. The assessment was carried out using various performance
indicators, such as datasets, input features, hyperparameter adjustments, benefits, and
drawbacks. Ren et al. [121] proposed a method of SOC estimation using LSTM where the
PSO algorithm was employed to optimize the hyperparameters of LSTM. The proposed
PSO-based LSTM adaptability was assessed using random noise and EV drive cycles. The
outcomes were satisfactory, with an SOC error of 0.5%.
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The outcomes of employing LSTMs in BMS for EVs include improved accuracy in
predicting battery health, enhanced efficiency in managing battery resources, and the
ability to capture long-term dependencies crucial for forecasting battery behavior. The
advantages of LSTMs lie in their ability to handle sequential data, mitigate vanishing or
exploding gradient problems encountered in traditional recurrent neural networks, and
retain memory over extended time intervals. Additionally, LSTMs can learn from and
adapt to sequences of variable lengths. However, challenges with LSTMs in BMS for EVs
include their increased computational complexity, potential difficulties in interpreting the
learned representations due to their complex architecture, and the need for substantial
amounts of data for effective training. Despite these challenges, LSTM networks remain
a valuable tool in optimizing BMS for EVs, significantly contributing to their reliability,
performance, and overall battery health management.

4.2.3. Gated Recurrent Units (GRU)

GRU is a type of RNN architecture, similar to LSTM networks, designed to capture and
model dependencies in sequential data. GRUs were introduced as a more computationally
efficient alternative to LSTM while retaining similar performance in modeling long-range
dependencies.

GRU is a type of RNN architecture that can be employed in BMS for various purposes.
Zhang et al. [122] proposed an SOH model based on GRU whose learning rate is enhanced
by a sparrow search algorithm to capture the hidden relationship between SOH and input
features. The relevant experimental tests were conducted to check the performance and
adaptability of the proposed approach using a single battery and a battery pack. Duan
et al. [123] suggested an activation function layer-based GRU network that exhibited
more consistent and precise SOC prediction performance when compared to LSTM and
conventional GRU models. The experimental results demonstrated that the SOC prediction
accuracy of the GRU-ATL model was 0.1–0.4% more accurate than that of the conventional
GRU model and 0.3–0.7% better than that of the LSTM model when the measurement data
contained noise. The RMSE and MAE of the SOC predicted by the GRU-ATL model were
both stable in the range of 0.7–1.4% and 1.2–1.9%, respectively. GRU is computationally
efficient and ideal for real-time applications in resource-constrained BMS because it requires
fewer parameters than LSTM. Although GRUs have advantages in terms of efficiency, they
could have trouble capturing the entire complexity of battery activity, which can be very
nonlinear. Like other RNNs, they continue to need a sizable quantity of labelled data for
training, which might be a drawback in circumstances when data are scarce. GRU may also
be difficult to comprehend, similarly to LSTM, which is problematic for safety-critical BMS
applications where understanding model choices is essential.

GRUs contribute by effectively modeling temporal dependencies in battery data, en-
abling precise predictions of battery states, optimizing charging and discharging strategies,
and aiding in fault detection within EV batteries. The outcomes of employing GRUs in
BMS for EVs include improved accuracy in estimating battery health, enhanced efficiency
in managing battery resources, and the capacity to capture long-range dependencies crucial
for forecasting battery behavior. The advantages of GRUs lie in their ability to handle
sequential data efficiently, similarly to LSTMs, yet with a simpler architecture involving
fewer parameters, resulting in faster training times. GRUs also mitigate vanishing gradient
problems and demonstrate competitive performance while requiring less computational
resources. However, challenges with GRUs in BMS for EVs include potential limitations
in capturing long-term dependencies compared to LSTMs and difficulties in interpreting
the learned representations due to their abstract nature. Despite these challenges, GRUs
remain a valuable and efficient tool in optimizing BMS for EVs, contributing significantly
to their reliability, performance, and overall battery health management.
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4.2.4. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs or ConvNets) are a class of deep neural net-
works primarily designed for processing and analyzing structured grid-like data, especially
images and videos. They are highly effective in computer vision tasks but have also found
applications in areas like natural language processing and speech recognition.

CNNs are a family of deep learning models that are frequently employed in computer
vision applications, including image analysis and recognition. Although CNNs are not
often linked with BMS, these networks have potential uses in this area, notably when it
comes to estimating SOC and SOH and regulating the temperature conditions of batteries
in EVs. The successful deployment of CNNs in BMS depends on the data quality and
quantity, the neural network’s architecture, and the specific requirements of the BMS. Mazzi
et al. [57] applied the CNN model to estimate SOC for EV batteries. The performance was
compared with GRU. The report indicated that the 1D CNN is more accurate than the
GRU-based model, with an RMSE of 2.33% and MAE of 1.62%. A summary of DL methods
applied in BMS is depicted in Table 6.

Table 6. DL methods applied for advanced BMS applications.

Refs. DL Method Target Key Findings Advantages Disadvantages

[120] DNN SOC

Normalized mean
square error and root
mean square error are
0.1% and 0.3%
respectively.

− High Accuracy.
− Enhance Fault

detection.

− Required huge
amount of data

− Robustness to
environmental
variability.

− Real-time processing
challenge.

[121] LSTM SOC Estimation error 0.5%.

− High Accuracy.
− Able to handle

irregular samples.
− Missing data

imputation.

− Required long data
training time.

− Computational
Complexity

− Struggle to handle
imbalance data

[123] GRU SOC

− The mean absolute
error between 0.7

− RMSE in between
1.2–1.9%.

− Efficient to train
data.

− Effective for short to
medium sequences.

− Ease to implement.

− Limited memory
capacity.

− Limited use for
complex sequence

− Hyper parameter
sensitivity.

[57] CNN SOC
− RMSE 2.33%
− MAE 1.62%

− High accuracy.
− Better outcomes than

GRU under large
data features.

− Data requirements.
− Complexity
− Computational

resources.
− Real-Time

processing.

CNNs contribute by efficiently processing spatial and temporal information from bat-
tery sensor data, aiding in accurate state estimation, optimizing charging and discharging
strategies, and facilitating fault detection within EV batteries. The outcomes of employing
CNNs in BMS for EVs include improved accuracy in predicting battery health, enhanced
efficiency in managing battery resources, and the ability to extract and learn hierarchical
features crucial for identifying patterns in battery behavior. The advantages of CNNs lie in
their ability to automatically extract relevant features from raw sensor data, reducing the
need for handcrafted feature engineering, and their effectiveness in handling image-like
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or multidimensional data. Additionally, CNNs can capture local patterns and exhibit
translational invariance, making them well-suited for analyzing spatial and sequential
data. However, challenges with CNNs in BMS for EVs involve increased computational
complexity, especially with larger and more complex architectures, and potential limitations
in interpretability due to their hierarchical nature. Despite these challenges, CNNs remain
a powerful and promising tool in optimizing BMS for EVs, significantly contributing to
their reliability, performance, and overall battery health management.

4.3. Optimization Algorithms
4.3.1. Genetic Algorithm (GA)

GAs are an optimization and search technique inspired by the processes of natural
selection and genetics. They belong to the class of evolutionary algorithms and are used
to find approximate solutions to optimization and search problems by mimicking the
principles of natural selection, crossover, mutation, and survival of the fittest.

GAs can be employed in BMS for various tasks, including optimization, state esti-
mation, and control. Hu et al. [30] proposed a new method of battery state estimation
using GA, where a clustering technique was used to learn the topology of the model. The
outcome demonstrates that the estimator beats those created using traditional modeling
techniques and displays adequate accuracy. Ma et al. [113] provided a lithium-ion battery
SOC calculation model via GA optimization in different research. A BPNN optimized by
GA was suggested to mitigate the nonlinear errors induced by Kalman filter (KF) in the pro-
cess of linearization. The results indicate that the accuracy range of the proposed algorithm
is less than 0.0121 in the dynamic stress test (DST) drive cycle, and the maximum error and
average error are small. GAs offer significant advantages for BMS by providing versatile
optimization and control solutions. GAs can optimize battery charging and discharging
strategies, estimate critical battery parameters, and enhance fault detection algorithms,
contributing to improved battery performance and longevity. They excel in exploring com-
plex search spaces, making them suitable for multidimensional battery optimization tasks.
However, GAs has some challenges, including the need for computationally intensive
evaluations, convergence issues, and sensitivity to parameter settings. Careful algorithm
design and integration are essential to harnessing the advantages of GAs effectively while
addressing their limitations in BMS applications.

GAs contribute by optimizing charging and discharging strategies, identifying opti-
mal configurations for battery systems, and facilitating the efficient allocation of resources
within EVs. The outcomes of employing GAs in BMS for EVs include improved efficiency
in managing battery resources, enhanced battery lifespan, and the ability to search for solu-
tions within a large and complex solution space. The advantages of GAs lie in their ability
to handle nonlinear and complex optimization problems without requiring explicit mathe-
matical formulations, allowing them to find near-optimal solutions in multi-dimensional
and non-convex search spaces. Additionally, GAs are robust and flexible in exploring
various potential solutions. However, challenges with GAs in BMS for EVs involve the
computational burden, especially with larger search spaces, and the potential for premature
convergence or suboptimal solutions based on parameter settings. Despite these challenges,
GAs remain a valuable tool in optimizing BMS for EVs, contributing significantly to their
reliability, performance, and overall battery health management.

4.3.2. Particle Swarm Optimization (PSO)

PSO is a population-based metaheuristic optimization technique inspired by the
social behavior of bird flocking or fish schooling. It is used to find optimal solutions
to optimization problems by simulating the movement and interaction of individuals
(particles) within a multidimensional search space.

PSO has been widely employed in BMS applications. Li et al. [124] proposed a model
for online SOC and SOH estimation for lithium-ion batteries using PSO. PSO was utilized
to enhance the SVM’s kernel operation. The tests such as the DST demonstrated high
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flexibility and viability. Lipu et al. [125] developed a PSO-based nonlinear autoregressive
network with exogenous inputs (NARX) model for SOC estimation of lithium-ion batteries.
The robustness of this model was analyzed at three different temperatures under diverse
EV drive cycles. The results indicated that the proposed model has higher estimation speed
and achieves higher accuracy by reducing RMSE and MAE by 53% and 50% compared
to a single NARX algorithm. PSO presents advantages in BMS by efficiently optimizing
charging and discharging strategies, estimating battery parameters, and handling multi-
objective trade-offs. However, PSO may struggle with noisy sensor data, convergence to
suboptimal solutions, and sensitivity to parameter tuning. Proper noise handling, diversity
maintenance, and constraint management are vital when applying PSO to BMS, as these
challenges can affect its effectiveness in optimizing battery performance and lifespan while
ensuring safety and efficiency.

PSO contributes by optimizing charging and discharging strategies, identifying opti-
mal parameters for battery management, and facilitating efficient energy utilization within
EVs. The outcomes of employing PSO in BMS for EVs include improved efficiency in
managing battery resources, enhanced battery lifespan, and the ability to explore and
exploit solutions in a diverse search space. The advantages of PSO lie in its simplicity, ease
of implementation, and ability to efficiently search for solutions in high-dimensional spaces
without relying on gradient information. Additionally, PSO can handle non-linear and
non-convex optimization problems effectively. However, challenges with PSO in BMS for
EVs include the potential for premature convergence to suboptimal solutions, sensitivity to
parameter settings, and limitations in handling complex optimization landscapes. Despite
these challenges, PSO remains a valuable optimization technique in optimizing BMS for
EVs, contributing significantly to their reliability, performance, and overall battery health
management.

4.3.3. Lightning Search Algorithm (LSA)

LSA is a meta-heuristic method that takes inspiration from the lightning phenomena.
Hannan et al. [34] proposed an SOC estimation model using the LSA optimization tech-
nique for lithium-ion batteries. The results reported that the method outperformed several
state-of-the-art methods in terms of accuracy, flexibility, and resilience under various oper-
ating situations. LSA has the advantage of quickly converging to optimal or nearly optimal
solutions, which makes it particularly useful for issues where achieving quick solutions is
crucial. It performs consistently across a range of optimization tasks and effectively man-
ages high-dimensional search areas. Nevertheless, LSA has some limitations, particularly
in complicated, multimodal issues. Furthermore, LSA’s exploration–exploitation balance
might not be as well-balanced.

4.3.4. Whale Optimization Algorithm (WOA)

The social behavior of humpback whales serves as the basis for the relatively new WOA
that draws inspiration from nature. It is used to solve a variety of optimization issues in an
optimum or nearly optimal manner. Wu et al. [126] proposed a model of SOC estimation
where the authors used WOA to determine the optimal battery parameters, leading to
enhanced estimation accuracy. The Whale Optimization Algorithm offers both advantages
and disadvantages. WOA is known for its simplicity and ease of implementation. It
effectively balances exploration and exploitation, making it suitable for a wide range
of optimization problems. WOA can handle both continuous and discrete optimization
problems and is less likely to get stuck in local optima due to its exploration strategy,
making it robust in finding global optima. It also has a low number of control parameters,
reducing the need for extensive tuning. However, WOA has some drawbacks, such as
sensitivity to the choice of certain parameters, which can affect its performance. It may not
always outperform other state-of-the-art optimization algorithms, especially in complex
and high-dimensional problems. Additionally, the convergence speed of WOA can be
slower in some cases compared to more sophisticated algorithms. Overall, the effectiveness
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of the Whale Optimization Algorithm depends on the specific problem at hand and the
careful selection of its parameters. The different optimization approaches used by BMS are
presented in Table 7.

Table 7. Optimization approaches used for advanced BMS applications.

Refs. Optimization
Technique Target Advantage Disadvantage

[30] GA SOC, SOH

− Effective at global
optimization.

− Robustness to the noisy
data.

− Versatility.

− Computational.
-Complexity.

− Difficulty in handling
constraints.

[28] PSO SOC, SOH

− Multi objective
optimization.

− Interpretable results.
− Adaptability.

− Parameter sensitivity.
− Struggle to handle noisy

data.
− Limited multimodal

search.

[34] LSA SOC

− Adaptability.
− Interpretability.
− Robustness.

− Tuning complexity.
− Low convergence speed.
− Parameter dependency.

[126] WOA SOH

− Potential for novel
solution.

− Parallel processing.
− Balance exploration.

− Lack of widespread
adaptation.

− Complex implementation.
− Limited extensive research.

4.4. Rules-Based Approaches
4.4.1. Fuzzy Neural Network (FNN)

An FNN is a hybrid computational model that combines elements of fuzzy logic and
neural networks. It merges the learning capabilities of neural networks with the reasoning
and decision-making abilities of fuzzy logic, aiming to address complex problems that
involve uncertainty, imprecision, and incomplete information.

Fuzzy neural networks, which combine fuzzy logic and artificial neural networks, offer
several advantages and disadvantages. They excel at handling uncertain and imprecise data,
making them suitable for applications in fields like pattern recognition, control systems,
and decision support. Fuzzy neural networks can capture complex relationships in data and
adapt their models over time, enabling them to handle non-linear and dynamic systems
effectively. Additionally, they can integrate human-like reasoning, allowing for more
interpretable and explainable results, which is crucial in applications where transparency
is essential. However, there are also downsides to fuzzy neural networks. They can be
computationally intensive, requiring significant computational resources for training and
inference. Tuning the fuzzy membership functions and neural network parameters can be
challenging, making them less straightforward to implement than conventional machine
learning approaches. Furthermore, their interpretability might diminish due to the increase
in the model complexity, making it difficult to understand the reasoning behind their
decisions in highly complex systems. Fuzzy Neural Networks are a strong hybrid model
that incorporates aspects of fuzzy logic with neural networks. Zahid et al. [33] designed an
SOC estimation model utilizing a subtractive clustering-based neuro-fuzzy system. The
proposed model was simulated using an advanced car simulator. Current temperature, real
power loss, available and requested power, cooling air temperature, and battery thermal
factor were the input factors to model to calculate SOC. The training and testing verification
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were conducted using 10 distinct EV drive cycles. According to experimental findings, the
suggested model performs better than BPNN and ELM.

4.4.2. Fuzzy C-Mean (FCM)

FCM is a clustering algorithm that extends the traditional K-Means clustering method
to handle fuzzy or soft clustering, where data points can belong to multiple clusters with
varying degrees of membership. It is a popular technique used for partitioning data into
clusters based on similarity.

Hu et al. [30] presented a genetic algorithm-based fuzzy C-means clustering technique.
The clustering outcome is used to determine the model parameters and topology. Then, the
recursive least-squares approach is used to extract the parameters. The backpropagation
learning method is eventually used to optimize the previous data and consequent sections
to provide excellent accuracy and robustness. Results from experiments show that the
suggested technique performed better than those created using traditional fuzzy modeling
techniques in terms of accuracy.

5. Open Issues and Limitations
5.1. Algorithms and Method Issues

One of the important difficulties in developing a BMS is selecting the structure for
AI approaches. Many different hyperparameters, such as weights, biases, hidden layers,
hidden neurons, time steps, batch sizes, learning rates, etc., are frequently used to frame
complicated AI algorithms. Using the best hyperparameters, training algorithms and
activation functions can reduce the computational complexity of overfitting and under-
fitting issues. Additionally, using hit-and-trial procedures to find suitable parameters
requires more time and human expertise. Thus, a precise and reliable framework needs
to be established in order for hyperparameter adjustment to deliver the advanced BMS
outcomes.

5.2. Data Abundance and Variety

The diversity and availability of data are the biggest obstacles to the practical use of
AI algorithms. Having enough data of high enough quality is necessary for AI algorithms
to work accurately. However, it requires time and effort to compile a substantial volume
of diverse, large-scale data. Typically, trials with a 1 Hz sample frequency are used to
collect data. The data duration between EV driving cycles varies with different voltage
and current levels [127]. For instance, one EV drive cycle is predicted to take 1372 s, 360 s,
916 s, and 600 s, respectively, by the federal urban driving schedule (FUDS), dynamic stress
test (DST), Beijing dynamic stress test (BJDST), and US06 drive cycle [128]. Since efficient
algorithms require a sizable data set for training purposes, several EV driving cycle repeats
are required to prepare data [129]. Better outcomes may be achieved with more data, but
this can also slow down the computer’s learning process and make it work harder, which
may result in overfitting problems [130]. As a result, issues with data quantity and diversity
require special attention.

5.3. Optimization Technique Integration

Different AI methods may be combined with a variety of optimization techniques,
but the results vary in terms of execution time and convergence speed. Generally, it takes
a lot of time and effort to integrate optimization techniques into AI methods. Addition-
ally, initializing parameters and running the operational loop require in-depth expertise
when creating an optimization framework. Although the integration of optimization tech-
niques with an AI algorithm has substantially improved the accuracy, prediction efficiency,
and durability of BMS, there are still a number of issues with complex calculations and
prolonged processing times. Predictions may be incorrect due to poor searching capabil-
ities and parameter selections. Therefore, further research works are needed to address
integration concerns with optimization.
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5.4. Data Integrity

Data integrity is another barrier to applying AI strategies in practical situations. A
top-notch battery dataset has been created by a few well-known automotive research teams
and is openly available to the public [131]. The charge/discharge current pattern in this
dataset is stable and guarantees the different EV driving cycle methods. Studies are carried
out in a lab environment with the recommended temperature and charge/discharge current
rates to collect data on the various EV drive cycles. The simulation-derived current and
voltage profiles of EV driving cycles do not match the data that were actually collected in
the field. Therefore, further study is needed to validate intelligent algorithms in practical
settings.

5.5. Battery Material Concerns

Although lithium-ion batteries exhibit remarkable qualities, the positive and negative
electrode operational differences significantly impact SOC estimates. Lithium cobalt oxide
(LCO) is rare, costly and has a limited capacity. The lithium nickel manganese cobalt oxide
(LNMC) and lithium nickel cobalt aluminum oxide (LNCA) batteries perform satisfactorily
in terms of high capacity and extended lifespan; however, there is a scarcity of nickel
and cobalt resources. Although lithium manganese oxide (LMO) batteries have a high
voltage and adequate sources of manganese exist, they have a constrained capacity and an
extended lifespan [132,133]. Lithium titanate (LTO) and lithium iron phosphate (LiFePO4)
are two different lithium-ion battery chemistries that were used in [124] to test the precision
of the SOC assessment technique. Validation was carried by using a test bench platform
and an ageing cycle test. First, experiments were conducted with fresh lithium-ion battery
cells. When compared to LTO, a LiFePO4 battery had better accuracy, with an RMSE of
0.5305% at 25 ◦C. The LTO battery, however, performed well in the ageing cycle test, with
an estimated RMSE of 0.00334% after 1000 age cycles.

5.6. Hardware Development and Real-Time Implementation

The use of AI techniques in real-time BMS with low memory storage and processing
costs has not received significant investigation. Thus, in-depth examination is mandatory
to create an embedded prototype system for real-time BMS operation and management.
Research in [6] used the hardware-in-the-loop (HIL) experimental platform to evaluate
the real-time machine learning-based SOC estimation technique. The HIL test bench was
built using a DC supply, current sensor, battery monitoring device, host computer, battery
management unit, and CAN analyzer. The findings indicated that the SOC estimation error
and capacity faults were 2% and 19.7%, respectively. The adaptive network-based fuzzy
inference system (ANFIS)-based SOC estimation was tested in real-time utilizing the HIL
experiment setup [130]. The HIL outcomes showed that the optional model is suitable for
real-time EV applications because they were quite comparable to the simulated results.

5.7. IoT Integration and Cloud Computing Technology

The accuracy and robustness of AI algorithms and controllers of BMSs in real-world
situations may be greatly enhanced by cloud storage, cloud computing, and big data
platforms. Big data technology allows combining intelligent methods with massive memory
devices, processing, and analysis. The valuation of the battery states such as SOC, SOH an
d RUL, thermal runway, and fault identification may be tracked and stored in the cloud
throughout the battery’s lifespan. The battery monitoring and control center will then
pre-process the data, carry out the investigation, and offer valuable recommendations
for future improvement. Nonetheless, integration of the Internet of Things (IoT) and
cloud computing has several concerns, including security and privacy, interoperability,
scalability, data management, standards and protocols, and regulatory and legal issues.
Hence, extensive study is necessary to address the aforesaid problems.
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5.8. Thermal Management of EV Batteries

Battery thermal management systems are integral for maintaining optimal operat-
ing conditions, ensuring safety, and extending the lifespan of batteries. ML techniques
have emerged as valuable tools in enhancing battery thermal management strategies. ML
algorithms can process a myriad of data inputs such as ambient temperature, current,
voltage, and internal battery temperature to predict and optimize the thermal behavior
of batteries. By analyzing historical thermal data and correlating it with battery perfor-
mance and degradation patterns, ML models can predict heat generation, manage thermal
runaway risks, and optimize cooling or heating strategies in real time. These models can
adapt to varying operating conditions and usage patterns, enabling proactive thermal
management interventions to maintain the battery within a safe and efficient temperature
range. Pagani et al. [134] provided an overview of many research projects that aim to
employ ML approaches for power and thermal control on single-core and multicore CPUs.
Conventional approaches to power and thermal management depend on information about
the workloads and applications to be performed (such as average and transient power
consumption) as well as some a priori understanding about the chip’s thermal model. A
thorough examination of all of the experimental and numerical studies was carried out on
several battery thermal management system (BTMS) procedures for electric and hybrid cars,
where Tete et al. [135] addressed battery cooling systems with air, liquid, phase-change ma-
terial, heat pipe, and refrigeration cooling methods. A thorough overview was conducted
of the major discoveries and results of the current experimental, simulation, and modelling
work on BTMS. In addition, this research presented a comprehensive review of hybrid
battery cooling systems. Wang and Du provided a detailed summary and categorization
of the battery cooling and preheating system research progress based on heat transfer
media [136]. Numerous factors were taken into consideration while evaluating different
thermal management systems, such as the cost of manufacturing and maintenance, the
simplicity of the system, the effectiveness of the heating or cooling process, internal temper-
ature gradients, safety, and flexibility. ML-driven thermal management not only ensures
better battery performance but also helps in extending battery life by mitigating thermal
stress, thus making it a promising approach for the efficient operation of diverse battery
systems across different applications. Nevertheless, several issues and challenges affect
the performance of EVs, such as temperature control, heat generation, uniform thermal
distribution, cooling and heating systems, energy consumption, fast charging and high
power outputs.

6. Future Research Opportunities

This section provides several effective, insightful recommendations for the advance-
ment of BMS in EV applications.

• The key to the transportation sector’s long-term, sustainable growth is the develop-
ment of smart BMS technology, particularly for EVs. However, there are a number
of problems with BMS in EV applications, including inefficient BMS operations, long
charging times, high starting prices, and limited battery life. More research is re-
quired in order to develop accurate BMS technology that can provide better control
mechanisms, advantageous market policies, global cooperation, and sustainable de-
velopment for improved EV performance.

• To operate BMS accurately, it is essential to suitably estimate various battery states,
such as SOC, SOH, and RUL. Problems with overheating, overcharging, and over-
discharging would result from an incorrect SOC prediction. Additionally, incorrect
predictions of a battery’s SOH and RUL would force users to either replace the battery
before it explicitly fails or wait until it does, which would raise the capital cost.
Therefore, more research activities involving DL algorithms should be implemented to
increase the accuracy, robustness, and reliability of BMS in EV applications. In order
to maximize operational effectiveness and reduce BMS computational complexity,
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multi-scale and co-estimations can be used to improve the estimation of battery SOC,
SOH, and RUL.

• In order to guarantee the secure and effective operation of BMS in EVs, it is crucial
to use the appropriate controller approaches for battery temperature control, fault
diagnosis and charge equalization. Battery inconsistency issues can be caused by
a variety of factors, such as battery ageing and temperature variation, by altering
internal properties such as internal resistance and capacitance. Identification of faults
is essential to preventing issues like thermal runway, battery swelling, short circuits,
overheating, electrolyte leakage, and over-discharge. Therefore, it is essential to
employ resilience controller techniques to ensure the secure and dependable operation
of BMS in EV applications.

• It has been proven that using AI algorithms, when combined with BMSs, yields better
results than relying solely on non-hybrid algorithms. However, AI integrated with an
optimization model might necessitate difficult mathematical calculations, powerful
processing, and human expertise, all of which could produce unfavorable results.
Therefore, future research should cover practicality issues to develop an effective
hybrid model for BMSs.

• Proper disposal and recycling of lithium-ion batteries are crucial for environmental
sustainability. Research is currently underway to create new battery chemistries
that are more sustainable and environmentally friendly, in addition to reusing and
recycling batteries. For instance, some companies are investigating the use of sodium-
ion batteries, which use a more plentiful and less hazardous substance than lithium.
Overall, a holistic approach to sustainability that considers the entire life cycle of
batteries, from manufacturing to disposal, is necessary for achieving the Sustainable
Development Goals (SDGs).

• To verify AI algorithms, experimental tests have often been used. However, AI
algorithm execution with minimal resource and memory usage has not yet been
accomplished. Therefore, additional study is needed to develop a better battery testing
system and set up an embedded prototyping system or hardware-in-the-loop system
to implement, manage, and assess real-time algorithms in BMS.

• The effectiveness of AI algorithm-based BMS can be significantly increased by combin-
ing big data platforms and cloud-based technologies. Voltage, current, temperature,
and other measurements obtained from EVs in real time may be used to assess the
performance and precision of the AI algorithms. For examining the estimated battery
health condition and performance over time, real-time monitoring is essential for
collecting information, which is subsequently preserved in a cloud-based database.
With this knowledge, various actions could be taken to improve the battery system’s
performance in the future, such as data extraction, data analysis, and future predic-
tion. Therefore, big data, cloud-based technologies, and real-time monitoring could
significantly increase BMS effectiveness.

BMSs in EVs present a spectrum of potential areas for exploration and development.
One significant avenue is the enhancement of BMS algorithms to optimize battery perfor-
mance, ensuring efficient energy utilization and prolonged battery life. Exploring advanced
predictive analytics could aid in accurately forecasting battery degradation, facilitating
proactive maintenance schedules. Additionally, there is a need to delve deeper into cyber-
security measures to safeguard BMS against potential cyber threats, ensuring the integrity
and safety of the vehicle’s power system. Further research into BMS hardware design,
such as the development of innovative sensors and controllers, could lead to more precise
monitoring and control of the battery, consequently improving overall EV performance.
Comprehensive exploration in these areas holds the promise of revolutionizing EV tech-
nology, fostering increased reliability, safety, and longevity, ultimately accelerating the
widespread adoption of electric vehicles while advancing the sustainability goals of the
automotive industry.
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7. Conclusions

This study offers a thorough analysis of the statistical evaluation of BMS for EV-based
AI technology, encompassing a range of AI methods, results, problems, and potential
future prospects for advancement. Accordingly, the study used 78 relevant publications
published between 2014 and 2023 in the Scopus database to thoroughly review advanced
BMS technology in EV applications. The analysis included current trends in publication,
citation analysis, examination of keywords, publication trends, research categories, influen-
tial authors, networking, and collaboration. Furthermore, the report covered important
approaches and algorithms found in highly influential literature and outlined key findings,
contributions, advantages, and disadvantages. The study concluded with recommenda-
tions for future research and development in the field.

The statistical analysis of the 78 appropriate publications will provide guidelines and
suggestions for academicians, researchers, and engineers for potential research collabo-
ration around the world. In addition, this statistical investigation will enable potential
reviewers, journal editors and other prominent scholars to evaluate the contributions and
knowledge gaps of the 78 influential papers. Moreover, the statistical study can help pol-
icymakers and public/private officials create an effective long-term plan and policy for
meeting global decarbonization targets by 2050. The key finding of this study are:
■ Scope of Analysis: Evaluation of 78 relevant publications from 2014 to 2023 in the

Scopus database, providing a comprehensive overview of advanced BMS technology
in EV applications.

■ Comprehensive Examination: Analysis encompassed diverse facets such as publi-
cation trends, citation analysis, keywords, research categories, influential authors,
networking, and collaboration, offering a holistic understanding of the field.

■ In-depth Coverage of the Literature: Exploration of influential literature highlighted
important approaches, algorithms, key findings, contributions, and associated advan-
tages and disadvantages related to BMS in EVs.

■ Guidelines for Collaboration: Statistical analysis poised to offer guidelines and sug-
gestions for global research collaboration among academicians, researchers, and
engineers in the realm of BMS for EVs.

■ Evaluation Tool for Influential Papers: Provides a framework for potential reviewers,
journal editors, and prominent scholars to assess contributions and identify knowl-
edge gaps within the 78 influential publications.

■ Contribution to Policy-making: Potential to aid policymakers and public/private
officials in formulating effective long-term plans and policies aligned with global
decarbonization targets by 2050 through the insights derived from the statistical study.

■ Support for Sustainable BMS Management: Anticipated support for sustainable BMS
management in EVs, leading to extended battery lifecycles, improved EV perfor-
mance, and alignment with SDGs related to clean energy, employment opportunities,
sustainable cities, and emission reduction.

In conclusion, the statistical examination is anticipated to support the sustainable
management of BMS in EVs. Therefore, further research into advanced BMS will extend
battery lifecycles and enhance EV performance, paving the way for the achievement of
the SDGs for SDG 7: clean energy, SDG 8: employment opportunities and economic
development, SDG 11: sustainable cities, and SDG 13: emission reduction.
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AAE Average Absolute Error
AI Artificial intelligence
ANFIS Adaptive Network-Based Fuzzy Inference System
ANN Artificial Neural Network
BES Battery Energy Storage
BJDST Beijing Dynamic Stress Test
BMS Battery Management System
BPNN Backpropagation Neural Networks
BTMS Battery Thermal Management System
CNN Convolution Neural Network
DER Distributed Energy Resources
DL Deep Learning
DNN Deep Neural Network
DSM Demand Side Management
DST Dynamic Stress Test
EIS Electrochemical Impedance Spectroscopy
ELM Extreme Learning Machines
EMS Energy Management System
EOL End of Life
ESS Energy Storage System
EV Electric Vehicle
FBG Fiber Bragg Grating
FCM Fuzzy C-Mean
FESS Flywheel Energy Storage System
FNN Feedforward Neural Network
FNN Fuzzy Neural Network
FUDS Federal Urban Driving Schedule
GA Genetic Algorithm
GHG Greenhouse Gas
GPR Gaussian Process Regression
GRU Gated Recurrent Unit
HESS Hybrid Energy Storage System
HIL Hardware-in-the-loop
IoT Internet of Things
KF Kalman Filter
LA Lead Acid
LCO Lithium Cobalt Oxide
LFP Lithium Iron Phosphate
LIB Lithium-ion Battery
LMO Lithium Manganese Oxide
LNCA Lithium Nickel Cobalt Aluminum Oxide
LSA Lightning Search Algorithm
LSTM Long Short Term Memory
LTO Lithium Titanate
MAE Mean Absolute Error
ML Machine Learning
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NARX Nonlinear Autoregressive Network With Exogenous Inputs
PCA Principle Component Analysis
PHEV Plug in Hybrid Electric Vehicle
PSO Particle Swarm Optimization
RBFNN Radial Basis Function Neural Network
RF Random Forest
RL Reinforcement Learning
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RUL Remaining Useful Life
SDG Sustainable Development Goal
SOC State of Charge
SOH State of Health
SVM Support Vector Machine
SVR Support Vector Regression
V2G Vehicle to Grid
WOA Whale Optimization Algorithm
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