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Abstract: In the realm of autonomous driving, ensuring a secure halt is imperative across diverse
scenarios, ranging from routine stops at traffic lights to critical situations involving detected system
boundaries of crucial modules. This article presents a novel methodology for swiftly calculating
safe stop trajectories. We utilize a clustering method to categorize lane shapes to assign encountered
traffic situations at runtime to a set of precomputed resources. Among these resources, there are
precalculated halt trajectories along representative lane centers that serve as parametrizations of the
optimal control problem. At runtime, the current road settings are identified, and the respective
precomputed trajectory is selected and then adjusted to fit the present situation. Here, the perceived
lane center is considered a change in the parameters of the optimal control problem. Thus, techniques
based on parametric sensitivity analysis can be employed, such as the low-cost feasibility correction.
This approach covers a substantial number of lane shapes and exhibits a similar solution quality as a
re-optimization to generate a trajectory while demanding only a fraction of the computation time.

Keywords: trajectory planning; safe stop; optimal control; nonlinear programming; parametric
sensitivity analysis

1. Introduction

Self-driving vehicles on the road operate in highly complex environments. Their
underlying algorithms must cope with a myriad of traffic situations while ensuring route
progression and road safety. However, these mathematical algorithms typically act on
certain assumptions and expect inputs of a fixed format, narrowing down the means to
represent all facets of an encountered real-world scenario and posing substantial limiting
factors. Beyond those boundaries, it may not be possible to reliably generate outputs
for navigation. In addition, hardware and software flaws are generally unavoidable.
Considering these events of potentially undefined or ambiguous behavior, a module that
ensures a secure and seamless halt at a safe position is a valuable asset in an advanced
driver-assistance system. It is also required by German law for an autonomous car to be
able to halt in a safe state in critical situations [1]. Moreover, routine stops at traffic lights
or in sight of road blockades, as displayed in Figure 1, are potential use cases for halt
trajectories. This paper presents an algorithm for planning such maneuvers.
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Figure 1. Exemplary scenario that may require a stopping maneuver. The yellow obstacle obstructs
the street. The turquoise car depicts the initial position; the gray car depicts the final position. The
computed safe stop trajectory is displayed in red.

1.1. Classification in Existing Approaches

Traditionally, a software framework for autonomous vehicles consists of several mod-
ules processing user and multi-sensor data input, making tactical decisions and translating
maneuvers to commands for the actuating elements of the vehicle. In [2,3], a general
overview of state-of-the-art research on autonomous driving is given. An essential aspect
of navigation is motion and trajectory planning. Therefore, the goal is to find states and
controls subject to a time horizon of a few seconds that specify the behavior of the car
advancing toward its destination. A survey of different trajectory planning methods can be
found in [4–6]. Several approaches to compute trajectories exist that originate from graph
and optimal control theory or other fields. In this work, we follow an optimization-based
approach to generate a trajectory by discretizing an optimal control problem and solving the
resulting nonlinear program. The advantage of this method is that different objectives can
be effectively integrated into the cost functional or path constraints. Thus, in this approach,
accounting for different traffic lanes and the vehicle’s deviation from a reference curve like
the lane center can be easily considered and penalized [7–9]. Furthermore, the resulting
trajectory is (locally) optimal with respect to the defined objective function. However,
a good initial guess is typically needed for a solver to converge [7,10]. In the context of
autonomous driving, there are strict requirements on robustness and real-time capabili-
ties. There exist approaches to formulate convex problems for trajectory computations to
overcome adversity posed by nonlinearity [9,11,12]. These procedures typically feature
remarkable convergence performance but heavily restrict the problem formulation as all
involved functions have to be convex.

Several fallback solutions have been implemented in the area of trajectory planning.
In [13], an approach is presented repairing infeasible trajectories. Collision avoidance
trajectory planning in [14,15] aims to mitigate a crash or lower its severity when a collision
is hardly avoidable. In such maneuvers, driving comfort is secondary, and the planned
trajectory is close to the limits of what is physically possible.

The goal of our work is to rapidly compute safe stop trajectories with a high degree
of driving comfort, assuming an early hazard awareness is given. Although, in general,
the standard trajectory planning module is able to generate them, it is highly recommended
to develop methods tailored to the motivated use cases. In this manner, the algorithms
can have a lower computation time, feature better solution quality, and pursue a different
approach, leading to a lower probability of failing or generating unfavorable solutions. In
a critical situation, the conventional procedure of trajectory planning may have already
exhausted the allowed computation time. Thus, the subsequent calculation of the safe stop
trajectory must deliver a maneuver immediately to retain a short response time by the
autonomous vehicle. If the computation is more resource-intensive, it may be necessary
to run it constantly in parallel, even though the outcome of the invested computational
effort might never be used. In both successive and concurrent strategies, a low demand for
computational resources at runtime is highly advantageous.

In contrast to the great research interest in trajectory planning algorithms, there
are only a few publications regarding the planning of safe stop trajectories in particular.
Salvado et al. [16] computed safe stop trajectories using a graph-based algorithm employing



Vehicles 2024, 6 592

motion primitives. Wang et al. [17] interpolated grid points with polynomials and selected
the one that avoided static obstacles and was feasible with respect to a vehicle dynamics
model. An A∗ algorithm was subsequently utilized to calculate a velocity profile, avoiding
dynamic obstacles. Svensson et al. [18] pursued a two-phase methodology. During a
precomputation phase, optimal control problems for several endpoints were solved offline,
and the resulting trajectories were stored for later use. During runtime on an autonomous
vehicle, the environment was subdivided into regions, indicating how favorable it was
to stop in the respective areas. Upon this, the best endpoint for the present situation was
selected, which corresponded to a precomputed trajectory. However, their algorithm is
restricted to straight roads.

1.2. Contributions

In our work, we advance the methodology initially established by Svensson et al. [18]
and others in the domain of trajectory planning, specifically focusing on the area of safe
stop strategies. Our approach is distinguished by a two-pronged contribution. Firstly,
we extend previous efforts in [18] by incorporating advanced clustering and optimization
techniques to address the challenge of navigating arbitrary road shapes. This is achieved
while ensuring real-time capabilities through the use of parametric sensitivity analysis,
allowing for the dynamic adaptation of precomputed trajectories to current conditions. This
not only ensures a near-optimal trajectory but also enhances safety and comfort through
the smoothness of states and controls.

Secondly, we delve into the realm of nonlinear optimization, a field known for its
complexity, especially when applied to time-sensitive tasks. By applying feasibility cor-
rection [19]—a method previously explored in contexts for simpler applications [20] and
emergency trajectory planning [14]—we introduce a novel perspective to the challenge of
trajectory planning, which is now compounded by several non-trivial disturbances that
enter the problem in a nonlinear fashion. This approach, utilizing the feasibility correction
method as an exemplar of numerical real-time optimization techniques, represents a signifi-
cant advancement in our capability to dynamically reduce computational complexity in
the face of intricate, higher-dimensional disturbances.

1.3. Outline

The remainder of this paper is organized as follows. Fundamental to this work are
techniques of parametric sensitivity analysis, depicted in Section 2. In Section 3, the de-
termination of relevant static traffic situations defined through lane centers is described.
Upon this, Section 4 reports the process of trajectory computation. The performance of
the algorithm is evaluated in Section 5. Finally, Section 6 draws a conclusion about the
observed results.

2. Nonlinear Optimization and Parametric Sensitivity Analysis

This section outlines the fundamentals of nonlinear optimization and parametric
sensitivity analysis, concluding with a feasibility correction method. The techniques
described are later used to solve a discretized optimal control problem, resulting in a
trajectory. For further explanations on nonlinear optimization, we refer to [21]. We uti-
lize parameter-dependent nonlinear programs, which allow for post-optimal parametric
sensitivity analysis.

Definition 1 (Parametrized nonlinear program). Assuming a vector of parameters p ∈ P in a
parameter space P ⊂ Rnp , np ∈ N0. The task

min
z

F(z, p)

s.t. g(z, p) = 0, (NLP(p))

h(z, p) ≤ 0
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is called a nonlinear program (NLP). F : Rnz × P → R, nz ∈ N denotes the objective function,
while g : Rnz × P→ Rng and h : Rnz × P→ Rnh , ng, nh ∈ N0 express the equality and inequality
constraints for optimization variables z ∈ Rnz , respectively. We postulate that F, g, and h are
sufficiently often continuously differentiable. A point z ∈ Rnz is called feasible if g(z, p) = 0 and
h(z, p) ≤ 0 hold.

The Lagrangian function combines the objective with the constraints of NLP(p) as a
weighted sum.

Definition 2 (Lagrangian function and multipliers). For NLP(p), the so-called Lagrangian
function L : Rnz ×Rng ×Rnh × P is defined as

L(z, λ, µ, p) := F(z, p) + λ⊤g(z, p) + µ⊤h(z, p). (1)

The vectors λ and µ are called Lagrangian multipliers.

Inequality constraints fulfilled by equality are called active. The corresponding indices
form the active set. The other, inactive inequality constraints do not influence the solution
of the problem locally.

Definition 3 (Active set). For a feasible point z ∈ Rnz , the set A(z, p) := {i ∈ {1, . . . , nh} :
hi(z, p) = 0} is called an active set.

By this definition, we define a regularity assumption.

Definition 4 (Linear independence constraint qualification (LICQ)). A feasible point z ∈ Rnz

satisfies the linear independence constraint qualification (LICQ) if the gradients {∇zgi(z, p) : i ∈
{1, . . . , ng}} ∪ {∇zhi(z, p) : i ∈ A(z, p)} are linearly independent.

Following this, we can formulate first-order necessary conditions for NLP(p), the so-
called KKT conditions.

Theorem 1 (KKT conditions). Let z0 ∈ Rnz be a local minimum of NLP(p) fulfilling LICQ
(Definition 4). Then, there exist uniquely identified λ ∈ Rng , µ ∈ Rnh

≥0 such that

K(z0, λ, µ, p) :=

∇zL(z0, λ, µ, p)
g(z0, p)

diag(µ)h(z0, p)

 = 0. (2)

Thereby, the operator diag maps a vector onto a diagonal matrix. A tuple (z0, λ, µ) ∈
Rnz ×Rng ×Rnh

≥0 with feasible z0 fulfilling (2) is called a KKT point.

Proof. Refer to [22] (pp. 195–207).

An additional characterization of local minima is given by sufficient conditions.

Theorem 2 (Second-order sufficient conditions). Let (z0, λ, µ) be a KKT point of NLP(p)
complying with LICQ (Definition 4). The critical cone C(z0, p) is defined by

C(z0, p) :=

v ∈ Rnz

∣∣∣∣∣∣
∇zhi(z0, p)⊤v ≤ 0, i ∈ A(z0, p) ∧ µi = 0
∇zhi(z0, p)⊤v = 0, i ∈ A(z0, p) ∧ µi > 0
∇zgi(z0, p)⊤v = 0, i = 1, . . . , ng

. (3)

Furthermore, let

v⊤∇2
z L(z0, λ, µ, p)v > 0 ∀v ∈ C(z0, p) \ {0}. (4)
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Then, z0 is a strict local minimum of NLP(p).

Proof. Refer to [22] (pp. 207–212).

Based on the necessary conditions for optimality from Theorem 1, algorithms exist to
determine local minima [23]. These entail a relatively high computational effort if F, g, and
h are non-convex. However, when treating a large set of similar problems that only differ
slightly in their parametrization p, the so-called sensitivity theorem is a powerful tool to
exploit. The theorem is based on the implicit function theorem (see [24]) and can be stated
as follows.

Theorem 3 (Sensitivity theorem). Let z0 fulfill the second-order sufficient conditions from
Theorem 2 for NLP(p0) and some nominal parametrization p0 ∈ P, together with Lagrangian mul-
tipliers λ0, µ0. Additionally, assume µ0i > 0 for i ∈ A(z0, p0). Then, there exists a neighborhood
U (p0) ⊂ P of p0 and continuously differentiable functions z : U (p0) → Rnz , λ : U (p0) → Rng

and µ : U (p0)→ Rnh , such that for p ∈ U (p0) the following properties hold:

1. z(p0) = z0, λ(p0) = λ0, µ(p0) = µ0.
2. The active set does not change, i.e., A(z(p), p) = A(z0, p0).
3. z(p) fulfills LICQ (Definition 4).
4. z(p) is a local minimum of NLP(p) with Lagrangian multipliers λ(p), µ(p).

Proof. Refer to [25].

Furthermore, the theorem provides the means to determine the sensitivity deriva-
tive ∂z

∂p .

Corollary 1. A representation of ∂z
∂p (p0) can be obtained by determining the unique solution of the

linear equation system

 ∇2
z L ∇zg ∇zh

∇zg⊤ 0 0
diag(µ)∇zh⊤ 0 diag(h)




∂z
∂p (p0)
dλ
dp (p0)
dµ
dp (p0)

+

 ∇zpL⊤

∇pg⊤

diag(µ)∇ph⊤

 = 0. (5)

Proof. Differentiating Equation (2) regarding p leads to the condition

∇(z,λ,µ)K(z(p), λ(p), µ(p), p)⊤


∂z
∂p (p)
dλ
dp (p)
dµ
dp (p)

+∇pK(z(p), λ(p), µ(p), p)⊤ = 0. (6)

This is equivalent to the linear equation system (5). Because of [26], stating the
regularity of ∇(z,λ,µ)K, there exists exactly one solution.

The sensitivity derivative can be used for a first-order Taylor approximation of the
solution of NLP(p) as

z̃[0] := z(p0) +
∂z
∂p
· (p− p0). (7)

However, such an approximation is not feasible in general, violating the constraints in
NLP(p). Hence, additional steps need to be taken to eliminate the error in the constraints.
We showcase the feasibility correction method on a problem with equality constraints. For
q ∈ Rng , consider the problem
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min
z

F(z, p) (8)

s.t. g(z, p)− q = 0.

The parameter q ∈ Rng is relevant for the correction of the feasibility error. The
derivative ∂z

∂q specifies how the solution z changes when components of the vector g(z, p)
are decreased or increased. It can be computed similarly as the derivative with respect
to p. Let s = (p, q) and ĝ(z, s) := g(z, p)− q denote the constraint of problem (8). The
Lagrangian function of problem (8) is

L(z, λ, s) = F(z, p) + λ(g(z, p)− q). (9)

Let s0 = (p0, 0) be the nominal parameter and z0 a known solution of the correspond-
ing nonlinear program with related Lagrangian multiplier λ0. Then, for (9), it holds that

∇2
zqL(z0, λ0, s0) = 0, (10)

∇q ĝ(z0, s0) = −I, (11)

where I denotes the identity matrix. By inserting these equations into system (5), we
conclude with a calculation rule for ∂z

∂q . For the approximation z̃[0], the feasibility error is

given by g(z̃[0], p). This error is gradually reduced to zero, leading to an iterative correction.
In an iteration k ∈ N, the update step

z̃[k] := z̃[k−1] +
∂z
∂q

g(z̃[k−1], p) (12)

is performed. As stated by the following theorem, this method converges and the limit has
no constraint violation.

Theorem 4 (Convergence of the feasibility correction method). Assume the sensitivity theorem
(Theorem 3) holds for a reference solution z(p0). For a parametrization p ∈ P, the term z̃[0](p) is
defined as (7), and z̃[k](p) is defined as (12). Then, there exists a neighborhood U (p0) of p0, such
that for all p ∈ U (p0), the following holds:

lim
k→∞
∥z(p)− z̃[k](p)∥ = O

(
∥∆p∥2

)
, (13)

lim
k→∞
∥F(z(p), p)− F(z̃[k](p), p)∥ = O

(
∥∆p∥3

)
, (14)

lim
k→∞
∥g(z̃[k](p), p)∥ = 0. (15)

Furthermore, (z̃[k](p))k converges to a fixed point.

Proof. Refer to [19] (pp. 37–46).

If the change in the parametrization is small, i.e., inside the neighborhood U (p0),
the sensitivity theorem (Theorem 3) assures that the active set does not change. Hence,
for the feasibility correction, active inequality constraints can be considered equality con-
straints, and inactive constraints can be neglected.

3. Identifying Traffic Situations with Fréchet Clustering

In the further course of this work, we parametrize a nonlinear program NLP(p) with
static traffic situations. As seen in the previous section, the parameter difference during the
sensitivity update must be sufficiently small. Therefore, we first categorize all possible static
traffic situations and compute reference solutions for each category. At runtime, the most
similar reference traffic situation is selected, and a feasible stopping maneuver is generated.
We introduce a metric to determine different categories to classify and compare static traffic
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situations. A suitable way of performing this is to look at the difference between two lane
centers. For this, we introduce the Fréchet distance.

Definition 5 (Fréchet distance). Let π, σ : [0, 1]→ R2 be two polygonal, parametrized curves.
Each curve is determined by a set of vertices. We denote the set of all such polygonal curves with C.
Additionally, let T be the set of all continuous, monotonously increasing and surjective functions
f : [0, 1]→ [0, 1]. Then, the Fréchet distance dF : C × C → R≥0 is defined by

dF(π, σ) := inf
f∈T

max
t∈[0,1]

∥π( f (t))− σ(t)∥2. (16)

Bringmann et al. presented an efficient algorithm to calculate the Fréchet distance
in [27]. Here, the method introduced in [28], which relies on the so-called free-space
diagram to determine which point pairs of the two curves have a distance below a given
threshold, is essential. Building upon this, Bringmann et al. implemented additional rules
to improve performance.

In real-world traffic, we may encounter countless different lane centers. To reduce
complexity at runtime, it is necessary to identify representative curves from a data set of
lane centers, which we can focus on during a preparation phase. Every element in the data
set should be similar or assignable to a representative. We use the k-means-based clustering
algorithm developed by Buchin et al. [29] to find such representative curves. The well-
known k-means consists of two main components: a function measuring distances and a
function calculating a cluster center, which represents a cluster [30]. Buchin et al. employed
the Fréchet distance to measure the distance between two elements. To update the mean
of a subset of elements, they utilized the parametrization from the Fréchet distance. The
computation of the Fréchet distance yields a parametrization of both curves. Hence, for each
vertex of the old center, there exists a point with the same parametrization value on every
curve in the subset. The center of the smallest enclosing circle of these points represents
the vertex of the new center. For sufficiently simple cluster centers, Buchin et al. proposed
restricting the number of vertices in a cluster center. We allow up to ten vertices.

For our numerical experiments, we employed a training and evaluation data set. To
obtain them, we documented the trajectory of a research vehicle navigating in manual mode
within a suburban environment. The vehicle was outfitted with an advanced localization
framework, as detailed in [31], ensuring an accurate position estimation. Subsequently,
the acquired data were organized into two distinct sets of lane centers. The training data
set encompasses 239 curves, while the evaluation data set comprises 105 curves. Both
can be found in [32]. The algorithm presented in this paper is configured to aim for good
performance with respect to the training data set. Eventually, the evaluation data set was
used to assess the performance of the final algorithm. As an estimate for all possible lane
centers, we used a training data set of lane centers. Figure 2 shows the results of the
clustering on our training data set, where the number of clusters was set to ten.

Each representative lane center originating from the cluster centers represents an
individual optimization problem we can solve before runtime. We chose the coordinate
values of the vertices as parameters to make use of the sensitivity theorem (Theorem 3)
discussed in Section 2. The actual lane center encountered by a driving car was then
considered in a re-parametrized problem for which, upon correct classification, we could
obtain an immediate approximate solution and an improved one using feasibility correction.

Previously, the lane centers were described by a function mapping the interval [0, 1]
to a polygonal curve in R2, as defined in Definition 5. In the following, we describe
a lane center as a flattened set of vertices. Every polygonal curve can be described by
both descriptions. However, using the characterization based on vertices makes it easy
to compute the translation between two curves, if they follow the standardized form.
By linearly interpolating between the vertices and parametrizing the resulting curve, we
conclude with a curve as defined in Definition 5. We establish a standardized form of the
lane centers to incorporate them in our optimizations in a unified manner.
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Figure 2. Clustering results shown on the training data set. Each color depicts one cluster. The
computed cluster centers are displayed with a black dotted line.

Definition 6 (Standardized lane center). Let nP ∈ N≥2, l > 0 and P ⊂ R2nP . An element
p ∈ P comprises nP two-dimensional vertices. We denote p ∈ P as a standardized lane center if it
complies with the following properties:

• Adjacent vertices have a fixed distance, i.e.,

∥(p2i+1, p2i+2)− (p2i−1, p2i)∥2 =
l

nP − 1
, i = 1, . . . , nP − 1. (17)

• The start point is the origin of the coordinate system, i.e., (p1, p2) = (0, 0).
• The first segment has the same orientation as the x-axis, i.e., p4 = p2 = 0.
• Two adjacent segments shall have a similar orientation, i.e.,(

arctan2(p2i+2 − p2i, p2i+1 − p2i−1) (18)

− arctan2(p2i+4 − p2i+2, p2i+3 − p2i+1)
)

mod 2π ≈ 0, i = 1, . . . , nP − 2,

where arctan2(y, x) returns the polar angle of the point (x, y)⊤ ∈ R2.

We chose nP := 15 as the fixed number of vertices and l := 40 m as the total length
of a lane center, leading to a distance of 2.86 m between two adjacent vertices. It was
assumed that the controlled vehicle was initially at the origin of the coordinate system,
and its orientation was aligned with the x-axis. Additionally, we assumed that the vehicle’s
position corresponded to the start of the lane center, with the same orientation as the first
lane center segment. These assumptions decreased the number of cases which had to be
considered during trajectory computation. Hence, we required each standardized lane
center to meet these requirements. The cluster centers resulting from the above-described
clustering algorithm may have kinks, which can cause issues in the trajectory computation
algorithm. Thus, in a process of standardization, we performed smoothing by fitting a
B-spline curve to the cluster center using the B-Spline calculation method from [33]. Since
the first two vertices of the standardized lane center are fixed, the start point of the B-Spline
is the second fixed vertex. The B-Spline is then determined to fit the subsequent vertices of
the curve that shall be standardized. Beginning with the start point of the B-Spline, the next
vertex of the standardized lane center is the point on the B-Spline with the fixed distance to
the current one. Figure 3 depicts an example of the standardization process.
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Figure 3. Process of standardization: The original curve is one of the cluster centers. The resulting
standardized curve complies with the described standardized form.

4. Trajectory Computation Methods

Below, we describe our trajectory computation algorithm. First, we outline the optimal
control problem, which is transcribed into a nonlinear program. The solution of this
problem describes a trajectory. It is parametrized by a standardized lane center from
Definition 6. After that, we summarize the precomputation phase, where this problem is
solved by a conventional NLP solver for the cluster centers from Section 3. Finally, we
depict the runtime phase, where the solution of the problem parametrized by the runtime
lane center is approximated. For this, we pursue a selection of a precomputed trajectory
and an update based on the techniques from the parametric sensitivity analysis described
in Section 2.

4.1. Problem Formulation for Trajectory Computation

In this section, we formulate a problem leading to a safe stop trajectory for a vehicle
along a given lane center. In order to generate viable stopping maneuvers for a car, we
must consider its kinematics and predict its behavior under certain control inputs.

We introduce Frenet coordinates [34] to uniformly define the final positions of a car
with regard to any lane center. By means of Frenet coordinates with respect to lane centers,
we can specify the final positions uniformly and deduce the designated orientation of a car.
A Frenet coordinate pair (s, d) ∈ R≥0 ×R describes a Cartesian point (px, py)⊤ ∈ R2 with
respect to a parametrized curve. Here, d quantifies the distance between (px, py)⊤ and the
curve, while s describes the length from the start to the point of the curve at the minimum
distance, as in Figure 4. Note that d is a signed value depending on whether the given
point is on the left (+) or right side (−) of the curve. The function Φ : R>0 ×R×P → R3

maps Frenet coordinates regarding a curve to the corresponding Cartesian coordinates
and the orientation of the curve segment closest to the point. It is defined by the result of
Algorithm 1.

(0, 0)

(s, d)

s d

Figure 4. Exemplary point (s, d) in Frenet coordinates. The black line describes the lane center.
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Algorithm 1 Conversion from Frenet to Cartesian coordinates

Inputs:
• length along the lane center s > 0, must not exceed the total length of the lane center
• perpendicular distance to the lane center d ∈ R
• a standardized lane center p ∈ P
Procedure:

1: i← 0, ŝ← 0
2: while ŝ < s do // Find segment at which the curve reaches length s
3: i← i + 1
4: ŝ← ŝ + ∥(p2i+1, p2i+2)− (p2i−1, p2i)∥2
5: end while
6: ν← (p2i+1, p2i+2)− (p2i−1, p2i) // Segment at which the curve reaches length s
7: α← s− (ŝ− ∥ν∥2)
8: ξ ← (p2i−1, p2i) + α ν

∥ν∥2
// Point on curve where length s is reached

9: ν⊥ ← (−ν2, ν1) // Vector perpendicular to ν

10: return ξ + d ν⊥

∥ν⊥∥2
, arctan2(ν2, ν1)

In the following, we formulate an optimal control problem (OCP) to calculate safe
stop trajectories for a given standardized lane center p ∈ P . We set the number of states as
nx = 6 and the number of controls as nu = 2. Assuming a process time interval [0, t f ] with
t f > 0, the functions

x : [0, t f ]→ Rnx , t 7→
(

px(t), py(t), ψ(t), δ(t), v(t), a(t)
)⊤, (19)

u : [0, t f ]→ Rnu , t 7→ (δv(t), j(t))⊤ (20)

map the time to six states and two controls, respectively. For t ∈ [0, t f ],

• (px(t), py(t))⊤ is the position in Cartesian coordinates in m.
• ψ(t) is the yaw angle in rad.
• δ(t) is the steering angle in rad.
• v(t) is the speed in m

s .
• a(t) is the acceleration in m

s2 .
• δv(t) is the steering angle velocity in rad

s .
• j(t) is the jerk in m

s3 .

The optimal control problem is given by

min
x,u,t f

1
t f

∫ t f

0

(
w1t f + w2 dist(px(t), py(t), p)2 + w3δ(t)2 + w4a(t)2 + w5δv(t)2 + w6 j(t)2) dt

s.t. ẋ(t) = f (x(t), u(t)),

−δmax ≤ δ(t) ≤ δmax,

0 ≤ v(t),

amin ≤ a(t),

−δvmax ≤ δv(t) ≤ δvmax,

−jmax ≤ j(t) ≤ jmax,

(21)

px(0) = 0,

py(0) = 0,

α(ψ(0)− 0) = 0,

α(δ(0)− 0) = 0,

v(0) = vstart,

a(0) = 0,

px(t f ) = Φ(s, d, p)1,

py(t f ) = Φ(s, d, p)2,

α(ψ(t f )−Φ(s, d, p)3) = 0,

v(t f ) = 0,

a(t f ) = 0.
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The function dist : R2×P → R≥0 in the cost function computes the shortest Euclidean
distance between the position and the polygonal line defined by p. The weights are
chosen as

w1 := 0.5
1
s

, w2 := 2
1

m2 , w3 :=
2

(δmax)2 , w4 :=
1

(amin)2 , w5 :=
5

(δvmax)2 , w6 :=
100

(jmax)2 . (22)

The weights are selected to ensure that the resulting trajectory describes a smooth
stopping maneuver while keeping the states and controls as far as possible from the bounds
of the inequality constraints. This not only enhances the driving comfort but also improves
the convergence behavior of the feasibility correction applied at runtime. The vehicle
dynamics f are defined by a single track model [35] with additional derivative layers to
ensure smooth values for the actuating elements. Hence, f is defined as

f (x(t), u(t)) :=



v(t) cos(ψ(t))
v(t) sin(ψ(t))
v(t) tan(δ(t))

l
δv(t)
a(t)
j(t)


. (23)

We chose the constants to be

l := 2.786 m, δmax := 0.55 rad, amin := −4.5
m
s2 , δvmax := 1.2

rad
s

, jmax := 20
m
s3 (24)

based on the research vehicle described in [36]. Thereby, l describes the wheelbase, and the
other constants model the physical limitations of the car in normal driving mode. The
function α : R→ [−π, π) maps a given angle by means of modulo operations to the interval
[−π, π). Additionally, we set an initial speed vstart > 0 and a final position (s, d) ∈ R>0×R
in Frenet coordinates. The final orientation was established to ensure the vehicle came to
a halt parallel to the lane center, which is a preferred alignment to avoid obstructing the
entire street.

This OCP was solved using the direct method. Therefore, it was discretized and
transcribed into a nonlinear program. For discretization, the time interval [0, t f ] was

discretized equidistantly at nt := 21 discretization points. Hence, the step size is ∆t :=
t f

nt−1 .
At every discrete time point ti, the states and controls are approximated via

x(i) ≈ x(ti), u(i) ≈ u(ti), i = 1, . . . , nt. (25)

The static optimization variables z of the corresponding nonlinear program con-
sist of all states and controls at every discretization point as well as the end time t f ,
i.e., nz := nt(nx + nu)+ 1 and z := (x(1), u(1), . . . , x(nt), u(nt), t f )

⊤ ∈ Rnz . This discretization
scheme is called full discretization. To discretize the differential equation, we employed the
trapezoidal method [37]. Let p ∈ P describe a standardized lane center from Definition 6.
We conclude with

min
z

w1t f +
1
nt

nt

∑
i=1

(
w2 dist(p(i)x , p(i)y , p)2 + w3δ(i)

2
+ w4a(i)

2
+ w5δ

(i)
v

2
+ w6 j(i)

2)
s.t. g(z, p) = 0, h(z) ≤ 0. (26)

Thereby, for ng := (nt − 1)nx + 5, g : Rnz ×P → Rng ,
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(z, p) 7→



x(1) + ∆t
2

(
f (x(1), u(1)) + f (x(2), u(2))

)
− x(2)

...
x(nt−1) + ∆t

2

(
f (x(nt−1), u(nt−1)) + f (x(nt), u(nt))

)
− x(nt)

α(ψ(0) − 0)
α(δ(0) − 0)

p(nt)
x −Φ(s, d, p)1

p(nt)
y −Φ(s, d, p)2

α(ψ(nt) −Φ(s, d, p)3)


(27)

and nh := 8nt + 12, h : Rnz → Rnh ,

z 7→


ĥ(1)

...
ĥ(nt)

h̄
−h̄

, where ĥ(i) :=



−δmax − δ(i)

δ(i) − δmax

−v(i)

amin − a(i)

−δvmax − δ
(i)
v

δ
(i)
v − δvmax
−jmax − j(i)

j(i) − jmax


and h̄ :=



p(0)x

p(0)y
v(0) − vstart

a(0)

v(nt)

a(nt)


. (28)

This is a nonlinear program in the form of NLP(p). The inequality constraints are
defined by fixed intervals. By introducing the projection operator B : Rnz → Rnz on
those intervals, the inequality constraints h(z) ≤ 0 can be rewritten as B(z)− z = 0. The
inequality constraints (28) only contain simple intervals, which are independent of the
problem parametrization p. This separation will be handy in the subsequent sections and is
the reason why the actual equality constraints h̄ are reformulated as inequality constraints.

4.2. Trajectory Precomputation for Cluster Centers

In this section, we aim to compute trajectories along the representative lane centers
of all clusters found using the method described in Section 3. To obtain trajectories, we
solve nonlinear program (26), which is a discretization of optimal control problem (21). In
our experiments, we set the initial speed to vstart = 8 m

s and the final position in Frenet
coordinates to s ∈ {14 m, 19.5 m, 25 m} and d ∈ {−1.5 m,−0.75 m, 0 m}. We chose d to be
negative since this corresponded to a stopping position at the edge of the road in right-hand
traffic. Hence, for each representative lane center, nine trajectories belonging to different
final positions were calculated. Problems belonging to the same lane center were solved
consecutively, using the previous solution as an initial guess. If the lane center changed,
the initial guess for the position and orientation followed a Dubins path. This path is
the shortest curve between a given start and end, taking a minimum turning radius into
account [38]. We relied on the implementation [39] to compute such curves and used
rmin = l

δmax
as an approximation for the minimum turning radius [40]. Since the Dubins

path only provides an estimate for the position and yaw, the other values had to be guessed
differently. We used a simple guess as we set the velocity to linearly decaying and the other
values to 0. To solve nonlinear programs, we used the solver WORHP [41] for this work.
Finally, all trajectories and corresponding sensitivity matrices were stored for runtime use.
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4.3. Trajectory Computation for Arbitrary Lane Centers at Runtime

Now, we describe the efficient solution of problem (26) parametrized by the lane
center encountered at runtime. Figure 5 gives an overview of our approach to compute a
halt maneuver at runtime. First, the static traffic situation had to be categorized, and the
respective representative lane center was identified. We applied the Fréchet distance from
Definition 5 to find the cluster center that was closest to the lane center encountered at
runtime. As a direct consequence of the definition of the Fréchet distance, the Euclidean
distance between the endpoints of two lane centers represented a lower bound. Since
evaluating the Euclidean norm is considerably faster than computing the Fréchet distance,
we suggest listing the representatives in ascending order in terms of the endpoint distance.
If the Fréchet distance of an element is smaller than the lower bound of its successor in the
list, the search is terminated, and it is assumed that any subsequent elements have a lower
Fréchet distance.

1

Precomputed
trajectories

Runtime lane center

1

1

Select lane center

1 1

Environmental
information

Select endpoint

Sensitivity
matrices

∂z
∂p , ∂z

∂q

Update regarding lane center

1

Figure 5. Process of the trajectory computation at runtime. Gray boxes indicate inputs from the
precomputation phase; red boxes indicate inputs from sensor fusion.

For each lane center, there are several precomputed trajectories belonging to different
endpoints. Based on the actual information about the environment, a decision has to be
made about which halt position the car should reach and which precomputed trajectory
should be used. For example, a halt at a side strip is generally preferred over stopping in
the center of the lane.

Eventually, the selected trajectory is updated to match the present situation at runtime.
We utilized the feasibility correction algorithm from Theorem 4. However, we made minor
adaptations. The sensitivity theorem (Theorem 3) states that the set of active inequality
constraints does not change in a neighborhood of the reference parametrization. The extent
of the neighborhood, though, is generally unknown. Thus, we cannot guarantee that
the difference in the parametrization, i.e., the difference between the precomputed and
runtime lane center, is small enough. Therefore, in order to be able to obtain a feasible
solution, we ensured the fulfillment of the inequality constraints by projecting the solution
candidate onto the intervals defining the inequality constraints. Additionally, we tuned
the optimal control problem in the precomputation phase so that a precomputed trajectory
was as far away from the inequality bounds as possible. In particular, weighting (22) is
important. This avoids changes in the set of active inequality constraints at runtime that
lead to problems.

We summarize the approach for the trajectory update in Algorithm 2.
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Algorithm 2 Sensitivity-based trajectory computation with feasibility correction

Inputs:
• selected precomputed trajectory, defined by the optimization variables z ∈ Rnz

• corresponding sensitivity matrices ∂z
∂p and ∂z

∂q
• precomputed lane center ρ ∈ P and runtime lane center p ∈ P
• termination conditions, defined by ϵ := 10−6 and kmax := 10, 000

Procedure:
1: ∆p← (p1 − ρ1, . . . , p2nP − ρ2nP ) // Compute translation between lane centers
2: z̃← z + ∂z

∂p ∆p // Update the trajectory regarding the translation, as in (7)
3: z̃← B(z̃) // Project onto box constraints
4: k← 1
5: while max(g(z̃, p)) > ϵ and k < kmax do
6: z̃← z̃ + ∂z

∂q g(z̃, p) // Perform a feasibility correction step, as in (12)
7: z̃← B(z̃) // Project onto box constraints
8: k← k + 1
9: end while

10: return z̃

5. Results

To compute trajectories, we first applied the aforementioned clustering algorithm to
the training data set and generated standardized representative lane centers. These were
then used to precompute trajectories. In this section, we evaluate our proposed method by
applying the runtime algorithm to each lane center in the evaluation data set. These lane
centers are converted into the standardized form in Definition 6. The evaluation data set is
displayed in Figure 6. The focus of our evaluation is on the utilized feasibility correction
algorithm. Hence, we conducted a simulative analysis. We wanted to assess if Algorithm 2
can compute a feasible trajectory for any lane center which may be encountered at runtime.
Thereby, the convergence speed was of interest and was evaluated to ensure the proposed
method meets the requirements of being ressource-efficient. During the selection process
at runtime, we always chose the trajectory with the endpoint (25 m,−1.5 m) in Frenet
coordinates. We did not use real-world environmental information for the selection process.
Our experiments were conducted on a CPU Ryzen 7 Pro 7840U.
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Figure 6. Evaluation data set with cluster assignment. Each color depicts one cluster.
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5.1. Convergence of the Feasibility Correction

Figure 7 illustrates an example for the trajectory computation algorithm given a
specific lane center in the evaluation data set. Here, the trajectory generated by applying
the first-order Taylor approximation regarding the lane center (step 2 of Algorithm 2) is
already close to being feasible and only shows small deviations from the trajectory obtained
after applying further correction steps. Furthermore, it is noticeable that all states and
controls are relatively smooth and jump-free. This is a valuable asset for a trajectory planner,
as it simplifies the problem for the control module.
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Figure 7. Exemplary trajectory during the process of trajectory computation. The selected pre-
computed trajectory, the trajectory after the parametric sensitivity update with respect to changes
in the lane center coordinates, and the trajectory after feasibility correction are displayed. On the
left, the position in Cartesian coordinates is presented; on the right the other states and controls
are presented.

We required a maximum feasibility error of 10−6 to denote a trajectory as feasible,
which was also the requirement during precomputation. When implemented on a vehicle,
this tolerance may be relaxed to speed up runtime calculations. Figure 8 displays the course
of the maximum feasibility error over the number of iterations for each lane center from the
training and evaluation data set. The algorithm exhibits favorable results on both data sets
and terminates successfully in all cases. In the evaluation data set, two instances stand out
due to their considerably higher convergence iterations compared to others. Specifically,
these instances require 105 and 740 iterations to achieve convergence within the prescribed
maximum feasibility error. The slower convergence can be attributed to the presence of a
sharply curved section in the track recording underlying the evaluation data set. The initial
velocity is set to 8 m

s , a speed that would be considered excessive for this particular curve
in typical traffic conditions. Notably, such sharp curves are absent in the training data,
posing a challenge for the algorithm in computing a feasible trajectory within the specified
constraints on steering angle and steering angle velocity. At the beginning of the iteration
process in the feasibility correction algorithm (Algorithm 2), these constraints are violated
by the trajectories resulting from the sensitivity update in steps 2 and 6. The violation is
subsequently corrected during projection steps 3 and 7, which introduces an error in the
differential equation and counteracts the preceding sensitivity update step. Consequently,
many iterations are required to achieve feasibility. Despite these challenges, the algorithm
manages to find a feasible solution.
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Furthermore, the feasibility correction iteration does not only improve feasibility,
but also the objective value. Compared to the trajectory following step 3, prior to the
iteration for correcting feasibility errors, the resulting trajectory has an average objective
value that is approximately 1% better.

The efficiency of the algorithm is illustrated in Figure 9, showcasing remarkably low
computational requirements. The average computation time is 0.2 ms. Even in instances
where a considerably higher number of iterations is needed for feasibility correction,
the computation times remain acceptable. It is essential to emphasize, however, that a
conclusive evaluation of computation times can only be performed on a target vehicle.
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Figure 8. Feasibility errors in every iteration of the feasibility correction. For each lane center from
the training and evaluation data set, one trajectory was computed.

10−1 100

Computation time [ms]

Figure 9. Computation times in milliseconds required at runtime to compute a trajectory for each
lane center in the evaluation data set. The distribution as a violin plot and the individual samples
are displayed.

5.2. Comparison to Re-Optimization

In Section 4.3, we present an approach utilizing the feasibility correction to compute
trajectories at runtime, based on the results from precomputation. We compare this ap-
proach to the actual re-optimization of the re-parametrized optimal control problem. The
precomputation phase for the re-optimization is the same. At runtime, the algorithm
proceeds as follows. First, the best-fitting trajectory from the precomputation phase is
selected, in the same manner as in Section 4.3. After that, the optimal control problem (21)
parametrized with the lane center encountered at runtime is solved in the same way as
during precomputation. The selected trajectory from precomputation is used as a good
initial guess.

Both algorithms are evaluated on the evaluation data set. For each lane center in
the evaluation data set, one trajectory is computed. The point (25 m,−1.5 m) in Frenet
coordinates is always selected as an endpoint for the trajectories. This results in an optimal
control problem (21) parametrized with the runtime lane center. The solution for this
problem is approximated with the proposed sensitivity-based algorithm (Algorithm 2) and
numerically solved by using the described re-optimization. The requirements regarding
feasibility are the same for both approaches.
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For one lane center, the trajectories obtained by applying the two algorithms are very
similar. Table 1 depicts the differences between the related trajectories. All quantities
usually exhibit a low difference. For instance, the position typically differs within the range
of centimeters, which is likely much smaller than the utilized vehicle-dynamics model.

The average relative difference in the objective value between two related trajectories
is 0.07%, with a maximum relative difference of 5%. This is an almost negligible difference.
Still, it is noteworthy that the re-optimization process consistently results in a better objec-
tive value. This is due to the fact that the re-optimization approach typically computes a
trajectory with a slightly smaller end time, which is the predominant term in the weighting
of the objective function. The lower objective value in the re-optimization is reasonable,
as this process involves significant computational effort to achieve actual optimality.

Figure 10 illustrates the effectiveness of the sensitivity approach. The sensitivity-based
approach is much faster in all cases. For most of the computed trajectories, the sensitivity-
based approach needs less than 1% of the computation time necessary for re-optimization.
Even when feasibility correction needs over 700 iterations to converge, the approach is
still about four times faster than re-optimization. Hence, the sensitivity-based update and
correction algorithm outperform the re-optimization. While providing a similar solution
quality, the computation time needed at runtime is much smaller. This comes at the
cost of requiring more disk space to store the sensitivity matrices. However, on a real-
time system, CPU efficiency is usually much more important than disk space, which is
relatively inexpensive.

Table 1. Comparison of the re-optimized and sensitivity-corrected trajectories. For each curve in
the evaluation data set, trajectories were computed by using the two methods. Then, the maximum
absolute difference per trajectory pair was determined. Finally, the mean and variance of these
maxima were computed. The value range represents the minimum and maximum values present in
any of the computed trajectories.

Quantity Mean of Max. Absolute
Difference per Trajectory

Variance in Max. Absolute
Difference per Trajectory Value Range

end time 0.015 4 × 10−3 [5.3, 6.5]

x-position 0.025 2 × 10−3 [−0.8, 25.1]

y-position 0.029 8 × 10−3 [−17.2, 20.9]

yaw 0.004 1 × 10−4 [−1.6, 2.7]

steering angle 0.004 6 × 10−5 [−0.3, 0.6]

velocity 0.031 8 × 10−3 [0.0, 8.0]

acceleration 0.027 5 × 10−3 [−2.7, 0.0]

steering angle velocity 0.009 4 × 10−4 [−0.7, 1.2]

jerk 0.048 1 × 10−2 [−1.4, 4.1]

The computation times of the sensitivity-based approach are within the interval
[0.08 ms, 6.7 ms]. For re-optimization, the computation times are within [21.4 ms, 32.6 ms].
Hence, the relative range of computation times is much larger in the sensitivity-based ap-
proach. It seems to be more susceptible if the solution differs too much from the initial guess.
There is also a theoretical basis for this observation. The sensitivity theorem (Theorem 3)
guarantees the existence of a similar solution in a neighborhood of the reference. Hence,
the difference in the parametrization should not be too large to assure low computation
times and termination with a feasible solution.

The computation times needed for the re-optimization are similar to those observed
during precomputation. For all mentioned computation times, it holds that the trajectory
selection and loading of the precomputed resources require almost negligible computational
effort compared to the feasibility correction and optimization process, respectively.
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Figure 10. Frequency of the ratios of related computation times between the sensitivity-based
approach and the re-optimization. For each curve in the evaluation data set, one trajectory was
computed using the sensitivity-based approach and one using re-optimization. The thereby ob-
served computation time of the sensitivity-based approach was divided by the time needed for
re-optimization.

6. Conclusions

This paper contributes to the relatively sparse but highly relevant research on safe
stop trajectory planning. The presented algorithm efficiently computes a feasible trajectory
with minimal computational cost in real time for various road shapes. A crucial component
in achieving this is the clustering method, which provides representative lane centers. This,
in turn, allows for a precomputation phase, significantly reducing the algorithm’s execution
effort when applied to an autonomous vehicle. However, this comes at the cost of additional
memory requirements, as sensitivity matrices and the nominal solution itself have to be
stored. The resultant trajectory ensures a rapid and comfortable halt in a safe position.
The method achieves efficiency through feasibility correction and inherits the extensibility
of optimal control in terms of problem formulation. This shows potential for improving
the safety and comfort of autonomous vehicles. By means of this multistaged approach,
some common drawbacks of nonlinear optimization can be mitigated. The precomputation
does not underlie real-time requirements. Moreover, it is possible to spend additional
effort during the offline phase for validation or to find globally optimal trajectories. Also,
during runtime, a restriction to simple functions or convex problems is not necessary. As a
novelty, the application of the feasibility correction method is evaluated on such a problem
with a higher-dimensional parametrization of an optimal control problem. We showcase
the efficiency of the algorithm in comparison to engaging in an entire NLP-solving process.
While the solutions are almost identical, the computational effort needed at runtime is
fundamentally smaller. The algorithm’s potential applications extend beyond trajectory
planning, making it an interesting option for various use cases.

In preparation for actual application on a vehicle, it is recommended to define a grid
of initial states and final positions. Trajectories are then computed for all combinations
and cluster centers, ensuring a high degree of flexibility. The introduction of additional
sensitivity parameters allows for the mitigation of errors arising from mapping an arbitrary
initial state to a precomputed one.

It is important to note that the presented algorithm is tailored to scenarios where issues
are detected early, and the current vehicle state aligns with traffic rules. Complex traffic
scenarios, such as those involving intricate maneuvers like lane changes in consideration
of other traffic participants, are not within its current scope. To enhance its capabilities
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in handling such complex situations, options include planning a substitute lane center
around obstacles using polygons interpolating grid points, akin to the approach presented
in [17]. Alternatively, a Voronoi diagram [42] or a simple graph-based algorithm could be
employed to derive a well-suited lane center. Additionally, enhancing the robustness of the
feasibility correction could be explored, for instance, by incorporating a line search method
as proposed in [43].
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