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Abstract: Retired batteries pose a significant current and future challenge for electric mobility due
to their high cost and the need for a state of health (SOH) above 80% to supply energy efficiently.
Recycling and alternative applications are the primary options for these batteries, with recycling still
undergoing research as regards more efficient and cost-effective techniques. While advancements
have been made, researchers are actively seeking improved methods. Repurposing retired batteries
for lower-performance applications like stationary systems or low-speed vehicles is recommended.
Second-life batteries (SLB) can be directly reused or reconstructed, with the latter involving the
disassembly, measurement, and separation of cells based on their characteristics. The traditional
measurement process, involving full charge and discharge cycles, is time-consuming. To address
this, a Machine Learning (ML)-based SOH estimator is introduced in this work, offering the instant
measurement and estimation of battery health without complete discharge. The results indicate that
the model can accurately identify SOH within a nominal capacity range of 1400–2300 mAh, with a
resolution near 45.70 mAh, in under five minutes of discharging. This innovative technique could be
instrumental in selecting and assembling SLB packs.

Keywords: lithium-ion batteries; second-life batteries; state of health; machine learning;
SOH estimation

1. Introduction

Retired batteries have become essential for electric mobility’s present and future [1].
The motivation for this is related to the fact that most types of lithium-ion batteries (LIB)
are suitable for supplying enough energy for high-speed electric cars and trucks when their
state of health (SOH) is above 80% [2,3].

After that, these batteries must be repurposed, either by recycling or a second applica-
tion as a second-life battery (SLB) [4,5]. The recycling process is still under investigation,
and despite several advancements in the last few years, new and optimal solutions must be
compared to actual techniques [6]. Then, reducing costs and improving performance are
necessary to maximize material recovery and eliminate environmental contamination [7].
A review of the recycling methods for retired batteries can be found in [8,9].

The other option is a second application in SLB [10,11]. An SLB can be applied to semi-
or entirely stationary systems to store energy from solar and wind-solar farms [12–14].
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Besides that, SLBs can supply power for low-speed vehicles such as golf carts, trucks, lifts,
automated guided vehicles (AGVs), or others [10,15].

Lithium-ion batteries (LIB) are the most common type of storage system adopted these
days due to the several advantages offered by this technology, such as long lifetime, high
density and capacity, and others [16,17]. However, it is sensitive to failures, and unique
management systems are required to maintain the cells under safe conditions during their
operation [16–18]. Therefore, SLBs need more robustness control due to the unique and
particular characteristics that a pack of them will show, with cells having different capacities
and resistances [11,19,20].

Thus, the cells of an SLB pack must be correctly selected in the packing assembly
phase so as to avoid failures and optimize the cycles of the batteries. In this way, a new
group can be built via direct reuse or new pack formation [21,22].

In direct use, the pack is removed from the original vehicle and coupled into the
second application. This does not require work to understand the characteristics of each
cell. Consequently, a high difference can be acquired in the capacity or impedance of the
cells. This action can lead to a very imbalanced system that can accelerate cell degradation
and reduce cycle time [21].

On the other hand, reconfiguration consists of disassembling the pack, separating
the cells, and measuring the cells according to their capacity, SOH, resistance, and other
factors. Then, the cells are divided into clusters with similar characteristics and assembled
with similar features. The new reconfiguration allows for a pack construction with more
homogeneous cells, reducing the risk associated with a highly imbalanced system [21].

Thus, the second approach (reconfiguration) is more optimal for SLB. However, this
process is prolonged and can take a much longer than re-using [21]. Among the activities,
capacity measurement is one of the most time-consuming, and is not applicable to battery
selection. This high time consumption arises because it is necessary to charge the cells fully
and then discharge them to measure their capacity. Based on the estimated capacity, it is
possible to calculate the SOH of the battery [23].

To reduce the time-consuming traditional approach to capacity measurement used for
SLB selection, this work presents the application of a Machine Learning (ML) technique to
estimate SOH as capacity within a few minutes without knowing the previous characteris-
tics of the cell. In this scenario, the proposed model learns from a historical database, and
can predict the final capacity of the test batteries.

The rest of the work is segmented as follows: The state-of-the-art is discussed in the
second section. Then, in the third section, the proposed idea is elaborated; the results and
discussion are given in the fourth section, and finally, the conclusions follow.

2. State-of-the-Art

SOH is one of the essential indicators of a battery’s health. It indicates how long the
battery will be suitable for in its first or second application. Besides this, it is one of the
most critical inputs for the security control of a battery management system (BMS) [24]. In
the literature, three different approaches are given to estimating the SOH: model-based
(MD), knowledge-based (KB), and data-driven (DD) [24].

MD systems use mathematical calculations, circuit building, and empirical experi-
ments to create algorithms to perform SOH estimations [17,25]. Several applications of SOH
estimation using the traditional model can be found in the literature. A complete review of
the SOH model-based system is presented by Cacciato et al. [26]. The authors applied the
SOH model and then improved the SOH estimation, adding a PI-based observer scheme to
enhance the model’s accuracy and estimate SOC and SOH in real time.

In contrast, KB systems are developed by recognizing the issues under examination.
This approach suits nonlinear and complex problems, such as those observed in the LIBs
curves [17]. In this area, vital works such as that of Dai et al. [27] present a combination
of knowledge-based neural networks to estimate SOH. According to the authors, the
combination could reduce the error to less than 1.7%.
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Finally, the use of DD for LIB applications has increased significantly in the last decade.
That has happened mainly due to the advent of Industry 4.0, the increasing number of
Internet of Things (IoT) devices, and the large datasets available worldwide [28]. The main
contribution of DD is that this approach makes decisions based on the data. It enables the
application of ML and Deep Learning algorithms. These learn from historical data and can
perform inferences in real time [17,29,30].

Several approaches are presented in the literature to estimate SOH using the DD
concept. Wang et al. [31] used Random Forest (RF) and Gated Recurrent Unit (GRU) for
SOC estimations. On the other hand, Jia et al. [32] developed a Gaussian Process Regression
(GPR) model to predict SOH and Remaining Useful Life (RUL) to estimate the lifetime
of the battery. GPR was also used by Wang et al. [33]. The authors performed several
experiments, and the proposed model showed a root-absolute-error (MAE) of just 1.7%.
On the other hand, Chen et al. [34] presented an SOH estimation based on a Support Vector
Machine (SVM).

Besides that, some neural networks have been used to predict the SOH of batteries.
Van and Quang [35] used Long Short-Term Memory (LSTM) to indicate not only SOH
but also the solid electrolyte interphase (SEI) and the internal resistances of the cell. Their
results have been compared with those of a feed-forward network (FNN). Their LSTM gave
better results than FNN.

In the same direction, Zhang et al. [36] used the NASA and CALCE datasets to estimate
the SOH of the batteries. The authors also used LSTM and indicated that the proposed
work could predict the available capacity and RUL of the batteries. Finally, Xu et al. [37]
assessed a combination of convolution neural networks (CNN) and LSTM to estimate SOH.
The authors added a CNN to reduce the neural network degradation generated by the
multi-layer LSTM. According to the authors, the proposed method could estimate SOH
with an RMSE below 0.004 when using the NASA and Oxford datasets.

Differently from the approaches in the above references, SOH is a standard approach
that uses some indirect estimations. It is possible to calculate SOH based on capacity
or internal resistance [30,38,39]. Calculating the SOH based on capacity is a traditional
mathematical approach that takes into account the entire accumulated discharge current
for a cycle. Then, the SOH is derived from the ratio of the actual capacity to the nominal
capacity of the cell, as observed in Equation (1) [30,38].

SOH =
Capacity_current

Capacity_new
(1)

Conversely, SOH can be estimated based on the cell’s internal resistance. SOH esti-
mation based on capacity is more accurate. On the other hand, it is faster when based
on the internal resistance [39,40]. Besides this, according to Hoque et al. [40], two main
characteristics make this parameter excellent for use in SOH estimation. Firstly, internal
resistance is not a linear behavior, unlike the normal aging process of batteries. Therefore,
this indicator can offer an excellent parameter for SOH estimation in early cycles. Secondly,
the model can be applied to different scenarios and conditions because the model does not
need to observe the discharge curve, which consumes a lot of time.

Equation (2) shows the SOH calculation based on resistance [38]. It is calculated by
considering the actual and final resistance when SOH is 100%. Furthermore, as mentioned
in the introduction, a new SLB pack can be formed from reused cells or with a new
reconfiguration. Even though reuse is faster, some of the cells may show severe differences
in their main features, limiting good performance. Therefore, reconfiguration is ideal when
constructing a new SLB pack [21].

SOH =
Resistance_end_o f _li f e − Resistance_actual
Resistance_end_o f _li f e − Resistance_new

(2)
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In this scenario, the worst cell of a pack usually sets the limit of the charge and
discharge process. This limitation is essential to keeping all cells within the safety and
security limits [41]. Therefore, to optimize the cycle time, a new SLB must comprise cells
with similar capacity requirements, degradation factors, and impedance in order to prolong
cycle time while maintaining secure operation [21].

The traditional construction of a new SLB pack comprises several time-consuming
steps. The first step is the disassembly of retired packs. As even batteries from the same
group have different capacities and resistances, it is difficult to maintain and recover
historical data from the cells, and select them, without a batch of experiments. The old
BMS is discarded because it will not be precise in the new application. Therefore, several
experiments are performed after disassembly to measure parameters such as capacity,
impedance, and internal resistance [21,41]. This task consumes a significant amount of time
and effort.

Capacity is one of the most time-consuming processes because it requires fully charg-
ing the cell and discharging it to measure its available energy. Then, the cells are separated
into different groups. Cells with similar characteristics can be grouped into the same
pack and will perform similarly for a new application. After that, cells will be assem-
bled with a new BMS to guarantee the security and performance of the pack. A new
BMS must be selected according to the characteristics of the cells in the new pack and its
application [41,42].

In the literature, some works have prepared such frameworks to reduce the time
taken for SLB pack formation. Meng et al. [42] critically reviewed the Artificial Intelligence
(AI) and ML approaches to LIB disassembly. According to the authors, AI and ML are
prominent tools used for solving the security, heterogeneity, and uncertainty problems in
LIB disassembly. The work also presents applications such as SVM, RF, a combination of
RFID and IoT, and others in this area.

The disassembly of the LIB pack and assembly of the SLB pack is not a new topic,
but the process still takes a long time. Therefore, applying new approaches such as ML
and IA can speed up the process, requiring less energy and time. Besides this, it is a
more secure approach, since there is less manual interaction with the batteries during this
process, which can preclude accidents [43]. In this way, works presented by Zhou et al. [41],
Zhou et al. [44], and Lee and Kum [21] offer interesting frameworks for reducing the time
involved in SLB cell separation and pack formation.

Zhou et al. [41] presented a framework employing an unsupervised bisecting K-means
algorithm combined with a fast pulse test to segment the cells into groups with similar
characteristics. According to the authors, the solution has a comparable accuracy (over
2 min) to the SLB traditional selection process, which takes, on average, 5 h. Compared
to this work, our proposal uses supervised ML to classify batteries. It also finds the
actual capacity of the cell within a few minutes, which will be demonstrated in the
following sections.

On the other hand, Lee and Kum [21] developed a framework to select cells for SLB
according to homogeneous parameters. According to the authors, their primary intention
was to build a homogeneous pack that reduces the variation in cells and the loss of energy
in the group. They developed a screening algorithm that could reduce 60–70% of the
cell-to-cell variation in the pack.

Zhou et al. [44] presented the use of SVM for screening the batteries. The authors
disassembled four packs of batteries in carrying out the model. According to the manuscript,
they reached an accuracy of about 97% and reduced the disassembly time by four-fifths. In
this way, our proposal can reduce the time required from 5 h to a few minutes, and offers
an RMSE of about 45 mAh.

Liu et al. [45] used a data-driven approach with a convolutional auto-encoder to ex-
tract the features of batteries and fuse a feature base, and then use conditional generative
adversarial networks to enhance them. Their results indicate an inconsistent rate reduction
of about 96%. A previous work by Liu et al. [46] used a convolution neural network in
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two-step time-series clustering and hybrid resampling. They applied the model to imbal-
anced data and derived an inconsistent rate of reduction of about 91%.

Gu et al. [47] presented an approach to the large-scale screening of retired batteries
based on cloud-edge architecture. The proposed idea uses a Light Gradient Boosting
Machine trained on the cloud and makes inferences related to the edge to be scaled. The
model uses partial charge/discharge curves and can reduce the time sixfold. The results
indicate an accuracy of about 97%.

However, Lu et al. [43] also demonstrated the use of AI for disassembling retired
batteries, but their work is focused on the security process during the disassembly. They
used a thermal camera to monitor the cell’s temperature and separate the batteries according
to their types and models. Similar work on AI and vision computing can be observed in
Zorn et al. [48], but it focuses more on sorting the batteries.

3. Development Description

As observed in the literature, SOH based on capacity and resistance is time-consuming
and needs to be made more accurate using Coulomb counting. Despite that, ML approaches
can be helpful for SOH estimation because, based on a large dataset, the models can learn
the behaviors of the main parameters of the cell and then predict the SOH.

This work presents a method based on ML to predict the SOH of an SLB according
to its capacity within a few minutes, using an RF approach composed of one hundred
estimators. The basic idea is to indicate the SOH estimation of the SLB without knowing
its characteristics, such as the aging process, internal resistance, internal capacity, and
other features.

Therefore, it is essential to have a dataset featuring a massive variation in capacity.
Then, OD abuse was applied to a LIB cell for 100 cycles. The cell was fully charged for
each cycle using the current-constant and the voltage-constant method. After that, it was
discharged until its voltage was below 1 V, forcing critical degradation.

Figure 1 shows the proposed monitoring architecture. A Programmable Logic Con-
troller (PLC) LOGO from Siemens® was used to collect the main parameters from the
analog inputs. Then, a couple of sensors were used to monitor the cell’s voltage, current,
and temperature during the SOH estimation.

Figure 1. The proposed architecture comprises a PLC, Raspberry, and sensors to monitor the batteries.
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An ACS712 5A has been used to monitor the current of the discharge. This Hall effect
sensor interrupts the flowing current in order to measure its magnitude. Its sensibility is
180 mV for each Ampere. The output is connected to the analog input from PLC. Addi-
tionally, the second analog input receives the cell’s voltage, which is used to monitor the
energy level during discharging.

Conversely, two NTC100K sensors monitor the environmental and cell temperature.
The cell temperature is used to estimate SOH, maintains the operation under controlled
conditions and avoids security and performance problems.

Then, a Raspberry Pi3 communicates with the PLC to request the incoming data. In a
node-red flow written in the Pi3, a node requests data every second using the Modbus TCP
protocol. After each request, the PLC sends a package containing the demanded data with
a response according to the registered table protocol.

To evaluate the proposed idea, an 18650 Samsung LIB with a nominal capacity of
2200 mAh and 3.7 V (see details in Table 1) was used. The cell was charged and discharged
for one hundred cycles under an OD abuse of 1.0 V to provoke loss capacity. During each
charging cycle, the cell was charged in two phases. Firstly, it was charged under a current
constant of 1.7 A until the voltage came to 4.2 V, and then, it was charged under a voltage
constant until its current decayed to zero A.

Table 1. Specifications of the lithium-ion ICR18650-22P battery used in the experiments.

Item Specification

Cathode Nickel-cobalt-manganese

Anode Graphite

Nominal capacity 2200 mAh

Used capacity 1700 mAh

Internal resistance 70 mΩ

Nominal voltage 3.7 V

Upper voltage 4.25 V

Lower voltage 2.5 V

Maximum charging current 1C

Maximum discharge current 10 A

Dimensions Ø18.25 × 65 mm

Weight 42 g

Conversely, the cell was discharged with a constant load of 1.7 Ω. This load maintained
the discharge current rate close to 1C until the voltage reached 2.5 V. After that, the current
decayed due to the low energy availability in the cell. When discharged below the safety
level, low voltage (about 2.5 V) caused a loss of capacity and the internal resistance rise.

The degradation process enhanced the data’s quantity and heterogeneity, which is
very useful when validating the proposed idea under different battery conditions. For each
experiment, the cell’s ambient temperature, the current applied in the process, and the cell
voltage were monitored every second and saved in the CSV file.

Then, the data were uploaded to the Anaconda Environment, where they were pro-
cessed in a Jupyter Notebook using Python. Figure 2 shows the ML pipeline followed
to build and validate the proposed idea. Firstly, the incoming CSV composed a dataset.
According to the degradation rate, this dataset has been split into twenty ranges of capacity,
which will be described in the next section. A cross-validation method was used to select
some cycles of each subset to compose the training subset, and the rest was used to compose
the test dataset; 60% of the data were used for training, and the rest for testing.
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Figure 2. Machine Learning pipeline of the method proposed to estimate SOH of SLB.

Thus, an engineering data analysis (EDA) has been performed to understand the
problem, clean the data, and identify the correlation between the inputs in order to choose
the features of the model, as observed in Figure 2. Following EDA, features were selected to
construct the input data for the RF model. Then, an RF model was built with one hundred
decision tree estimators, with the voltage, current, and temperature as the model’s inputs
(features), and the SOH estimation capacity as the output [49,50].

After the model’s building and training, it was tested with the test subset. The results
will be demonstrated in the next section.

4. Results and Discussion

The data collected from one hundred cell experiments under a process of discharging
to 1.0 V have been saved and uploaded to the Anaconda Environment. Figure 3 shows the
loss capacity of the cell discharged to 1.0 V. According to the picture, the cell lost power,
dropping from 2345 mAh to 1461 mAh, representing a loss of 37% capacity.

Figure 3. Variation of the capacity of the cell under one hundred cycles, when discharged to 1.0 V.

This capacity variation is useful in proving the efficacy of our model, because it
indicates the actual capacities of batteries with different characteristics originating from
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retired packs. Next, the dataset was split into 60% for training and 40% for testing. However,
Figure 3 shows twenty different capacity ranges, each with about five cycles. As observed
in Figure 2, a cross-validation approach has been used to randomly select 60% of each range
to provide the training dataset, while two other cycles of each range have been used for the
test subset.

Next, the EDA was performed. In this step, the noise from the data is cleaned, and
a correlation is constructed to understand the relationship between variables. Figure 4
shows the Pearson and Spearman correlations. The Pearson correlation indicates a linear
relationship [45]. Thus, according to the figure, voltage (v) and temperature (t) have a
high linear correlation, and current has an inverse linear relationship with the capacity
(final_capacity). This proves that a linear model such as RF could be suitable for use in
estimating SOH.

Figure 4. Pearson and Spearman correlations between voltage, current, temperature, and the
cells’ capacity.

Conversely, Figure 4 also shows the Spearman relationship. It indicates not only the
linear but also the monotonic relation between the variables, i.e., if the relation increases, the
monotonic relation suggests that it will continuously increase. The Spearman correlation
also indicates a considerable relation between the variables [51].

Therefore, due to the Spearman and Pearson analysis, voltage, current, and temper-
ature are the features that should be described by the model in Figure 2. After that, the
model is chosen. RF was here selected because of its unique characteristics, making it more
robust than other statistical ML models. RF comprises several decision tree nodes (named
“Estimators”) that endow it with ensemble learning characteristics. This means that each
single estimator will deliver a “weak” answer. Conversely, if the RF model combines all
“weak” answers, it can yield a “strong” answer, reducing the chance of overfitting and bias.
Besides that, compared to neural network models, RF is softer and requires fewer datasets
and lower-powered computing resources [52–55].

With the RF selected, the next step is the selection of hyperparameters. In the literature,
it is possible to find some hyperparameters for tuning RF, such as the tuning-grid search
algorithm (TGSA) or the tuning-randomized search algorithm (TRSA). Both algorithms
attempt all possibilities to find the best option [55]. In this model, the primary search
hyperparameters are the number of estimators, the maximum depth to which the forest
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grows, the minimum number of samples for each estimator (node), and the maximum
number of features [56,57].

Despite all this, we built a simple search hyperparameter with some singular charac-
teristics. By default, this algorithm maintains the number of features, the maximum depth
of the forest, and the minimum number of samples for each estimator. It has a range of
estimators: 20, 40, 60, 80, 100, 120, 140 and 160. The process results show that the best
performance was achieved when using 100 estimators.

Next, as the model seeks to reduce the capacity measurement time of the traditional
process of testing batteries, both training and testing RF models have been employed using
the initial data from each cycle. Firstly, the model was trained and applied using data
from 50 to 300 s. As samples were collected every second, each cycle’s dataset yielded
250 samples related to the three features.

Figure 5 shows the result of the RF applied in cycle number #89. The model received
data from 50 to 300 s to make inferences. According to Figure 5, the actual capacity in this
cycle was 1521 mAh. The RF model yields a value of predicted capacity every second as
well as an error related to the real capacity. However, when the mean was calculated within
250 s, the mean value was a capacity of 1512 mAh, indicating an error of 0.5%. This result
could reduce the testing time for SLB pack formation to 250 s and demonstrate a battery
capacity that is almost the same as the actual value.

Figure 5. Results of the application of RF for cycle number #89.

Besides this, Figure 5 shows one high threshold composed of the mean estimation plus
the root-mean-squared error (RMSE), as well as a low point comprising the mean estimation
minus the RMSE. The high threshold for this case was 1525 mAh, and the low threshold
was 1500 mAh. The predicted values are maintained under the thresholds. According to
the picture, most of the predicted points are inside of the thresholds, indicating the strong
performance of the model.

On the other hand, Figure 6 shows the actual versus predicted capacity based on
the RF model trained and tested using just 250 s of each cycle (from 50 to 300 s of the
experiment). According to the figure, the RF could perform better for all forty experiments.
This error is maintained in Figure 7, demonstrating the RMSE of each cycle.

According to Figure 7, the average RMSE of the model was just 45.7 mAh, representing
a minor error. However, in some cycles, the model had a more significant error. Cycle #1
represents the highest RMSE, with about 130 mAh. Besides this, cycles #5 and #39 had an
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absolute error of 100 mAh. Finally, cycles #9 and #39 had an error above 100 mAh above
100 mAh. Conversely, most cycles had an error below 60 mAh, which could reduce the
mean RMSE by about 45.7 mAh.

A complementary result can be observed in Figure 8, where the actual error percentage
of the RF model is visible. The figure shows a comparison between the mean estimated
capacity and the actual capacity of the cell. In this image, it is possible to see that while
the capacity decays over the cycles, the error in capacity prediction using RF is constantly
maintained, with a maximum error of about 7%, but on average 2.86%, compared to the
actual capacity of the cycles.

Figure 6. Real x predicted capacity of RF SOH estimated for eighty-two cycles.

Figure 7. SOH estimation via RMSE for the RF application with data between 50 and 300 s.

The results indicate the model’s excellent performance in estimating SOH for SLB
based on incoming data ranging from 50 to 300 s. Despite this, it is essential to analyze and
determine whether 250 s is the optimal testing time for SOH estimations of SLB. Then, the
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following experiments will demonstrate the impact on SOH predictions, with variations in
the time of the available data. Therefore, new models have been trained and tested with
different input window times, as shown in Table 2. After re-testing, Table 2 indicates the
RMSE (mAh) results for different RF model databases.

Figure 8. Percentage error of the RF model for each cycle (black) compared with the real capacity of
the cycle (in gray).

Table 2. Results of the variation on RF testing.

Prediction Time(s) RMSE (mAh)

50–100 48.08
50–200 47.85
50–300 45.70
50–400 46.23
50–500 43.34
50–600 47.51
50–700 51.55
50–800 51.83
50–900 51.10
50–1000 53.74
50–2000 46.10
50–3000 43.70

This work aims to estimate a real SOH without knowing the characteristics of the cycle
in the first stage. However, when the model fits better, the problem must be managed. On
the one hand, the best result was given by the 50 to 3000 s dataset, for which the RMSE was
about 43.70 mAh. However, it takes a long time, and the goal of the work is to reduce the
time spent on battery characterization. Therefore, the best option would be to test with a
database for 50–100 s. However, the error here will be more significant and can result in
incorrect conclusions.

Thus, according to Table 1, the best options seem to be variations of 50–300 and 50–400,
for which the RMSE values were 45.70 and 46.23 mAh, respectively. As both RMSEs are
similar, the best variation for OD degradation is 50–300, with which the model can perform
well and quickly. Despite the results, it is essential to highlight that the model performs
well with different time window ranges. This is affirmed by the fact that the highest
RMSE mean error was just 53.74 mAH, which was observed for the 50–1000 s window.
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Therefore, this model’s performance depends on the amount of data and can be used for SLB
pack formation.

Compared to works presented in the literature, our idea has several advantages.
Firstly, it can identify the capacity within a few minutes with a low RMSE, as shown
in Table 2. Besides that, it requires minimal hardware and component resources, which
reduces the cost of the experiments. Finally, the proposed model can be evaluated and
improved with greater data availability, i.e., the more tests it does, the more assertiveness the
model develops.

5. Conclusions

SLBs are becoming an increasingly suitable solution for the use of retired batteries
from electric vehicles. In this area, two options are available regarding new pack formation:
reuse and reconfiguration. Reusing the batteries consumes less time, but the new pack
arrangement can contain batteries with different characteristics. Therefore, reconfiguration
is more appropriate for second applications.

Despite this, reconfiguring a new pack involves disassembling old groups, testing the
batteries, measuring the capacities, resistances, and impedances, and separating the cells to
assemble a new pack. This workload is very time-consuming, and reducing the time spent
on some tasks can accelerate the process.

Among the activities, measurement is one of the most time-consuming tasks because
it is necessary to charge the cell and discharge it in order to calculate the capacity and
estimate some vital indicators, such as SOH.

Therefore, this work represents a novelty in applying an SOH estimator composed of
an RF model to estimate the SOH of the cells within just a few minutes of the discharging
process. In this way, an RF model has been built, trained, and applied to a database
constructed after 90 cycles of the discharging of an SBL with a range capacity between 2200
and 1400 mAh.

The proposed SOH estimator could estimate the capacities of cells with an average
error of less than 45.70 mAh in less than five minutes. Further, in just 100 s, the SOH of the
cells could be estimated with an error below 49 mAh, which indicates that the model is
suitable and helpful for SLB formation.

Finally, this work has presented a technique that can accelerate the classification of
SLBs. However, disassembling cells in the pack is still necessary in order to apply the
algorithm. Thus, in future studies, the authors intend to apply this method directly to a
retired pack without disassembling the cells. This could reduce the time-consuming process
of SLB preparation.
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