
Article

Comparing U-Net Based Models for Denoising
Color Images

Rina Komatsu and Tad Gonsalves *

Department of Information & Communication Sciences, Faculty of Science & Technology, Sophia University,
Tokyo 102-8554, Japan; r_komatsu@eagle.sophia.ac.jp
* Correspondence: t-gonsal@sophia.ac.jp

Received: 31 August 2020; Accepted: 5 October 2020; Published: 12 October 2020
����������
�������

Abstract: Digital images often become corrupted by undesirable noise during the process of
acquisition, compression, storage, and transmission. Although the kinds of digital noise are varied,
current denoising studies focus on denoising only a single and specific kind of noise using a devoted
deep-learning model. Lack of generalization is a major limitation of these models. They cannot be
extended to filter image noises other than those for which they are designed. This study deals with the
design and training of a generalized deep learning denoising model that can remove five different kinds
of noise from any digital image: Gaussian noise, salt-and-pepper noise, clipped whites, clipped blacks,
and camera shake. The denoising model is constructed on the standard segmentation U-Net
architecture and has three variants—U-Net with Group Normalization, Residual U-Net, and Dense
U-Net. The combination of adversarial and L1 norm loss function re-produces sharply denoised
images and show performance improvement over the standard U-Net, Denoising Convolutional
Neural Network (DnCNN), and Wide Interface Network (WIN5RB) denoising models.

Keywords: deep learning; denoising; U-Net; Convolutional Neural Network; Generative Adversarial
Network (GAN); digital art; noise removal

1. Introduction

Digital images inevitably become corrupted by undesirable noise in the process of acquisition,
compression, storage, and transmission. In computer vision studies, it is a common practice to
apply some sort of smoothing and thresholding within an adapted domain to recover the clean
image [1]. An image denoising algorithm takes a noisy image as input and outputs an image where
the noise has been reduced [2]. The purpose of denoising in the image-processing domain goes far
beyond generating visually pleasing pictures. Denoising serves as a building block in the solutions to
enhance the performance of higher-level computer vision tasks such as classification, segmentation,
and object recognition.

Traditionally, filtering and wavelet transforms have been the mainstay image denoising methods.
In particular, the block-matching and 3D filtering (BM3D) has been the state-of-the-art algorithm
for image noise filtering [3]. Some of the well-known wavelet transform denoising algorithms and
applications are found in [4–7]. Convoluting images with filters is another useful technique: for instance,
implementing bilateral filtering for medical images with Gaussian Noise [8], amalgamation using the
blend of Gaussian/bilateral filter and thresholding using wavelets [9] and adopting medial filtering
and non-local means filtering for salt-and-pepper noise [10]. Filtering techniques help smoothing
and reducing traces of noise. However, the smoothing process loses certain edge information,
while convoluting noise with filters moderates colors and makes them different from those of the
source image.
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With the advent of artificial intelligence (AI) and machine learning, researchers began using
multi-layer perceptrons for denoising digital images [1,2,11]. A few studies on the use of recurrent
neural networks for image denoising are also found in the literature [12,13].

A deep neural network (DNN) is said to be a kind of black box. This black box can accomplish
tasks like regression analysis and prediction just like humans do, although the internal functions are
opaque to human beings. In real-world applications, especially in dealing with digital contents, a kind
of deep learning architecture called the Convolutional Neural Network (CNN) is widely adopted.
It showed outstanding performance at the 2012 ImageNet Large-Scale Visual Identity Competition
(ILSVRC) [14]. Sometimes, the performance of CNNs in image classification surpasses that of human
experts [15]. They are routinely used in object recognition [14,16], object detection [17,18] and have
become indispensable in face recognition [19,20] and medical diagnosis through imaging [21,22].

Despite the phenomenal success of CNNs in computer vision, they have a weak point. Their image
classification performance degrades when fed with noisy images [23–25]. Moreover, the deep-learning
architecture in image processing at times must face the serious problem of adversarial attacks, in which
infinitesimal noise is deliberately added to the images to attack the recognition system and produce
misleading recognition [26].

Face recognition, medical diagnoses, and security are some of the most sensitive areas in which
denoising is of paramount importance. It is with this motivation that many deep-learning studies are
devoted to denoising digital images. Although most of the deep-learning techniques used for denoising
have achieved reasonably good performance in image denoising, they suffer from several drawbacks,
including the need for optimization methods for the test phase, manual setting parameters, and a
specific model for single denoising tasks [27]. Furthermore, existing denoising methods either assume
that the noise type of the image is a certain one like Gaussian noise or need additional information of
noise types and levels [25]. Capability of a devoted deep learning model to denoise only a single and
specific kind of noise with the noise information supplied at the input limits the ability of denoising
in real applications. In other words, lack of generalization is a major limitation of these models.
They cannot be extended to filter image noises other than those for which they are designed.

In this study, we propose a generic deep learning denoising model that can handle five different
types of noises: Gaussian noise, salt-and-pepper noise, clipped whites noise, clipped blacks noise,
and camera shake noise. Moreover, its functionality does not require any information about the type and
level of noise as input. The generic deep learning model is based on the architecture of the U-Net [28]
and has three variants: U-Net with Group Normalization [29], Residual U-Net, and Dense U-Net.

For training each denoising model, we used two different types of loss objectives for
backpropagation: L1 norm which calculates the difference between the predicted images and the target
clean images, and the summation of L1 norm and the adversarial loss, following Patch Generative
Adversarial Network (GAN) [30]. The denoising results obtained by training the three models using
ensembles of loss objectives show performance improvement over the standard denoising models
such as U-Net, Denoising Convolutional Neural Network (DnCNN), and Wide Interface Network
(WIN5RB) denoising models.

In particular, a comparative study of the three proposed deep denoising architectures models and
their respective loss objectives has obtained the following results:

• Residual U-Net and Dense U-Net tend to be robust in denoising different kinds of noise even if
the parameters of the noise level are unknown during the training process.

• Comparing the quality of the loss objectives, the stronger L1 norm and the L1 norm summed with
adversarial loss output better peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) results in the testing phase than the simple L1 norm.

This paper is organized as follows: Section 2 presents literature review and related studies.
Section 3 explains our denoising model structure. Section 4 explains the denoising loss functions.
Section 5 describes our lengthy denoising experiments. Section 6 presents the experimental results,
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and the study concludes summing up the results and pointing out the direction for further research in
Section 7.

2. Related Study: Denoising Learning

Traditionally, filtering and wavelet transforms have been the mainstay image denoising methods.
Recently, machine learning has become a new approach applied to denoising digital images.

Autoencoder is a learning architecture that learns to generate output images very close to the
input images. Through learning identity mapping, this architecture compresses the input image’s
information and reduces the dimensionality of the image data [31]. Denoising Autoencoder which
is built on the Autoencoder learning architecture trains to output clean predicted images from noisy
input images. Denoising Autoencoder aims to obtain interesting structure in the input distribution
even if there are small irrelevant changes in the analysis subjects [32,33].

Since CNNs have shown a phenomenal success in computer vision, they have also been trained to
denoise digital images [34,35]. U-Net is a fully convolutional network developed for Biomedical Image
Segmentation such as brain and liver segmentation. The U-shaped structure of the network consists
of a contracting path and an expansive path. The contraction path decreases the spatial information,
while increasing the feature information. The expansive pathway combines the feature and spatial
information through a series of up-convolutions [28]. Variants of U-Net are being used in conditional
appearance, shape generation [36] and image denoising [37].

One would expect the CNN model to excel at the denoising task by adding deeper layers.
Unfortunately, the deeper CNN model does not always output better results; sometimes, the deeper
model outputs worse results than the shallower model. What this mechanism means is that if the
shallower layers in the model have learned enough, the deeper layers need to learn the identity
mapping not to add changes. This approximation task is difficult for the layers. As a result, trained
deeper models cannot achieve satisfactory results, falling into the so-called degradation problem.
Zhang et al. [38] proposed feed forward Denoising Convolutional Neural Network (DnCNN) with a
countermeasure for the degradation problem, employing residual network [39] which adds shortcut
connections in the layer and Batch Normalization [40]. DnCNN outputs residual image from noisy
input image through a single residual net which consists of Convolution-Batch Normalization-ReLU
(CBR) layers.

Generative Adversarial Network (GAN) is a powerful technology consisting of two interconnected
neural networks that are learning competitively [41]. The generative network or generator (G)
produces images that are closer in appearance to the real images, while the discriminative network
or discriminator (D) tries to distinguish the real images from the fake ones. The ultimate goal of the
GAN is to produce images which are indistinguishable from the real ones. GAN provides the latest
approach for image denoising. For example, Yang et al. [42] have proposed a high-frequency sensitive
denoising GAN for low-dose computed tomography. The generator includes two sub-networks one
of which is a high-frequency domain U-Net. Park et al. [43] have designed a fidelity-embedded
GAN to learn a denoising function from unpaired training data of low-dose and standard-dose CT
images. Their experimental results with unpaired datasets perform comparably to methods using
paired datasets. Alsaiari et al. [44] have used GAN to generate high-quality photorealistic 3D scenes in
animation studios which can handle noisy and incompletely rendered images.

Imaging systems with inadequate detectors end up generating low-resolution images with visible
blocky and shot noises. In computer vision, super resolution (SR) refers to a computational technique
that reconstructs a higher resolution image from low-resolution image. Image and video super
resolution studies are found in [45–47]. In super-resolution, images generally lose their finer texture
details when they are super resolved at large upscaling factors. Ledig et al. [48] have experimented
with image super resolution GAN capable of inferring photo-realistic natural images for as high as 4×
upscaling factors.
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Other related studies try denoising Gaussian noise [32,49], or removal of salt and pepper noise [50].
Although most denoising models experiment with removal of synthetic noise superimposed on digital
images, a few of them work with real noisy images [51–53]. However, all the related denoising studies
using deep models are designed for denoising a specific kind of noise. For instance, only Gaussian
noise or only salt and pepper noise. These models cannot be generalized to handle the variety of noises
found in digital images. Moreover, they need the noise information as an additional input [25].

In this study, we propose three variations of a deep-learning model. Each variation can
single-handedly remove any general form of noise in any digital image. Furthermore, it overcomes the
aforementioned limitations of the CNN denoising architectures.

3. U-Net Architectures for Denoising

Our study employed the deep encoder-decoder model called U-Net as the denoising deep model
and constructed three different types of models based on the U-Net.

The original U-Net proposed by Ranneberger et al. [28] consists of the encoder with convolution
layers called the contracting path and the decoder with up-convolution (deconvolution) layers called
the expanding path. The U-Net also consists of the skip connections between the contracting path
and expanding path. When up-sampling feature maps in the U-Net, the outputs from the previous
deconvolution layer in the expanding path are concatenated with the feature maps obtained through
the contracting path.

U-Net is widely used as the segmentation model in biomedical studies. For instance, Ronneberger
et al. [28] utilized it in biomedical image segmentation in cells, Dong et al. [54] applied it to detect and
segment brain tumors, and Çiçek et al. [55] proposed 3D U-Net which outputs 3D dense segmentation
from the raw image directly.

Depending on how to expand the U-Net architecture, U-Net could be utilized to perform tasks other
than segmentation. Isola et al. [30] employed U-Net as the generator and performed image-to-image
translation task like aerial to map segmented labels to real objects, and grayscale images to color
images through adversarial learning. Jansson et al. [56] adopted U-Net as a singing voice separator,
whose input is the magnitude of the spectrogram of mixed audio. Zhang et al. [57] constructed U-Net
with residual block as Residual U-Net and extracted the roads from aerial maps.

These related studies motivated us to investigate into the re-construction and application
of U-Net architecture as a potential generalized denoising learner. Our study constructed the
following three different denoising models based on the U-Net structure: Group Normalization U-Net,
Residual U-Net, and Dense U-Net. Their structures and denoising functionality are described in the
following sub-sections.

3.1. U-Net

In the original structure of the U-Net [28], the size of the input and output image is different.
To be able to evaluate denoising quality with the same size, we reconstructed the model changing the
parameters of the convolution function (Figure 1).

3.2. U-Net with Group Normalization

According to Santurkar et al. [58] introducing batch normalization in the training process makes
the optimization smoother. However, batch normalization needs a sufficiently large batch size.
We constructed the U-Net which adopted Batch Normalization and tried denoising after training.
However, we found the results did not perform enough denoising in the testing phase because of the
small batch size we set. Therefore, we employed the normalization called group normalization [29]
and adopted it into each layer of the U-Net.

By contrast with batch normalization, group normalization sets the groups which consist of the
divided channels of the feature map and normalizes depending on each group. This normalization
does not need large batch size to accomplish the same results as the batch normalization. We call



AI 2020, 1 469

our U-Net with group normalization the U-Net with Gn (Figure 2). When implementing this model,
we removed max pooling layers from the U-Net in Section 3.1 and adopted the group normalization
whose channel size is 32 per group.AI 2020, 1, FOR PEER REVIEW 5 
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3.3. Residual U-Net

Zhang et al. point out that the U-Net is “lazy”, meaning that if the shallower layers in the U-Net
learn enough in optimization, the deeper layers cannot obtain the gradient and learn well. This problem
is the same as the degradation problem. To facilitate the propagation of the gradient information to the
deeper layers, we employed residual learning architecture as in [59]. We adapted a residual block in
each layer in the contracting as well as the expanding path of U-Net with Gn (Figure 3).
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Figure 3. Architecture of the proposed Residual U-Net.

3.4. Dense U-Net

Huang et al. [60] have proposed DenseNet which connects by concatenating channels from
the outputs of all the layers in order to obtain the maximum information flow along the layers.
For comparing the shortcut connection differences between Residual Net and DenseNet, we adopt the
element of DenseNet in our U-Net with Gn. According to the construction of DenseNet, this network
stacks the outputs from the previous layer one by one and concatenates them. We tried adopting this
process to U-Net with Gn, but found this structure takes a lot of time to complete a learning epoch.
Therefore, we employed the structure which concatenates only the input when outputting and defined
this network as Dense U-Net (Figure 4).
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4. Loss Functions for Denoising

This section introduces the loss functions which are used in training for backpropagating each
deep model. Our study employed two approaches: L1 norm and L1 norm + adversarial loss. To explain
the loss functions, this section first gives an overview of the entire denoising learning structure
(Figure 5a,b).
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of discriminator in the proposed Patch Generative Adversarial Network (GAN).

The deep learning model is a typical GAN, consisting of a denoising generator and a discriminator.
For a particular model, the denoising generator contains one of the U-Net variants that we have
described in the preceding section. Noisy images are fed to the generator which generates corresponding
clean images. The discriminator is another deep network (Figure 5b) that learns to discriminate whether
the clean image generated by the generator is real or fake.

In deep learning models, L1 or L2 regularizations (norms) are added to the loss function to
overcome overfitting and improve the generalization of the model to any new test data [61]. The use of
L1 and L2 norms, however, is by trial and error, depending on the image classification or reconstruction
learning task. Pathak et al. [62] demonstrated that L2 produces blurry images, while Adversarial loss
produces sharp images, but not coherent in experiments on inpainting—generating contents of an
arbitrary image region conditioned on its surroundings. They obtained visually pleasing results by the
combination of L2 and adversarial loss, which is computed from the outputs of G and D (Figure 5a).

Isola et al. [30] worked on the image translation problem, such as translating an aerial view of a
map into street view, black and white images to color, daytime scenery to nighttime scenery, edges to
full-color images, etc. They found that L1 with adversarial loss produces overall sharp and closer to
ground-truth images. Our denoising task is a kind of translation, where we translate noisy images to
clean images. Besides, L1 norm is found to be robust to outliers and noise compared to L2 norm [63].
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Therefore, we adopted L1 norm with the intuition that robustness to outliers and noise can be useful
since our model has to single-handedly deal with 5 different types of noises.

4.1. L1 Norm

In our denoising training, each denoising model G aimed to output predicted images approximating
clear targets from noisy inputs. Each model learned under the supervised learning with inputs x and
targets t.

As the reconstruction loss to approximate targets, L1 norm was employed because of the robustness
to outliers. The reconstruction objective can be expressed as:

LL1(G) = Ex,t[‖t−G(x)‖1] (1)

To demonstrate that the strength of L1 norm affects denoising quality, we compared the models
with reconstruction loss λL1 = 1 and λL1 = 100.

4.2. L1 Norm + Adversarial Loss

The problem with L1 norm is that it is not an adequate objective function to output “sharp and
clear” images, because the denoising model learns only from the difference distance. It has been
demonstrated in [41] that the addition of adversarial loss leads to better performance than the model
trained solely with L1 or L2 norm. Isola et al. [30] have proposed adversarial loss based on the patches
from the output. After obtaining an N × N size output through the Discriminator D, each patch is
discriminated as real or fake (Patch GAN).

Our study suggests that Patch GAN might be an effective learning architecture since D has the
power to discriminate patches. We have employed Patch GAN expecting that the denoising model G
denoises in detail to deceive D. The structure of our discriminator D is shown in Figure 5b. Inputting
the pair of images, the adversarial loss is obtained from 16 × 16 output patches by discriminating
between the real—the input pair is the input (noisy image) and the target (ground truth image) and the
fake—the input pair is the noisy input and the predicted image is from G.

The objective can be expressed as:

G∗ = arg min
G

max
D

LAdv(G, D) + λL1LL1(G) (2)

LAdv(G, D) = Et[logD(t, t)] +Ex,t[log(1−D(G(x), t))] (3)

When training the model with this adversarial loss, too, the scalar value of reconstruction loss
λL1 is set to 100 and the weights of layers in the generator and discriminator are initialized from the
Normal distribution with scale = 0.02.

5. Denoising Experiments

5.1. Dataset

For adding various types of noises on purpose, and for training our proposed denoising models
through noisy images and evaluating their performance, we employed the ADE20K image dataset [64].
The ADE20K dataset is for semantic segmentation of the scenes in the images. The scenes are various,
from inside of a room to outdoors and cityscapes. The total number of object classes in the images is
larger than that in COCO [65] and ImageNet [66]. In our experiment, 20,210 images from the training
set and 3352 images from the testing set were used for training and evaluation, respectively.

5.2. Image Pre-Processing

The computer vision library OpenCV was adopted for the pre-processing tasks like adding
different kinds of noises and generating patches from the entire image. This section describes the kinds
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of noises that were generated, the parameters that were used for noise generation, and the arrangement
of input and target data for training.

5.3. Adding Noise to Training Images at Random

In generating noisy images as training set for denoising learning, each image in the training set
of ADE20K was processed with a particular noise that was selected from 5 kinds of noise: Gaussian
noise, salt-and-pepper noise, clipped whites, clipped blacks and camera shake. Gaussian noise and
salt-and-pepper noise affect the texture of content image; clipped whites and clipped blacks enhance
the strength of color and ruin the original color features, and camera shake makes the content image
blurred because of unstable focus. An example of the processed images with their respective visual
effects are shown in Figure 6. Some noises affect the brightness of the image, others clarity, and some
others sharpness. Table 1 shows each type of noise with the respective hyperparameter.

5.4. Generating Patches from the Image

To handle different sizes of the input images, we cropped them to 256 × 256 patch sizes of the input
image (the processed noisy image) and the target image (the image before processing). The process
to generate these patches is illustrated in Figure 7. Repeating the cropping procedure on the images
from the training set, we collected 90,067 patches from 20,120 images. The input patches serve as
inputs to the deep denoising model and the target patches as supervised data. The patches which were
output from the deep denoising model were then gathered and assembled to reconstruct the entire
predicted image.

5.5. Denoising Training Implementation

We implemented denoising learning with the deep-learning framework called chainer [67].
The network was trained on two NVIDIA GeForce RTX 2080 Ti (11 GB) GPUs. In the training phase,
each model learned blind denoising with 90,067 training patches for 30 epochs with batch size = 5
and Adam optimization function. The hyperparameters of Adam were: L1 norm loss; learning rate
α = 0.001, and the exponential rate of momentum, β1 = 0.9. On the other hand, for the training
adopting L1 norm + adversarial loss, we set α = 0.0002 and β1 = 0.5 for stable learning between the
Generator and the Discriminator.

The overview of the denoising training process is described in Figure 8. When training only the
denoising generator G : the algorithm goes through the following steps (S):

S1. Input the noisy images x to G.
S2. Get the predicted denoised output images G(x).
S3. Compute L1 norm loss by comparing G(x) and clean target images t.
S4. Train the parameters of G through backpropagation.
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pwhite (∈ [50, 100]): The value to add to the pixels in the ground
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n (∈ [1, 3]): Number of overlaps above the ground truth image.
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(
∈

[
−

1
50 ,− 1

100

]
or

[
1

100 , 1
50

])
: Scalar to slide the overlapping

image along the x-axis.
ky

(
∈

[
−

1
50 ,− 1

100

]
or

[
1

100 , 1
50

])
: Scalar to slide the overlapping

image along the y-axis.
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5.4. Generating Patches from the Image 

(e) Adding Camera Shake with n, kx and ky.
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5.5. Denoising Training Implementation 

We implemented denoising learning with the deep-learning framework called chainer [67]. The 
network was trained on two NVIDIA GeForce RTX 2080 Ti (11 GB) GPUs. In the training phase, each 
model learned blind denoising with 90,067 training patches for 30 epochs with batch size = 5 and 
Adam optimization function. The hyperparameters of Adam were: L1 norm loss; learning rate 𝛼 =0.001,  and the exponential rate of momentum, 𝛽1 = 0.9 . On the other hand, for the training 
adopting L1 norm + adversarial loss, we set 𝛼 = 0.0002 and 𝛽1 = 0.5 for stable learning between 
the Generator and the Discriminator. 

The overview of the denoising training process is described in Figure 8. When training only the 
denoising generator 𝐺: the algorithm goes through the following steps (S): 

S1. Input the noisy images 𝑥 to 𝐺. 
S2. Get the predicted denoised output images 𝐺(𝑥). 
S3. Compute L1 norm loss by comparing 𝐺(𝑥) and clean target images 𝑡. 
S4. Train the parameters of 𝐺 through backpropagation. 

Figure 7. Generating target and input patches for training.
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On the other hand, when training denoising including adversarial learning, we trained denoising
generator G and discriminator D in the following steps (S):

S1. Input x to G.
S2. Using G(x), input the pair of data (G(x), x) to D and get adversarial loss from D(G(x), x) by

comparing with the real label.
S3. Adopting L1 norm and adversarial loss as the total loss of G, backpropagate and
S4. update the parameters of G.Input pairs of fake data (G(x), x) and real data (t, x), to D.
S5. Calculate adversarial loss by comparing D(G(x), x) with fake label and D(t, x) with
S6. real label. Adopting adversarial loss in Step5 as the total loss of D, backpropagate and update the

parameters of D.
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6. Results

After denoising learning using each model, we evaluated the quality of denoising results with the
test dataset images that we introduced in Section 5. As criteria for denoising evaluation, we employed
PSNR for image quality assessment and SSIM for the similarity evaluation between the ground truth
image and the predicted image. The evaluation procedure is shown in Figure 9.

Evaluating PSNR and SSIM in our model is done as follows:

S1. Input a clean test image and use it as a target image.
S2. Add noise to target image and use it as noisy image.
S3. Crop the noisy image to 256 × 256 size.
S4. Input the noisy cropped images to the deep denoising model, and obtain de-noised cropped images.
S5. Collected cropped output images from the model. Patch them together to form the denoised

predicted image.
S6. Evaluate the predicted image using PSNR and SSIM compared to the target image.
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U-Nets, namely, U-Net with Gn, Residual U-Net and Dense U-Net trained through each of the loss 
objectives could improve PSNR and SSIM for every noise level compared to DnCNN, WIN5RB and 
U-Net. The U-Net with L1 norm (𝜆𝐿1 = 100) recorded the worst PSNR and SSIM because of the 
disruption in the training phase (the loss suddenly began to increase). In Figure 10, U-Net with Gn, 
Residual U-Net and Dense U-Net succeeded in increasing PSNR over 20.0 dB and hardly left behind 
any vestiges of the Gaussian noise. 

 
Figure 10. Denoising images smeared with Gaussian noise (𝝈 = 𝟓𝟎). 

Figure 9. Evaluation process.

Sections 6.1–6.5 below explain the denoising results obtained by using the testing dataset to
which specific noise parameters were added on purpose. For comparing with the related studies of
denoising, we also constructed and trained DnCNN [38] and WIN5RB [68] using the same training
dataset mentioned in Section 5. The best results in each table are shown in boldface.

6.1. Denoising Results: Gaussian Noise

Table 2 shows the average values of PSNR and SSIM using the test dataset setting the Gaussian
noise parameter as σ = 10, 50 and 80. Figure 10 shows the denoised images after inputting the noisy
input image with σ = 50 to each trained model. The best results are in boldface. Our expanded
U-Nets, namely, U-Net with Gn, Residual U-Net and Dense U-Net trained through each of the loss
objectives could improve PSNR and SSIM for every noise level compared to DnCNN, WIN5RB and
U-Net. The U-Net with L1 norm (λL1 = 100) recorded the worst PSNR and SSIM because of the
disruption in the training phase (the loss suddenly began to increase). In Figure 10, U-Net with Gn,
Residual U-Net and Dense U-Net succeeded in increasing PSNR over 20.0 dB and hardly left behind
any vestiges of the Gaussian noise.

6.2. Denoising Results: Salt-and-Pepper Noise

Table 3 shows the average values of PSNR and SSIM with the salt-and-pepper noise parameter
as ds&p = 0.005, 0.01, and 0.3. Figure 11 shows the denoised images after inputting the noisy input
image ds&p = 0.01 to each trained model. Almost all U-Net models could improve noisy images to
over 25 dB. The U-Net with L1 norm + adversarial loss marked the best result, although by a narrow
margin. In Figure 11, each result appears to be adequately cleared of the salt-and-pepper noise.
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Figure 10. Denoising images smeared with Gaussian noise (σ = 50).

Table 2. Average (PSNR)(dB)/SSIM results of different denoising models for Gaussian noise. (The best
results are in boldface).

Denoising Gaussian Noise (PSNR(dB)/SSIM)

Noise Level σ=10 σ=50 σ=80

Noisy 22.890/0.667 14.363/0.255 13.117/0.181

Denoising Models

L1 norm (λL1 = 1)

DnCNN 23.695/0.700 18.388/0.323 16.690/0.244
WIN5RB 19.850/0.685 18.112/0.339 17.226/0.263

U-Net 23.493/0.754 21.924/0.586 19.323/0.494
U-Net with Gn 28.549/0.912 24.333/0.749 22.714/0.662
Residual U-Net 29.085/0.901 24.504/0.722 22.732/0.619

Dense U-Net 27.999/0.885 24.058/0.711 21.777/0.607

L1 norm (λL1 = 100)

U-Net 6.148/0.015 6.148/0.015 6.148/0.015
U-Net with Gn 29.128/0.913 24.147/0.746 22.537/0.656
Residual U-Net 28.684/0.898 24.252/0.724 22.685/0.626

Dense U-Net 29.777/0.911 24.404/0.737 22.257/0.643

L1 norm + Adversarial Loss
(λL1 = 100, λAdv = 1)

U-Net 20.734/0.814 23.663/0.731 21.390/0.640
U-Net with Gn 30.013/0.911 24.885/0.761 22.923/0.672
Residual U-Net 30.668/0.920 24.821/0.760 22.949/0.675

Dense U-Net 29.403/0.913 24.811/0.757 23.047/0.673
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Figure 11. Denoising images with salt-and-pepper noise (ds&p = 0.01).
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Table 3. Average PSNR(dB)/SSIM results of different denoising models for salt-and-pepper noise.
(The best results are in boldface.)

Denoising Salt-and-Pepper Noise (PSNR(dB)/SSIM)

Noise Level ds&p=0.005 ds&p=0.01 ds&p=0.3

Noisy 23.101/0.726 20.121/0.551 7.288/0.032

Denoising Models

L1 norm (λL1 = 1)

DnCNN 27.468/0.883 27.737/0.852 15.957/0.419
WIN5RB 22.970/0.864 23.990/0.843 16.171/0.371

U-Net 24.261/0.796 26.253/0.821 26.844/0.811
U-Net with Gn 35.520/0.968 36.154/0.968 26.282/0.822
Residual U-Net 36.685/0.962 36.954/0.963 25.707/0.804

Dense U-Net 36.409/0.962 36.513/0.961 26.105/0.837

L1 norm (λL1 = 100)

U-Net 6.148/0.015 6.148/0.015 6.148/0.015
U-Net with Gn 33.441/0.959 34.159/0.961 26.286/0.828
Residual U-Net 35.241/0.951 36.055/0.956 26.869/0.820

Dense U-Net 36.352/0.963 36.779/0.964 27.165/0.837

L1 norm + Adversarial Loss
(λL1 = 100, λAdv = 1)

U-Net 39.087/0.984 38.846/0.983 27.792/0.868
U-Net with Gn 35.432/0.961 36.334/0.967 26.267/0.822
Residual U-Net 37.711/0.970 38.382/0.972 26.304/0.826

Dense U-Net 36.224/0.968 37.365/0.969 26.555/0.840

6.3. Denoising Results: Clipped Whites

Table 4 shows the average of PSNR and SSIM for the test dataset with the parameter of clipped
whites as pwhite = 50, 75 and 100. Figure 12 shows the denoised images after inputting the noisy
input image with pwhite = 75 to each trained model. U-Net with Gn, Residual U-Net and Dense U-Net
contributed to improve the average results of PSNR and SSIM for both the loss objectives. As seen
in the visualized results in Figure 12, the over-lit noisy image was denoised so that the shape of the
objects appears very clear. Moreover, all our three models (U-Net with Gn, Residual U-Net and Dense
U-Net) showed excellent performance. Their SSIM value peaked near 0.9 whatever the loss objective.

Table 4. Average PSNR(dB)/SSIM results of different denoising models for clipped whites. (The best
results are in boldface.)

Denoising Clipped Whites (PSNR(dB)/SSIM)

Noise Level pwhite=50 pwhite=75 pwhite=100

Noisy 14.560/0.829 11.265/0.742 9.048/0.656

Denoising Models

L1 norm (λL1 = 1)

DnCNN 20.773/0.826 18.563/0.825 14.056/0.730
WIN5RB 17.363/0.774 16.901/0.785 13.824/0.719

U-Net 17.921/0.709 16.643/0.698 14.057/0.675
U-Net with Gn 27.892/0.952 26.726/0.937 24.870/0.916
Residual U-Net 29.359/0.959 27.839/0.945 23.593/0.903

Dense U-Net 27.716/0.953 27.370/0.942 24.695/0.908

L1 norm (λL1 = 100)

U-Net 6.148/0.015 6.148/0.015 6.148/0.015
U-Net with Gn 29.128/0.959 27.655/0.943 24.648/0.911
Residual U-Net 29.378/0.961 28.090/0.947 24.788/0.909

Dense U-Net 30.857/0.966 27.895/0.950 23.380/0.908

L1 norm + Adversarial Loss
(λL1 = 100, λAdv = 1)

U-Net 26.068/0.946 25.623/0.934 24.422/0.906
U-Net with Gn 27.841/0.953 27.226/0.940 23.760/0.904
Residual U-Net 29.365/0.959 28.044/0.946 24.513/0.914

Dense U-Net 28.660/0.959 27.745/0.946 25.337/0.916

6.4. Denoising Results: Clipped Blacks

Table 5 shows the average of PSNR and SSIM for the test dataset with the parameter of clipped
blacks as pblack = 50, 75 and 100. Figure 13 shows the denoised images after inputting the noisy input
image with pblack = 75 to each trained model. As shown in Table 5, the Residual U-Net and Dense Net
with L1 norm + adversarial loss output the best PSNR and SSIM. As for the visualized output results,
DnCNN, WIN5RB and U-Net with L1 norm (λL1 = 1) left the wrong color in some objects. On the
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other hand, those models that produced PSNR larger than 25.0 dB could handle the color compensation
wherever necessary.
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Figure 12. Denoising images with clipped whites (pwhite = 75).

Table 5. Average PSNR(dB)/SSIM results of different denoising models for clipped blacks. (The best
results are in boldface).

Denoising Clipped Blacks (PSNR(dB)/SSIM)

Noise Level pblack=50 pblack=75 pblack=100

Noisy 26.417/0.802 20.514/0.676 16.678/0.549

Denoising Models

L1 norm (λL1 = 1)

DnCNN 23.045/0.835 22.501/0.781 19.815/0.697
WIN5RB 18.521/0.810 16.727/0.735 14.618/0.638

U-Net 21.378/0.789 21.623/0.769 20.809/0.720
U-Net with Gn 31.453/0.927 28.103/0.880 24.713/0.815
Residual U-Net 31.460/0.926 28.415/0.880 24.426/0.810

Dense U-Net 31.654/0.928 28.194/0.881 24.751/0.815

L1 norm (λL1 = 100)

U-Net 6.148/0.015 6.148/0.015 6.148/0.015
U-Net with Gn 29.941/0.925 27.479/0.879 24.575/0.813
Residual U-Net 30.849/0.923 27.879/0.875 24.644/0.810

Dense U-Net 31.443/0.923 28.250/0.882 24.235/0.811

L1 norm + Adversarial Loss
(λL1 = 100, λAdv = 1)

U-Net 29.259/0.926 27.280/0.886 23.668/0.814
U-Net with Gn 31.892/0.930 28.131/0.881 23.892/0.807
Residual U-Net 32.836/0.934 28.634/0.886 24.481/0.816

Dense U-Net 31.848/0.929 28.398/0.883 24.846/0.818
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Figure 13. Denoising images with clipped blacks (pblack = 75).
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6.5. Denoising Results: Camera Shake

Table 6 shows the average PSNR and SSIM results of the different denoising models for camera
shake with

(
kx, ky, n

)
=

(
1

100 , −1
100 , 1

)
,
(
−1.5
100 , 1.5

100 , 2
)

and
(

2
100 , 2

100 , 3
)
. Figure 14 shows the denoised

images after inputting the noisy input image
(
kx, ky, n

)
=

(
−1.5
100 , 1.5

100 , 2
)

to each trained model.
In Table 6, the Dense U-Net with L1 norm (λL1 = 100) shows better PSNR and SSIM than the one with
L1 norm + adversarial loss. In the visualized results of Figure 14 the models which have achieved
PSNR greater than 24.0 dB make the blurred noisy image clear, rendering the detailed objects in the
image comprehensible.

Table 6. Average PSNR(dB)/SSIM results of different denoising models for camera shake. (The best
results are in boldface).

Denoising Camera Shake (PSNR(dB)/SSIM)

Noise Level (kx,ky,n)=( 1
100 , −1

100 , 1) (kx,ky,n)=(−1.5
100 , 1.5

100 , 2) (kx,ky,n)=( 2
100 , 2

100 , 3)

Noisy 22.698/0.766 19.905/0.602 18.304/0.532

Denoising
Models

L1 norm (λL1 = 1)

DnCNN 20.777/0.720 20.023/0.592 18.378/0.524
WIN5RB 21.115/0.757 20.644/0.628 19.123/0.548

U-Net 19.943/0.698 19.183/0.573 18.202/0.508
U-Net with Gn 26.753/0.835 24.184/0.721 21.899/0.621
Residual U-Net 27.311/0.838 24.770/0.736 22.265/0.633

Dense U-Net 27.030/0.831 24.448/0.722 22.012/0.625

L1 norm (λL1 = 100)

U-Net 6.148/0.015 6.148/0.015 6.148/0.015
U-Net with Gn 26.545/0.830 24.239/0.723 21.887/0.620
Residual U-Net 26.917/0.831 24.496/0.725 21.980/0.623

Dense U-Net 27.560/0.846 25.014/0.749 22.480/0.648

L1 norm + Adversarial Loss
(λL1 = 100, λAdv = 1)

U-Net 24.959/0.813 23.057/0.693 20.803/0.596
U-Net with Gn 27.013/0.835 24.405/0.725 21.978/0.623
Residual U-Net 26.553/0.829 24.068/0.721 21.504/0.619

Dense U-Net 27.120/0.835 24.632/0.732 22.183/0.632
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Figure 14. Denoising camera shake with
(
kx, ky, n

)
=

(
−1.5
100 , 1.5

100 , 2
)
.

6.6. Comparing the U-Net Based Model’s Denoisng Perfromace with Standard Models

Table 7 shows the denoising performance of our model compared with that of some standard
models. The table is divided into 5 sections vertically, each section dealing with the PSNR values for a
particular type of noise. Peak signal-to-noise ratio (PSNR) is the ratio of the maximum possible power
of a signal to the power of corrupting noise that affects the fidelity of its representation. Higher values
of PSNR generally indicate that the reconstruction is of higher quality.
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Table 7. Comparing performance of U-Net based models with standard models. (The best results are
in boldface).

Denoising Gaussian Noise ((PSNR(dB))

Noise Level σ = 10 σ = 50 σ = 80
Noisy 22.890 14.363 13.117

DnCNN 23.695 18.388 16.690
WIN5RB 19.850 18.112 17.226

Best U-Net based model 30.668 24.885 23.047
Residual U-Net (L1 norm +

Adversarial Loss)
U-Net with Gn (L1 norm +

Adversarial Loss)
Dense U-Net (L1 norm +

Adversarial Loss)

Denoising Salt-and-Pepper Noise ((PSNR(dB))

Noise Level ds&p = 0.005 ds&p = 0.01 ds&p = 0.3
Noisy 23.101 20.121 7.288

DnCNN 27.468 27.737 15.957
WIN5RB 22.970 23.990 16.171

Best U-Net based model 39.087 38.864 27.792
U-Net

(L1 norm + Adversarial Loss)
U-Net (L1 norm + Adversarial

Loss)
U-Net (L1 norm + Adversarial

Loss)

Denoising Clipped Whites ((PSNR(dB))

Noise Level pwhite = 50 pwhite = 75 pwhite = 100
Noisy 14.560 11.265 9.048

DnCNN 20.773 18.563 14.056
WIN5RB 17.363 16.901 13.824

Best U-Net based model 30.857 28.090 25.337
Dense U-Net

(L1 norm (λL1 = 100))
Residual U-Net

(L1 norm (λL1 = 100))
Dense U-Net (L1 norm +

Adversarial Loss)

Denoising Clipped Blacks((PSNR(dB))

Noise Level pblack = 50 pblack = 75 pblack = 100
Noisy 26.417 20.514 16.678

DnCNN 23.045 22.501 19.815
WIN5RB 18.521 16.727 14.618

Best U-Net based model 32.836 28.634 24.846
Residual U-Net

(L1 norm + Adversarial Loss)
Residual U-Net

(L1 norm + Adversarial Loss)
Dense U-Net (L1 norm +

Adversarial Loss)

Denoising Camera Shake ((PSNR(dB)/SSIM)

Noise Level
(
kx, ky, n

)
=

(
1

100 , −1
100 , 1

) (
kx, ky, n

)
=

(
−1.5
100 , 1.5

100 , 2
) (

kx, ky, n
)
=

(
2

100 , 2
100 , 3

)
Noisy 22.698 19.905 18.304

DnCNN 20.777 20.023 18.378
WIN5RB 21.115 20.644 19.123

Best U-Net based model 27.560 25.014 22.480
Dense U-Net

(L1 norm (λL1 = 100))
Dense U-Net

(L1 norm (λL1 = 100))
Dense U-Net (L1 norm

(λL1 = 100))

The first row in each section of the table shows the level of noise we have added to each
experimental input image. The noise levels for experimentation are also shown in Table 1 above.
The second row shows the PSNR value computed with the added noise. The next two rows show
the PSNR performance values of the DnCNN and WIN5RB models, respectively. In all the sections,
some variant of our U-Net based model shows the best results, which are far above those produced by
the above two standard models. As seen from the visualized output results (Figures 10–14), our models
produced sharper and clearer denoised images than those produced by the standard U-net, DnCNN,
and WIN5RB.

The table shows a comparison in the performance of our three variants. Residual U-Net and
Dense U-Net tend to be robust in denoising different kinds of noise. Secondly, comparing the quality
of the loss objectives, the L1 norm summed with adversarial loss output higher PSNR values than the
simple L1 norm.
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7. Conclusions

Due to the influence of sensors, transmission channels, and other factors, digital images are
invariably corrupted by noise during the process of acquisition, compression, storage, and transmission.
The presence of subtle noise leads to distortion and information loss adversely affecting the subsequent
image processing tasks such as analysis, recognition, and tracking. Noise removal goes much further
than just beautifying images. The success of image processing like face recognition, biometric security,
remote sensing, object detection and recognition in autonomous driving, and medical imaging rests on
extremely high-quality images. Therefore, image denoising plays an important role in modern image
processing systems.

Several techniques for noise removal are well established in color image processing. While most
of the algorithms act as filters or wavelength transforms, we present a state-of-the-art deep-learning
model for denoising. Furthermore, most conventional models are designed for specific noise like
Gaussian or salt-and-pepper.

The study describes the architectures and functionalities of three types of deep-learning denoising
models, all based on the standard segmentation U-Net: (1) U-Net with Group Normalization,
(2) Residual U-Net with shortcuts applied to the decoder/encoder, and (3) Dense U-Net with
concatenation of input/output feature maps to the decoder/encoder. All the three models adopt
group normalization and convolution in place of max pooling. The error function used for learning is
not a simple L1 norm, but L1 norm with stronger coefficients. In addition, L1 norm + patch loss is also
used. After extensive comparative experiments of noise removal, Residual U-Net and Dense U-Net
with L1 norm + Patch loss function were found to be robust and superior in performance.

The advantage of our model is that it is adaptive and can handle five different types of known
noise in digital images. Furthermore, no additional information about the noise type is necessary while
training the model as in the case of most denoising models. All the three variants outperform the existing
noise reduction models like DnCNN and WIN5RB evaluated by means of the PSNR/SSIM metrics.

Although the purpose of this study has been satisfactorily achieved, there are limitations, too.
First, our noise-removal approach is based on supervised learning. To achieve this, we need paired
data of the input noisy image and the corresponding clean target image. In real-life situations, there is
hardly any dataset containing pairs of noisy/clean images. Most datasets contain only noisy images
without their clean counterparts. In such cases, learning using the L1 norm between the noise-removed
image and the target clean image is not feasible. To cope with such situations, it is necessary to try
unsupervised learning using unpaired datasets such as the CycleGAN architecture [69]. Second,
our model was trained for removal of noise such as salt-and-pepper noise and camera shake that can
be visually verified by human subjects. However, there exist other kinds of noise that are feeble and
almost invisible. The latest adversarial attack security breaches on digital images is one such feeble
and invisible noise. Our model is effective against strong visible noise, but not for detecting weak and
invisible noise. To overcome such a defect, it is necessary to approach the denoising learning with
datasets including invisible weak noise.

The accuracy of current state-of-the-art pattern recognition and deep-learning algorithms for
object detection and recognition is limited by the noise factor. It is expected that by passing the images
through the denoising model developed in our research, features with strong noise can be reduced
and accurate object recognition and detection from images can be performed. The precision and
applicability of our core denoising model can be enhanced by means of further learning using larger
datasets and transfer learning.
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