Article

A Spatial Al-Based Agricultural Robotic Platform for Wheat
Detection and Collision Avoidance

Sujith Gunturu 1@, Arslan Munir *{%, Hayat Ullah !, Stephen Welch 2(0 and Daniel Flippo 3

check for
updates

Citation: Gunturu, S.; Munir, A.;
Ullah, H.; Welch, S.; Flippo, D. A
Spatial Al-Based Agricultural
Robotic Platform for Wheat Detection
and Collision Avoidance. Al 2022, 3,
719-738. https:/ /doi.org/10.3390/
ai3030042

Academic Editor: José Manuel

Ferreira Machado

Received: 9 June 2022
Accepted: 18 August 2022
Published: 30 August 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA

Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA

Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
* Correspondence: amunir@ksu.edu

W N =

Abstract: To obtain more consistent measurements through the course of a wheat growing season,
we conceived and designed an autonomous robotic platform that performs collision avoidance while
navigating in crop rows using spatial artificial intelligence (Al). The main constraint the agronomists
have is to not run over the wheat while driving. Accordingly, we have trained a spatial deep learning
model that helps navigate the robot autonomously in the field while avoiding collisions with the
wheat. To train this model, we used publicly available databases of prelabeled images of wheat,
along with the images of wheat that we have collected in the field. We used the MobileNet single
shot detector (SSD) as our deep learning model to detect wheat in the field. To increase the frame rate
for real-time robot response to field environments, we trained MobileNet SSD on the wheat images
and used a new stereo camera, the Luxonis Depth AI Camera. Together, the newly trained model
and camera could achieve a frame rate of 18-23 frames per second (fps)—fast enough for the robot to
process its surroundings once every 2-3 inches of driving. Once we knew the robot accurately detects
its surroundings, we addressed the autonomous navigation of the robot. The new stereo camera
allows the robot to determine its distance from the trained objects. In this work, we also developed
a navigation and collision avoidance algorithm that utilizes this distance information to help the
robot see its surroundings and maneuver in the field, thereby precisely avoiding collisions with the
wheat crop. Extensive experiments were conducted to evaluate the performance of our proposed
method. We also compared the quantitative results obtained by our proposed MobileNet SSD model
with those of other state-of-the-art object detection models, such as the YOLO V5 and Faster region-
based convolutional neural network (R-CNN) models. The detailed comparative analysis reveals the
effectiveness of our method in terms of both model precision and inference speed.

Keywords: spatial AL; deep learning; depth sensing; robotic platform; collision avoidance; agriculture;
embedded computing

1. Introduction and Motivation

Wheat (Triticum) is one of the most important staple foods in the temperate world,
of which the United States produces 8% of the world’s total [1-3]. Thus, there is a great
need to conduct research on its growth and development in field plot studies conducted as
breeding program wheat performance trials. This helps wheat breeders predict plant traits
(phenotypes), such as yield, based on their genetic constitutions (genotypes). One of the
most important aspects of wheat research is to understand the relationship between wheat
growth and the soil properties (for instance, soil moisture) of the fields where it is grown.
One measuring device is the Geophex Ltd. Gem-2 electromagnetic induction soil electrical
conductivity sensor. It weighs over 15 lbs. and is typically carried manually. To best
support digital agricultural research, soil conductivity would be measured several times
per week. However, a breeding trial that is 50 m x 75m can take four hours, and should be
done at specific times of day.

Al 2022, 3, 719-738. https:/ /doi.org/10.3390/ai3030042 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai3030042
https://doi.org/10.3390/ai3030042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0001-6635-0175
https://orcid.org/0000-0002-3126-8945
https://orcid.org/0000-0001-7098-9182
https://orcid.org/0000-0002-0926-7874
https://doi.org/10.3390/ai3030042
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai3030042?type=check_update&version=1

Al2022,3

720

To facilitate breeding trials, we used a robot to carry the sensor through a field man-
ually guided via a remote control. The robot saves investigators’ time and energy while
trying to acquire the soil’s properties. While remote control provides an easy solution, it
is imperative not to inadvertently harm the wheat in any of the three hundred (300) or
more plots, which are separated by very constricted aisles (9 to 12 inches). As the field
size increases, human control from greater distances becomes hard and the possibility that
the robot will run over the wheat increases. One way to avoid this is to make the robots
intelligent enough to distinguish the wheat from the aisles, turn its wheels to stay aligned
with the aisles (autonomous navigation), and to halt, if, for any reason, that becomes
impossible. This requires not only the detection of wheat in the field of view but also its
distance from the robot. If the robot recognizes wheat far enough ahead, there is time to
align its wheels and avoid collision. However, if the wheat is closer than some permitted
threshold distance (for instance, if a surface irregularity unexpectedly deflects the wheels
toward the wheat a few feet or inches away at the edge of the aisle), there will not be time to
do anything but stop before running over the wheat. This entails the use of spatial artificial
intelligence (AI).

Spatial Al is an ability of an Al system to reason based on not just what it is looking
at but also how far away things are located. Spatial Al applies Al to not only identify
the object but also provide information on where the object, in this case wheat, is in 3D
space. When the robot makes the informed decision to halt, the operator and/or the robot
itself can turn its wheels, while remaining in place, and then, when they are pointed in the
correct direction, restart the acquisition of soil properties.

Our main contributions in this article are as follows:

¢ Design of an agricultural robotic platform for autonomous navigation in crops while
avoiding collisions. The platform uses spatial Al and deep learning models for
collision avoidance and crop (wheat) detection.

¢ Training of different state-of-the-art deep learning models, such as MobileNet single
shot detector (SSD), YOLO, and Faster region-based convolutional neural network
(R-CNN) with ResNet-50 feature pyramid network (FPN) backbone, for object (wheat)
detection.

¢ Performance comparison of the state-of-the-art deep learning models for wheat detec-
tion on different computing platforms.

e Evaluation of the trained deep learning models for wheat detection through various
metrics, such as accuracy, precision, and recall.

The remainder of this article is organized as follows. Section 2 summarizes the
previous works related to object detection and deep learning, mainly focusing on CNNSs.
Section 3 discusses the proposed framework and its technical components. Following this,
Section 4 discusses training evaluation and detailed experimental results. Finally, Section 5
concludes the article with its limitations and future directions.

2. Related Work

Deep learning has played an important role in various fields, such as biology, medicine,
agriculture, and agronomy. This section discusses previous works in the literature related
to computer vision and the use of computer vision in agriculture.

Redmon et al. [4] presented YOLO, a new approach in object detection. YOLO treats
object detection as a regression problem, which is the main difference between YOLO
and prior object detection models. YOLO is very fast, processing images at a higher rate
than other object detection approaches, and gives the best performance in real-time object
detection [5]. As illustrated in Redmon et al. [4], YOLO reasons globally about the image
when making predictions and learns generalizable representations of objects. Results in [4]
reveal that YOLO produces only half the number of background errors as compared to Fast
R-CNN. These reasons led us to use YOLO as our deep learning model for wheat detection.

Al2022,3

721

Inspired by the work of Ren et al. [6], we also implemented Faster R-CNN with an
FPN backbone for real-time wheat detection in the field. Faster R-CNN has achieved
state-of-the-art object detection accuracy on PASCAL VOC 2007, PASCAL VOC 2012 [7,8],
and MS COCO [9] datasets with only 300 proposals per image. These exceptional results
led us to use Faster R-CNN with a ResNet-50-FPN backbone model in our study. Faster
R-CNN and RPN have been used by several entries in many competitions [10]. It should
also be observed that R-CNN with a ResNet-50-FPN backbone not only provides a cost-
efficient solution for practical usage, but also helps improve the accuracy of object detection.
Faster R-CNN is composed of two modules. The first module is a deep fully convolutional
network and proposes regions, and the second module is the fast R-CNN detector that uses
the proposed regions [11]. In this article, the accuracy of YOLO is compared against that of
Faster R-CNN with ResNet-50-FPN [12]. This comparison helped us decide which of the
two models, that is, Faster R-CNN with ResNet-50-FPN or YOLO, is more suitable for our
final implementation in the robotic platform. Results (Section 4.8) reveal that we were able
to attain almost equal accuracy using both the models; however, YOLO is faster than Faster
R-CNN. A more detailed discussion on the accuracies of the two models is presented in
Section 4.10.

Liu et al. [13] have proposed a new approach named single shot detector (SSD),
which discretizes the output space of bounding boxes into a set of default boxes with
different aspect ratios and scales per feature map location. They observed that the SSD
model is relatively simple to train. The SSD model eliminates proposal generation and the
subsequent pixel or feature resampling stage and encapsulates all computations in a single
network. The work done by He et al. [14] is most relevant to our work. They presented a
residual learning framework to ease the training of networks that are substantially deeper
than those used in other state-of-the-art models. The extremely deep representations also
result in good generalization performance on other recognition tasks, which led them to
win 1st place in ImageNet [15] detection, ImageNet localization, and COCO detection
competitions. This state-of-the-art performance inspired us to adopt a ResNet backbone in
our Faster R-CNN models for wheat detection.

Mosley et al. [16] performed experiments on detecting and counting sorghum head
through parameter tuned SSD from the images obtained from unmanned aerial vehicles
(UAVs). Their approach involves parameter tuned anchor boxes, which achieves an out-of-
sample mean average precision of 0.95. However, their proposed system is unable to work
in a real-time environment due to its high computational complexity. Ghosal et al. [17]
explored machine learning-based approaches such as deep convolutional neural networks
for efficient object detection. Their proposed methodology involves a weakly supervised
deep learning framework inspired by active learning for sorghum head detection. They
utilized an object detection framework called RetinaNet with ResNet-50. The backbone
network adopted in this study was the feature pyramid network (FPN). The FPN was
built on top of ResNet-50, and it has shown good results. However, due to complex
architecture of ResNet-50, their method cannot be adopted for real-time object detection
applications. Velumani et al. [18] have investigated the effect of ground sampling distance
(GSD) on detection stage using a Faster R-CNN object detection algorithm for maize plants.
Results have shown promising plant detection and counting with a root mean square
error of 0.08. However, their method uses a computationally complex ResNet-50 feature
extraction backbone in the Retina-Net architecture, which makes their method unsuitable
for real-time applications.

Gonzalo-Martin et al. [19] implemented test time augmentation (TTA) to overcome the
challenges of differences in shape and color of the sorghum head in UAV imagery. Results
indicate that the detection achieved by TTA outperforms detection based on individually
transformed testing sets. Xue et al. [20] proposed a velocity control strategy for autonomous
agricultural vehicles based on the moment state, hazard severity, and distance between the
object and vehicle. Results indicate that their collision avoidance strategy predicts collisions
in real-time with an average detection time of 0.2s. Shutske et al. [21] have developed a

Al2022,3

722

microwave sensor and control system to mitigate the probability of a fast-moving vehicle
colliding with a slow-moving vehicle from the rear. The sensor unit which is outfitted
on the back of a vehicle senses the distance and velocity of a vehicle moving closer from
the rear.

Prior works have not leveraged spatial Al and deep learning models for wheat detec-
tion and collision avoidance in real-time. Furthermore, previous works did not compare the
performances of the state-of-the-art deep learning models for wheat detection on different
edge computing platforms. This work filled the void in previous works by devising a
real-time wheat detection and collision avoidance system and evaluating the performance
of proposed system on a variety of edge computing platforms.

3. Proposed Spatial AI System for Collision Avoidance in Wheat Fields

In this section, we present a detailed discussion of our proposed spatial Al-driven
collision avoidance system and its technical components. The workflow of our proposed
system was divided into three distinct phases, as shown in Figure 1.

Step 1: Data Preparation

Raw Dataset e e e e m e ———————————— - Annotated Dataset

~_
I.’r-

Data Annotation
Bounding box generation in
wheat images from the
collected dataset

11 2

- === =

----- vy
v
- = =
= e [) 1
2 = z z !
ele= 2 0 |2ll2ls |}
- _o " s H H
5 5 5 z S P EPE r—>
=] L =] a 1 = = = 1
[m @= 5] T] S] 1
= i E E E i
a =] = []
- I o o o ! "
’on o Trained
‘MobileNet Base Network ¢ SSD Network Model
MobileNet Base Network etwor

Step 3: Model Conversion and Deployment in Robot

- Wheat Detection in Field

3

\.-FL Convert Trained Model
<[>

to ONNX* Format

> >

—>

1
1
1
1
| Encrypt the ONNX* to
1
1
[}

Blob of

'"111 wn ol
Trained Model 1

<f>
Intermediate
representation

Trained SEmmmm = ———-—-——
Model Model Conversion
ode to Blob

o S
R . A ——

in Field Robot

Figure 1. The visual overview of our proposed spatial Al system for collision avoidance in wheat field.

This first phase was the collection of image data for training from different sources,
including farm sites and online repositories, such as Google Images and Kaggle. The col-
lected image data were then manually annotated for training by generating bounding boxes
on the wheat images. The second phase was the training phase where a computationally
efficient yet robust object detector, such as MobileNet SSD, was trained on our prepared
annotated dataset. Lastly, the third phase converted the trained wheat detection model to a

Al2022,3

723

blob format and then deployed it on the robot for practical use in a real-time application in
wheat fields.

3.1. Data Preparation

In any computer vision problem, the performance of a deep learning model mainly
depends on the quality of the dataset, which is, in turn, nothing but the quantity and quality
of the images. For training our deep learning model, our dataset comprised images from
multiple sources, including farm sites where the robots are used. The data were collected
from the field at Ashland bottoms (KSU Agronomy Research Farm) spread over a latitude
and a longitude from (39.128, —96.6157) to (39.1284, —96.6164) in the city of Manhattan,
Kansas, United States. Most of the images in our collect training dataset were obtained on
the KSU Agronomy Farm with a digital camera, as shown in Figure 2. The images were
taken considering the view of the robot; that is, the training images are like the images that
are to be encountered and predicted by the robot.

Figure 2. Research site (KSU Agronomy farm) in Manhattan, Kansas.

One of the important requirements of our deep learning model is that the image
recognition must be done in all stages of wheat crop; that is, the wheat color can be brown
or green depending on the season or time of operation of the robotic platform. Considering
such variety in training data, we collected both brown and green wheat image data from
the wheat fields. For ease of understanding, sample images of both brown and green
wheat are depicted in Figure 3a,b, respectively. The image shown in Figure 3a was taken
on 4 July 2021, and represents the stage of wheat growth called the reproductive stage.
This is the stage where the wheat heads have fully emerged from the stem. Pollination is
very quick and takes only 3 to 5 days to complete. Thus, the images were taken in quick
succession, forming a dataset comprising 1200 images of pollinated wheat with emerged
heads. The image shown in Figure 3b was taken on 22 June 2021. This stage of wheat
growth is called the maturity stage, which is also known as hard dough. In this phase,
the plant turns a straw color and the kernel becomes very hard. The focus of collected
training images is to get view of robot and make sure that wheat is clearly visible and
can be annotated for training. In addition, we also collected images from online public
repositories, such as Google Images and Kaggle. From Google Images, we downloaded

Al2022,3

724

non-copyrighted images, including both brown and green wheat images. From the Kaggle
repository, we acquired more than 3000 images, and this amount was later increased by
performing data augmentation before training the model. After collecting the dataset, we
manually annotated the collected images by labeling them with bounding boxes (rectangles)
having four coordinates that specify the locations of wheat in the given image. A bounding
box specifies the region of interest by (x, y) coordinates of the upper-left corner and the (x,
y) coordinates of the lower-right corner, which together define a diagonal representation of
a rectangle. The sample annotation of bounding boxes over a wheat image is depicted in
Figure 4.

(a) (b)
Figure 3. The visual overview of wheat at different states. (a) A sample image from the KSU

Agronomy Farm when wheat is in reproductive state. (b) A sample image from the KSU Agronomy
Farm when wheat is in mature state.

00.106445 0.014160 0.212891 0.028320
0 0.690430 0.418457 0.138672 0.139648
0 0.206055 0.397461 0.320312 0.160156

00.346191 0.049316 0.297852 0.098633

00.141113 0.328613 0.282227 0.102539

0 0.846680 0.155762 0.306641 0.131836

Figure 4. The visual depiction of sample annotated image from training data.

3.2. MobileNet SSD Architecture for Wheat Detection

In this research study, we explored different state-of-the-art object detection models,
including YOLO v5, Faster R-CNN, and MobileNet SSD, and compared their performances
for wheat detection. Based on the obtained performance, we determined that the Mo-
bileNet SSD is better than other models in terms of objection detection accuracy, model
complexity, and time complexity. Therefore, we chose MobileNet SSD as the object detec-
tion architecture in our proposed framework (Figure 1) for wheat detection in the field.

Al2022,3

725

A detailed discussion on the proposed MobileNet SSD architecture is provided in the
subsequent subsection.

3.2.1. Architectural Details of MobileNet SSD

This section provides the technical details of the MobileNet SSD architecture employed
in our proposed spatial Al system for wheat detection and collision avoidance. The Mo-
bileNet SSD architecture is an encapsulation of two modules that include a backbone
feature extraction module and an SSD module (containing extra object-specific feature
extraction layers), as depicted in Figure 5. The MobileNet V1 backbone feature extractor
uses depthwise separable convolutions instead of standard convolutions, where each depth-
wise separable convolution layer consists of depthwise and pointwise convolutions, which
greatly reduces the overall complexity of model. The standard MobileNet V1 architecture
starts with a standard convolution layer, followed by 13 depth convolution layers. After the
depthwise separable convolution layers, the obtained features maps are converted to a fully
connected layer and pooled by a maxpooling layer, and finally the softmax layer generates
the probabilities for a predefined number of classes based on the extracted features. Since
here our objective is to use only the learned representation from the MobileNet V1 architec-
ture, we froze the last three layers (fully connected layer, maxpooling layer, and softmax
layer) and used the output from the last depthwise convolutional layer, and fed that to the
SSD detector module as an input.

MobileNet Through the

Last DSC Module SSD (Extra Features Layers) Location
: ’ Head

YvYvY

N

Suppression

Non Maxima

1 —

)
2
(=]
<+
=
o
=
=
2
S
=
<
a

12, 1024 i 256 256 1788
Class Classification Heads

Figure 5. The visual overview of the MobileNet SSD architecture employed in our proposed framework.

The SSD detector module first applies a set of boxes to each cell of the feature maps
learned from the MobileNet V1 architecture. Next, it predicts a score for each candidate
class in the corresponding feature map cell. Consequently, for each map, SSD generates
(Ceandidate +4) /kwh results, where Cgypgidate denotes number of classes, k represents the
number of default bounding boxes, and w and / represent the width and height of feature
map, respectively. The SSD architecture uses several feature maps having different reso-
lutions to take advantage of both low-level and high-level features. Based on the utilized
feature maps in the SSD architecture, the scale of the default box Sy can be mathematically
expressed as follows:

¢ = Sy = Smin ¢ (k1) M
where S,,i; and Sy,x are the scales of the lowest and highest feature map, respectively,
and m represents the number of features maps. The five common aspect ratios of bounding
boxes can be expressed as Ar € {1,2,3,0.5,0.33}, where the width and height of the box
can be computed using Siy/Ag. Similarly, the center of a bounding box can be estimated

i+05 j+0.5
as =
(Ifel 7 1Al

a Jaccard index metric to compute the matches, where the Jaccard value > 0.5 between
the ground-truth and the predicted bounding boxes is considered to be a match box.
Mathematically, the Jaccard index metric can be expressed as follows:

), where |fi| is the size of feature maps and i,j € [0, | f¢|]. Further, SSD uses

Ao
d=— 2
Jaccar A, (2)

Al2022,3

726

where A, denotes the area of overlap (i.e., the common area between the ground-truth and
the predicted bounding box) and A, denotes the area of union (i.e., combined area of the
ground-truth and the predicted bounding box), respectively.

The SSD architecture uses the joint loss function which is the summation of localization
loss Lj,. and classification loss L.;s. The localiztaion loss is smooth L1 loss (L1;;00¢1,), Which
can be mathematically expressed as follows:

N
Lloc(x/l/g): Z Z XZLlsmooth(lim_g]m)/

i€Pos me{cx,cy,w,h}
where (©)

. g‘fx — qcx . gcy — dcy . gw X gh
§ =" & =T g =g\ | & =log|)
i i 1 i

Here, N is the number of correct matches, and the terms d, g, and ! represent the default
bounding box, ground-truth bounding box, and predicted bounding box, respectively.
The symbols cx and cy represent the x and y coordinates, respectively, of the center location
of the default bounding box, and w and / denote the width and height of the default
bounding box, respectively.

The second type of loss that SSD uses is classification loss L;s, which is the loss function
related to the prediction of the object type by the predicted bounding box. The classification
loss of SSD can be mathematically expressed as follows:

N
Lcls(xfc) = - Z xZ‘log(éf) - Z log(é?) 4)
i€Pos icNeg

P
where the term ¢ = M
! Ypexp (c;)

The term ¢; represents the confidence value for the negative match of the bounding box.
Similarly, Pos and Neg represent the positive and negative matches of bounding boxes,
respectively. The term x, is an indicator variable which verifies the match of the ith default
bounding box and the jth ground-truth bounding box for class p. Together with both loss
functions, the joint loss function Loss;.,; can be calculated as follows:

represents the model’s predicted confidence score for class p.

1
Losstotal = *(Lcls(x/@ + ‘XLloc(x/ l/g)) (5)

N
where N denotes the total number of correct matches and « represents the weight factor for
the localization loss.

3.2.2. Motivation of Using MobileNet SSD for Wheat Detection

The selection of a suitable model for the problem under consideration is very challeng-
ing, particularly when the computing resources onboard the robot are limited. This section
briefly discusses the reasons why we have chosen a MobileNet SSD architecture over YOLO
V5 and Faster R-CNN architectures for our spatial Al-based framework. Several factors,
such as model complexity, model accuracy, and model inference time, need to be considered
while dealing with resource-constrained computing platforms and their usage for practical
industrial applications, such as agriculture. To choose a suitable optimal object detection
model, we have conducted extensive experiments and evaluated MobileNet SSD, YOLO
V5, and Faster R-CNN models based on the aforementioned criteria. Based on the detailed
model evaluation experiments (Section 4), we chose MobileNet SSD for our proposed
framework, as MobileNet SSD model balances tradeoffs between model accuracy, model
complexity, and inference time. Furthermore, MobileNet SSD is feasible for computing
platforms with limited memory and resources, such as LattePanda, Raspberry Pi, and Intel
Neural Compute Stick.

Al2022,3

727

3.3. Model Conversion and Deployment on Field Robot

In this section, we discuss the conversion of the trained model to a blob format and
its deployment on a robot for real-time wheat detection in the field. The proposed model
conversion module is three-fold, which converts network binaries at three levels and
obtains the final blob representation of the trained model, as shown in Figure 6. The model
conversion module starts with the input trained model and converts it into an open neural
network exchange (ONNX) format. The model conversion module encode the model’s
metadata in protocol buffer format (having extension .proto), which provides only the
data type information (e.g., float32) of the trained model layers and learned knowledge
in a JSON file. The next level of conversion is an intermediate representation, which is
an ad hoc extraction of the ONNX information designed to facilitate its conversion to the
final blob format. To enable the use of custom-trained models by DepthAl [22], converting
them into a blob file format optimizes the best inference on Myriad X processor. The first
three steps in model conversion pipeline are coded using open source modules publicly
available in Python; the last step (also programmed in Python) is done via an online API
call to software provided by Luxonis [23].

Trained model > ONNX format Intermediate Blob

weights / representation

/
L

Figure 6. The visual overview of workflow for model conversion to blob format.

3.4. Workflow for Robot Operation and Collision Avoidance

In this section, we discuss the decision-making and collision avoidance workflow of
a robot for wheat detection in field. The robot used in this research was equipped with a
stereo camera [24] and the trained model. For better understanding, the operations of our
proposed robotic system are put into two categories, namely, wheat detection and collision
avoidance. The first category of robot operation is wheat detection, where the mounted
stereo camera, along with the trained model, helps the robot to not only detect the wheat
in the field but also supervises it to drive on the right path in the field to avoid collisions.
The second category of robot operation is to avoid collisions with wheat via depth sensing
and communication between the robot and the embedded computing device using the
PySerial APL Both collision avoidance through depth sensing and communicating via
PySerial API are discussed in detail the following subsections.

3.4.1. Collision Avoidance via Depth Sensing

The above section described how the object detection is achieved. However, the final
decision on when to stop the robot is solely based on the distance between wheat and the
robot. Thus, the depth information is crucial. To acquire depth sensing, left and right stereo
cameras outfitted on the OpenCV Al kit [24] were utilized, and the object detection was
accomplished by the red, green, blue (RGB) camera outfitted at the center of the OpenCV Al
kit. An OpenCV Al kit was put on the robot. The OpenCV Al camera neither uses weights
of the model nor the model directly to perform object detection; rather, it uses a blob which
was obtained from the OpenVINO model. The blob conversion is accomplished using open
source software provided by Luxonis [23], as discussed in Section 3.3. The obtained blob is
then used in detecting wheat, and left and right stereo cameras of the OpenCV Al kit are
used in estimating the distance of wheat from the camera (and thus the robot).

3.4.2. Communicating with the Robot Using PySerial

To stop the robot when it detects wheat at less than the threshold distance, a con-
nection needs to be established between the robot and the embedded controller board
(LattePanda [25] in the case of our implementation). LattePanda has a Universal Serial
Bus (USB) port, which is connected to the Arduino controller of the robot. When the deep

Al2022,3

728

learning model detects wheat, it sends a signal to the USB port, via which the signal is sent
to the robot’s speed controller, which adjusts the robot’s speed. A flowchart of this process
is shown in Figure 7, and the related code snipped for robot control is shown in Figure 8.
This code snippet is embedded into depth-sensing code for communicating with the robot.
In the code, “conf” represents the confidence of object detection, whose threshold can be
adjusted by the designer depending on the performance of the model.

Output

Robot
Operating

Distance Less
than Threshold

Yes Stop/Notify/

—> Detect Wheat

Input

Align

A

(x):
arduino serial.Serial(port = 'COME&', baudrate = 9600, timeout = 5)
arduino = write (bytes(x, "utf-8"}))
time.sleep(.05)
data = ardulno.readline ()

arduino.close ()
return data

> 0.90 and distance < THRESHOLD DISTANCE:

Figure 8. Code snippet to perform collision avoidance.

4. Training Evaluation and Experimental Results

This section provides a detailed discussion on the training phase of this research
study. First, we discuss data augmentation as a preprocessing step. Next, we present
the embedded computing platforms with which we performed feasibility analysis to
determine their suitability for deployment on our robotic system. We then briefly discuss
the evaluation metrics for performance evaluation and comparison, followed by training
details of MobileNet SSD and other comparative object detection models (YOLO V5 and
Faster R-CNN).

4.1. Data Augmentation

Image augmentation is the process of taking the images that are already present in the
training dataset and manipulating them to create various altered versions of the same image.
Augmentation provides more images to train and gives a different viewpoint to the classifier.
Different viewpoints can represent changes in the saturation, color, crop, and horizontal
and vertical flips. To create augmented data, we used a PyTorch orientation module named
Albumentations. Albumentations is a module where all the necessary augmentation steps
for augmentations are provided in predefined functions. These functions are applied to
the image dataset to create manipulated images, which are then used for training the deep
learning model. A few examples of augmentations applied are:

Al2022,3

729

SmallestMaxSize: Rescales an image so that the minimum size is equal to the given maxi-
mum size, while keeping the aspect ratio of the initial image.

ShiftScaleRotate: Randomly assigns transforms, such as translate, scale, and rotate, to the
input images.

RandomCrop: Crops a random part of the image.

RGBshift: Randomly shifts values for each channel of the input RGB image.
RandomBrightnessContrast: Randomly changes brightness and contrast of the input image.

The transformations of training image after data augmentations are visually depicted
in Figure 9.

f) Hue saturation

Figure 9. Sample images from the augmented training dataset.

4.2. Embedded Computing Platforms

We benchmarked the deep learning models on various embedded computing plat-
forms that are suitable for integration with the robotic platform for wheat detection. The em-
bedded computing platforms that we leveraged in our experimentation and benchmarking
included LattePanda, Intel Neural Compute Stick (NCS), and OpenCV Al kit. Here, we
summarize the main characteristics of these embedded computing platforms.

4.2.1. LattePanda

LattePanda Alpha 864s [25] is a high-performance, palm-sized embedded board
that runs Windows 10 and has low power consumption. It is being widely utilized in
edge computing, vending, advertising machines, and industrial automation. This palm-
sized machine was outfitted onto our autonomous robot and was used for running the
deep learning model(s), communicating with the operator, and communicating with the
robot’s integral components. Key features of LattePanda Alpha 864s are an Intel Core
M3-8100Y dual-core processor operating at 1.1-3.4 GHz, an Intel Ultra High Definition
(UHD) Graphics 615, 8 GB Memory, and an integrated Arduino ATMEL 32U4 co-processor.

4.2.2. Intel Neural Compute Stick

Intel NCS [26] is an accelerator for deep learning to enable the deep learning model to
recognize objects at a high rate of frames per second. It can support heterogeneous execution
across computer vision accelerators implemented on a central processing unit (CPU),
graphics processing unit (GPU), vision processing unit (VPU), and field-programmable gate
array (FPGA). It supports the Intel OpenVINO toolkit, and also supports various operating

Al2022,3

730

systems, including Windows, Mac, and Ubuntu. It integrates an Intel Movidius Myriad
X VPU. It supports various machine learning frameworks, including TensorFlow, Caffe,
Apache MXNet, Open Neural Network Exchange (ONNX), PyTorch, and PaddlePaddle via
an ONNX conversion.

4.2.3. OpenCV AI Kit

OpenCV AI Kit with Depth (OAK-D) [24] is a spatial Al platform that can simultane-
ously run advanced neural networks while providing depth from two 1 megapixel (MP)
global shutter-synchronized stereo cameras, one on the left and one on the right, and color
information from a single 4K 12 MP RGB camera in the center. OAK-D is essentially a
smart camera with neural inference and depth processing capability. OAK-D can be used
with any host operating system that OpenVINO supports. It supports 4K /30 fps H.265,
JPEG, H.264, and H.265/HEVC encodings [27].

4.3. Evaluation Metrics

In the following, we discuss the evaluation metrics we have utilized for evaluating
our deep learning models.

4.3.1. Precision

Precision P measures the accuracy of a model’s prediction; that is, precision quantifies
the percentage of correct predictions [28].

TP

P =55 Fp

©
where TP denotes true positives, that is, predicted as positive correctly; and FP denotes false
positives, that is, predicted as positive, incorrectly.

4.3.2. Recall

Recall R measures how well a model finds all the positives [28]:

TP

R=Tp1EN

@)
where TP signifies true positives, that is, predicted as positive correctly, and FN represents
false negatives, that is, predicted as positive, incorrectly.

4.3.3. Intersection over Union (IoU)

An object detection system’s predictions are characterized by a bounding box and a
class label [28]. For each bounding box, the measure of correctness is defined by an IoU
metric, which measures the overlap between the predicted bounding box and the ground

truth bounding box; that is,
Ao

IoU = A, 8)
where A, and A, are area of overlap and the area of union, respectively. For object
detection tasks, precision P and recall R are calculated using the IoU for a given loU
threshold. For example, if IoU prediction is greater than the IoU threshold, then we classify
that prediction as true positive (TF). If the IoU value for a prediction is less than 0.5, say 0.4,
we classify that prediction as a false positive (FP). This implies that for a given prediction,
we may get different binary TP, FP, and false negative (FN) values, and thus different P
and R values, by changing the IoU threshold.

4.3.4. Mean Average Precision (mAP)

The average precision (AP) for a given class is obtained by calculating the area under
the precision-recall (PR) curve for the object detections. The mAP is the average of AP over

Al2022,3

731

all classes and/or overall IoU thresholds for a set of detections. Often, interpolated AP,
in particular, 11-point interpolated AP, is used for calculating mAP.

4.4. Training YOLO

The final and the most crucial part of creating a real-time deep learning model is
to train the model on training images. YOLO performs supervised training for object
detection. We performed the training of our YOLO model in Google Collaboratory using
Colab Pro subscription. Google Collaboratory provides Nvidia Tesla K80 GPUs that have a
dual-GPU design with 4992 CUDA cores (2496 CUDA cores per GPU). Nvidia Tesla K80
has a 24 GB of GDDR5 memory and has a PCI Express (PCle) interface. For every cycle of
data collected from the KSU Agronomy Farm, YOLO was trained on approximately 2000+
images for 7.679 h of GPU time. The training was performed on a pretrained model with
available weights of a large YOLO model. As the new images were added to the dataset,
training was performed on the new images to update the model weights. The training,
validation, and testing splits for different data sources are given in Table 1. Training was
done by setting image size to 1024 x 1024, batch size to 16, and the number of training
epochs to 100.

Table 1. Training, validation, and testing splits (%) for different data sources.

Image Source Training Validation Testing
Kaggle 80 10 10
Google Images 80 10 10
KSU Agronomy Farm 70 10 20

4.5. Training Faster R-CNN with ResNet-50-FPN

We have used stochastic gradient descent (SGD) as an optimizer in training this model.
The learning rate (LR) scheduler used in training this model was step LR. The loss function
used in the Faster R-CNN was binary cross-entropy in the first state of the region proposal
network (RPN), and the classification loss used was normal cross-entropy [6]. Training was
performed in Google Collaboratory. The initial training of Faster R-CNN with ResNet-50-
FPN took 8 h of GPU time for 2000+ images. Object loss comparison between YOLO and
Faster R-CNN with ResNet-50-FPN while training is shown in Figure 10. To insure the
timely convergence and avoid over-fitting, we used an “early stop” strategy that allows one
to stop the training if the model converges well-enough and there is no room for further
improvement in training and validation losses.

4.6. Training MobileNet SSD

The anticipation and classification of bounding box positions in SSD architecture was
done in a single pass by a single convolutional network in the SSD architecture. The network
consists of a base architecture followed by several convolution layers. Originally, MobileNet
SSD model was trained on a benhmark object detection dataset called “COCO dataset”.
In this research, we used the pre-trained MobileNet SSD model and retained it on our
wheat images dataset using a transfer learning approach. We utilized Tensorflow object
detection API and Model Zoo resources for training MobileNet SSD and other two object
detection models, including YOLO V5 and Faster R-CNN. The MobileNet SSD, due to its
single shot approach to recognizing several objects in the image, is faster as compared to
two-shot RPN based approaches, such as R-CNN. TensorFlow Object Detection APl is a
framework designed to solve object detection problems. Model Zoo consists of pretrained
computer vision models on the COCO dataset and the KITTI dataset.

Al2022,3

732

0.45 - — YOLO
Faster R-CNN with ResNet-50-FPN
0.40 -
» 0.35
S
-
(&}
2
8 0.30
0.25
0.20
0 20 40 60 80 100
Epoch

Figure 10. Object loss for YOLO and Faster R-CNN with ResNet-50-FPN.

4.7. Testing YOLO

To test the performance of YOLO, the model was run on test images from the dataset.
The performance of the model P, is defined by the following equation.

_ Np

p, = P

©)
where Np denotes the total number of wheat heads detected and Nt denotes the total
number of wheat heads present in the image. Our YOLO model achieved a performance
of 0.93 on the test dataset. The weights of this model were saved for future training and
inference in the field.

4.8. Testing Faster R-CNN with ResNet-50-FPN

Our Faster R-CNN with ResNet-50-FPN model achieved a performance of 0.90 (using
Equation (9)) in identifying the wheat heads. Results indicate that the performance of
YOLO is 3.33% higher as compared to the Faster R-CNN with ResNet-50-FPN. Testing
was done on LattePanda [29], which is the actual embedded computing platform used for
real-time detection in the field.

4.9. Testing MobileNet SSD

We have evaluated the accuracy of our MobileNet SSD model using our images
collected from the Agronomy farm (Figure 2). Results indicate that MobileNet SSD attained
accuracy close to those of Faster R-CNN with ResNet50 FPN and YOLO. Results show that
MobileNet SSD caused a slight decrease in detection accuracy: 5% and 3% as compared
to YOLO and Faster R-CNN, respectively. Since the major concern in this study was to
attain high speed inference on embedded platforms, we deployed MobileNet SSD on the
OpenCV AI kit. Results reveal that the model achieved 12-13 fps on 600 x 600 images and
18-23 fps on 300 x 300 image.

4.10. Comparing YOLO, Faster-R-CNN, and MobileNet SSD
After training both YOLO and Faster R-CNN with ResNet-50-FPN on the training
dataset, results revealed that the models attained almost identical performance results in

terms of wheat head detection (Equation (9)). Results further indicate that the speed of
YOLO is three times faster than that of the Faster R-CNN with ResNet-50-FPN. Figure 11

Al2022,3

733

shows time taken in seconds by the three deep learning models to perform inferences for
various numbers of images.

—— YOLO on LattePanda at 640x640
800 1 Faster R-CNN with ResNet-50-FPN on LattePanda at 640 X 640

—— MobileNet SSD on LattePanda at 640 X 640
700 A

600 -

Time in seconds
N w = wu
o o o (=)
o o o o
; . ; X

100

20 40 60 80 100
Number of images

Figure 11. Time taken to perform wheat detection.

4.11. Benchmarking Deep Learning Models on Various Embedded Computing Platforms

Figure 12 and Table 2 depict the time taken in seconds to perform inferences for various
number of images on different embedded computing platforms. The deep learning models
that we benchmarked included YOLO, Faster R-CNN with ResNet-50-FPN, and MobileNet
SSD. The embedded computing platforms on which these models were run included Intel
stick, OpenCV Al kit, and LattePanda. Results indicate that MobileNet SSD on the OpenCV
Al kit at an image size of 300 x 300 achieved the lowest inference time, whereas Faster
R-CNN with ResNet-50-FPN at an image size of 640 x 640 resulted in the highest inference
time among the compared models.

Al2022,3 734

Table 2. Time taken to perform wheat detection on various platforms.

YOLO on Faster R-CNN on MobileNet SSD YOLO on Intel Faster R-CNN on YOLO on MobileNet SSD MobileNet SSD
Images LattePanda at LattePanda at on LattePanda Stick 640 X 640 Intel Stick OpenCV AI Kit on OpenCV Al on OpeCV AI Kit

640 X 640 640 X 640 640 X 640 640 X 640 at 640 X 640 Kit at 640 X 640 at 300 x 300

10 22.13 86.33 34.33 15.49 60.43 24 0.93 0.52

20 45.19 171.74 75.85 31.63 128.80 5.64 1.88 0.52

30 65.68 256.17 128.74 45.32 181.88 8.21 277 1.55

40 86.31 353.87 153.94 63.71 254.79 9.69 3.76 2.06

50 107.91 420.85 211.5 84.24 303.01 12.40 4.38 2.56

60 133.38 520.19 261.43 93.36 374.53 13.47 5.85 3.31

70 150.23 585.90 309.73 102.70 433.56 15.02 6.48 3.64

80 174.49 680.53 384.76 132.62 496.79 17.44 7.65 4.14

90 197.60 770.64 456.66 146.22 562.57 17.96 8.35 4.63

100 214.36 837.08 511.13 160.97 627.81 23.84 9.37 5.15

Al2022,3 735

YOLO on LattePanda at 640x640

Faster R-CNN with ResNet-50-FPN on LattePanda at 640 X 640
MobileNet SSD on LattePanda at 640 X 640

YOLO - Intel Stick at 640 X 640

Faster R-CNN Intel Stick at 640 X 640

YOLO on the OpenCV Al kit at 640 X 640

MobileNet SSD on the OpenCV Al kit at 300 X 300

MobileNet SSD on the OpenCV Al kit at 640x640

800

600

Time in seconds

200

20 40 60 80 100
Number of images

Figure 12. Time taken to perform wheat detection on various platforms.

4.12. In-Field Real-Time Object Detection and Depth Sensing

The performances of our object detection and depth-sensing models were tested
in the KSU Agronomy Farm (Figure 2) where the robot was deployed. As indicated
above, MobileNet SSD was used for real-time object detection in the field. The results
of object detection are shown in Figure 13, and the results of depth sensing are shown
in Figure 14. The effectiveness of the wheat recognition can be increased by varying the
threshold /confidence level of the model.

Figure 13. Real-time detection of wheat heads in the field.

Al2022,3

736

Figure 14. Real-time depth sensing of wheat in the field.

5. Conclusions

In this study, we designed an autonomous robotic platform that performs collision
avoidance while navigating in crop rows using spatial AL. We explored and compared
various deep learning models to determine the models that can provide high accuracy
and inference speed on relatively low-cost embedded devices, such as LattePanda, Intel
Neural Compute Stick, and OpenCV Al Kit, which are suitable for integrating on the
robotic platform. We trained a MobileNet SSD architecture and other comparative object
detection models, YOLO V5 and Faster R-CNN, on our prepared wheat images dataset.
The experimental results revealed that the MobileNet SSD model attained the best detection
performance on LattePanda for wheat detection with the runner-up inference speed (YOLO
V5 was fastest), thereby dominating Faster R-CNN model in terms of both model detection
accuracy and inference speed. Thus, MobileNet SSD achieves a better trade-off between
model accuracy and time-complexity. Furthermore, results indicate that MobileNet SSD
outperforms YOLO V5 on OpenCV AI Kit in terms of both model accuracy and inference
speed. These results indicate that the MobileNet SSD model is a suitable candidate for
real-time applications on resource-constrained computing platforms by providing stable
accuracy and fast inference speeds. After these experimental evaluations, the trained Mo-
bileNet SSD model was combined with the stereo depth sensing on OpenCV kit mounted
on our robotic platform to detect the distances of the objects (i.e., wheat) from the camera
to avoid collision with wheat.

The current work had limitations, such as (i) not making the robot fully autonomous,
and (ii) not identifying alleys present in the field. These limitations can be eliminated by
using segmentation techniques to detect alleys in the field and making the robot fully au-
tonomous using path planning algorithms, such as the dynamic window collision approach.
Path planning algorithms can be combined with deep learning models to achieve fully
autonomous driving of the robot. In the future, we plan to include a segmentation-based
approach for path identification, which will make our robot more intelligent while moving
in the field for wheat detection.

Author Contributions: Conceptualization, A.M., SW.,, and D.E; methodology, S.G., AM., HU,, SW,,
and D.F; software, 5.G.; validation, S.G.; formal analysis, S.G. and A.M.; investigation, A.M. and S.W.;
resources, A.M., SW.,, and D.F; data curation, S.G.; writing—original draft preparation, S.G. and
AM.; writing—review and editing, A.M., H.U., and S.W,; visualization, S.G. and A.M.; supervision,
A.M.; project administration, A.M., SW., and D.F; funding acquisition, S.W. and D.E. All authors
have read and agreed to the published version of the manuscript.

Al2022,3 737

Funding: This research was funded in part by the NSF/EPSCoR grant #1826820 to Kansas State
University. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the NSF.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corre-
sponding author on reasonable request. The data are not publicly available due to proprietary reasons.

Acknowledgments: This research was supported in part by NSF/EPSCoR grant #1826820 to Kansas
State University (KSU). Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the NSE. The authors
would also like to acknowledge Calvin Dahms (cmdahms@ksu.edu) from KSU for his support for the
robotic platform and help with taking the images from the robotic platform used in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Asseng, S.; Ewert, E; Martre, P; Rotter, R.P; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.].; Wall, G.; White,] W.; et al.
Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143-147. [CrossRef]

2. Tack, J.; Barkley, A.; Nalley, L.L. Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. USA 2015, 112,
6931-6936. [CrossRef] [PubMed]

3. Thsan, M.Z,; El-Nakhlawy, ES.; Ismail, S.M.; Fahad, S.; Daur, I. Wheat phenological development and growth studies as affected
by drought and late season high temperature stress under arid environment. Front. Plant Sci. 2016, 7, 795. [CrossRef] [PubMed]

4. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 779-788.

5. Srivastava, S.; Divekar, A.V.; Anilkumar, C.; Naik, I.; Kulkarni, V.; Pattabiraman, V. Comparative analysis of deep learning image
detection algorithms. J. Big Data 2021, 8, 1-27. [CrossRef]

6. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91-99. [CrossRef] [PubMed]

7. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303-338. [CrossRef]

8. Everingham, M,; Eslami, S.A.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A
retrospective. Int.]. Comput. Vis. 2015, 111, 98-136. [CrossRef]

9. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P; Zitnick, C.L. Microsoft coco: Common objects in
context. In European Conference on Computer Vision; Springer: Cham, Switerland, 2014; pp. 740-755.

10. ImageNet Large Scale Visual Recognition Challenge 2015 (ILSVRC2015). Available online: https://www.image-net.org/
challenges/LSVRC/ (accessed on 16 August 2022).

11. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7-13 December
2015; pp. 1440-1448.

12. Tan, M,; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning, Long Beach, CA, USA, 9-15 June 2019; ML Research Press: Maastricht, The Netherlands, 2019;
pp- 6105-6114.

13. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings
of the European Conference on Computer Vision, Munich, Germany, 8-14 September 2016; Springer: Cham, Switerland, 2016;
pp- 21-37.

14. He, K,; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097-1105. [CrossRef]

16. Mosley, L.; Pham, H.; Bansal, Y.; Hare, E. Image-based sorghum head counting when you only look once. arXiv 2020,
arXiv:2009.11929.

17. Ghosal, S.; Zheng, B.; Chapman, S.C.; Potgieter, A.B.; Jordan, D.R.; Wang, X.; Singh, AK,; Singh, A.; Hirafuji, M.;
Ninomiya, S.; etal. A weakly supervised deep learning framework for sorghum head detection and counting. Plant
Phenomics 2019, 2019, 1525874. [CrossRef] [PubMed]

18. Velumani, K.; Lopez-Lozano, R.; Madec, S.; Guo, W.; Gillet, J.; Comar, A.; Baret, F. Estimates of maize plant density from UAV
RGB images using Faster-RCNN detection model: Impact of the spatial resolution. arXiv 2021, arXiv:2105.11857.

19. Gonzalo-Martin, C.; Garcia-Pedrero, A ; Lillo-Saavedra, M. Improving deep learning sorghum head detection through test time

augmentation. Comput. Electron. Agric. 2021, 186, 106179. [CrossRef]

http://doi.org/10.1038/nclimate2470
http://dx.doi.org/10.1073/pnas.1415181112
http://www.ncbi.nlm.nih.gov/pubmed/25964323
http://dx.doi.org/10.3389/fpls.2016.00795
http://www.ncbi.nlm.nih.gov/pubmed/27375650
http://dx.doi.org/10.1186/s40537-021-00434-w
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-014-0733-5
https://www.image-net.org/challenges/LSVRC/
https://www.image-net.org/challenges/LSVRC/
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.34133/2019/1525874
http://www.ncbi.nlm.nih.gov/pubmed/33313521
http://dx.doi.org/10.1016/j.compag.2021.106179

Al2022,3 738

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Xue, J.; Xia, C.; Zou, J. A velocity control strategy for collision avoidance of autonomous agricultural vehicles. Auton. Robot. 2020,
44,1047-1063. [CrossRef]

Shutske,].M.; Gilbert, W.; Morgan, S.; Chaplin, J. Collision avoidance sensing for slow moving agricultural vehicles. Pap.-Am.
Soc. Agric. Eng. 1997, 3. Available online: https://www.researchgate.net/publication/317729198_Collision_avoidance_sensing_
for_slow_moving_agricultural_vehicles (accessed on 16 August 2022).

Luxonis. DepthAI’s Documentation. 2022. Available online: https://docs.luxonis.com/en/latest/ (accessed on 4 August 2022).
Luxonis. Luxonis-Simplifying Spatial Al. 2021. Available online: https:/ /www.luxonis.com/ (accessed on 4 August 2022).
OpenCV. OpenCV AIKit: OAK-D. 2021. Available online: https://store.opencv.ai/products/oak-d (accessed on 4 August 2022).
LattePanda. LattePanda Alpha 864s. 2021. Available online: https:/ /www.lattepanda.com/products/lattepanda-alpha-864s.html
(accessed on 4 August 2022).

Intel. Intel Neural Compute Stick. 2021. Available online: https://www.intel.com/content/www /us/en/developer/tools/
neural-compute-stick /overview.html (accessed on 4 August 2022).

Naushad, R. Introduction to OpenCV Al Kits (OAK-1 and OAK-D). 2021. Awvailable online: https://medium.com/swlh/
introduction-to-opencv-ai-kits-oak-1-and-oak-d-6cdf8624517 (accessed on 4 August 2022).

Yohanandan, S. mAP (mean Average Precision) Might Confuse You! 2020. Available online: https://towardsdatascience.com/
map-mean-average-precision-might-confuse-you-5956f1bfa9e2 (accessed on 7 December 2021).

LattePanda Alpha 864s (Win10 Pro activated)—Tiny Ultimate Windows/Linux Device. Available online: https://www.dfrobot.
com/product-1729.html (accessed on 16 August 2022).

http://dx.doi.org/10.1007/s10514-020-09924-x
https://www.researchgate.net/publication/317729198_Collision_avoidance_sensing_for_slow_moving_agricultural_vehicles
https://www.researchgate.net/publication/317729198_Collision_avoidance_sensing_for_slow_moving_agricultural_vehicles
https://docs.luxonis.com/en/latest/
https://www.luxonis.com/
https://store.opencv.ai/products/oak-d
https://www.lattepanda.com/products/lattepanda-alpha-864s.html
https://www.intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview.html
https://www.intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview.html
https://medium.com/swlh/introduction-to-opencv-ai-kits-oak-1-and-oak-d-6cdf8624517
https://medium.com/swlh/introduction-to-opencv-ai-kits-oak-1-and-oak-d-6cdf8624517
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://www.dfrobot.com/product-1729.html
https://www.dfrobot.com/product-1729.html

	Introduction and Motivation
	Related Work
	Proposed Spatial AI System for Collision Avoidance in Wheat Fields
	Data Preparation
	MobileNet SSD Architecture for Wheat Detection
	Architectural Details of MobileNet SSD
	Motivation of Using MobileNet SSD for Wheat Detection

	Model Conversion and Deployment on Field Robot
	Workflow for Robot Operation and Collision Avoidance
	Collision Avoidance via Depth Sensing
	Communicating with the Robot Using PySerial

	Training Evaluation and Experimental Results
	Data Augmentation
	Embedded Computing Platforms
	LattePanda
	Intel Neural Compute Stick
	OpenCV AI Kit

	Evaluation Metrics
	Precision
	Recall
	Intersection over Union (IoU)
	Mean Average Precision (mAP)

	Training YOLO
	Training Faster R-CNN with ResNet-50-FPN
	Training MobileNet SSD
	Testing YOLO
	Testing Faster R-CNN with ResNet-50-FPN
	Testing MobileNet SSD
	Comparing YOLO, Faster-R-CNN, and MobileNet SSD
	Benchmarking Deep Learning Models on Various Embedded Computing Platforms
	In-Field Real-Time Object Detection and Depth Sensing

	Conclusions
	References

