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Abstract: Deep learning (DL) models have achieved state-of-the-art performance in many domains.
The interpretation of their working mechanisms and decision-making process is essential because of
their complex structure and black-box nature, especially for sensitive domains such as healthcare.
Visual analytics (VA) combined with DL methods have been widely used to discover data insights,
but they often encounter visual clutter (VC) issues. This study presents a compact neural network
(NN) view design to reduce the visual clutter in explaining the DL model components for domain
experts and end users. We utilized clustering algorithms to group hidden neurons based on their
activation similarities. This design supports the overall and detailed view of the neuron clusters. We
used a tabular healthcare dataset as a case study. The design for clustered results reduced visual
clutter among neuron representations by 54% and connections by 88.7% and helped to observe similar
neuron activations learned during the training process.

Keywords: black-box models; visual clutter; interpretable machine learning; neural network;
visual analytics

1. Introduction

With the advances in computational resources and technology, deep learning models
have reached remarkable performance in various domains, such as image recognition [1],
object detection [2], and natural language processing [3]. Deep learning applications such as
automated diagnosis systems and autonomous vehicles reduce human efforts and errors in
daily and sensitive tasks. However, neural networks (NNs), a popularly used DL method,
are considered black-box models because of their complex architecture and topology. The
black-box model refers to a system whose internal functioning or logic is uninterpretable [4].
Therefore, explanations of how black-box models work are essential for the understanding
of the model. These explanations help domain experts, primarily those who work in
sensitive domains such as medicine, and end-users to trust the model’s decisions.

An interactive visualization platform has been used by machine learning (ML) scien-
tists to enhance the interpretation of the inner working mechanisms of NNs and reduce
human efforts by visualizing training dynamics [5,6] and architecture [7,8] interactively [9].
Modern DL models have millions of parameters, including dozens of hidden layers and
hundreds or even more neurons. Therefore, visualizing real-time training dynamics and
architecture with layers and neurons leads to scalability issues and visual clutter [8,10]. Un-
der limited human cognition, users may not follow the connections among data, nodes, and
layers of a cluttered neural network. These scalability and visual clutter issues obstruct the
interpretation and reasoning behind the working mechanism of the large-scale networks.
Various approaches such as filtering, sampling, clustering, and edge bundling [11] were
introduced to reduce visual clutter. However, clutter is often unavoidable when analyzing
large-scale datasets when encountering the number of components and overlaps of edges
and nodes on deep neural networks (DNNs).

This study presents a new visual platform (Figure 1) to explain DNN by reducing
visual clutter using clustering algorithms. Clustering algorithms group hidden neurons
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based on their similarity using an averaged activation matrix. The new visual design
interprets the data transmission from the input layer to the model prediction and highlights
the clustered neurons. A tabular healthcare dataset is used as a case study to conduct the
experiments. The main contributions of this study are as follows:

1. a clustering approach to resolve visual clutter problems in neural network architecture.
2. a new visual platform to interpret data flow in DNN.
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Figure 1. The proposed visual analytics to explain deep neural networks with neuron clustering.
(a) A color-coded input feature layer along with feature descriptions. (b) Network level view:
Represents a deep neural network to observe feature contribution to the predictions. (c) Feature level
view: A detailed view of activation-based clustered neurons with a circular design and feature and
neuron weights as a vertically stacked bar chart.

2. Related Work

Visual analytics has served as a powerful tool to understand the behavior of deep learn-
ing models [12]. Visualizations can be used for architecture understanding by visualizing
network components such as neurons and layers, feature analysis by highlighting feature
contributions to the predictions, and performance comparison by using evaluation metrics.
However, when dealing with high-dimensional data and DNNs with large numbers of
hyperparameters, visual analytics systems suffer from visual scalability and cause visual
clutter [13]. The clutter decreases the visual perception and information received by the
visuals because of occlusion and messiness [14].

Many studies have been conducted to reduce visual clutter to reveal a more pre-
cise view of visualizing deep neural networks. We group these studies based on their
decluttering approaches as follows: filtering, reduction operations, edge bundling, and
clustering in Table 1. Studies have often adopted filtering [15–18] to address visual clutter
challenges, as seen in Table 1. For example, Deepvix [15] filters the weight values based
on a threshold value on connections between long short-term memory (LSTM) layers.
Similarly, Summit [16] and ReVACNN [17] filter edges to reduce visual clutter caused
by the number of channels/connections between layers. GNNVis [18] uses reduction
operations to speed up the rendering of the graph neural networks by filtering out less
relevant nodes, thus enhancing focus. Filtering is a process of displaying or emphasizing
certain aspects of the data while suppressing other components. However, it can lead
to a biased analysis depending on the filtering criteria selected by users or designers.
Users/designers may cause a bias by selecting certain aspects of the data and ignoring
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others. Moreover, filtering weights/layers/neurons may exclude outliers from the VA and
users may miss the opportunity to identify unusual network behaviors. To address the
challenges of bias and overlooking outliers, dimensionality reduction (DR) operations,
such as t-distributed stochastic neighbor embedding (t-SNE) [19], have been adopted. For
example, Rauber et al. [20] used dimensionality reduction techniques to project activations
of all hidden layers. DeepVID [21] uses t-SNE to project image data as a scatterplot so users
can use lasso selection to access data and investigate the decision made by an NN. Similarly,
ActiVis [7] has used t-SNE to group instance subsets based on their activation similarities.
In ActiVis [7], users can select a certain group of instances on projection view to examine
them in detail. However, dimensionality reduction techniques have also had a limitation in
terms of the number of points to visualize, especially for large numbers of activations for
deep NNs [13]. Dimensionality reduction operations can still cause occlusions and overlaps
on points and can be visually distracting for users. To overcome the disadvantages of DR
techniques, Rauber et al. [20] utilized a bundling algorithm [22] to support the activations
projection view by obtaining bundled images. Similarly, Cantareira et al. [23] used a similar
but modified bundling algorithm used by Rauber et al. [20] to group similar trajectories.
Since edge bundling still hinders the relationships in the bundle and makes it impossible
to distinguish multiple merged edges, Cantareira et al. [23] add control points to the algo-
rithm to follow the directions of activations over the training time. Recently, clustering
algorithms have become popular in visualizing dense networks to reduce screen space
constraints and reveal patterns on large networks. For example, Cakmak et al. [24] applied
a hierarchical density-based spatial clustering algorithm [25] to reduce VC in visualizing
long sequences of dynamic graphs. The clustering algorithm grouped and arranged similar
features in pixel-based visualizations to reveal the temporal patterns. Wu et al. [26] and
Liu et al. [9] utilized k-means [27] to remove occlusion in visualizing neuron activations.
Similarly, Wongsuphasawat et al. [28] presented a clustered graph by grouping nodes
based on their hierarchical structures and utilized an edge bundling algorithm to support
it. Liu et al. [5] proposed a visual analytics tool called CNNVis that adopts both clustering
and edge bundling algorithms to present an uncluttered view of the training dynamics of
convolutional neural networks (CNNs) formulated as directed acyclic graphs. Clustering
algorithms can better preserve data points/neurons/layers based on their similarities
than filtering and sampling [29]. Since many clustering algorithms are robust to noise
and outliers in the data, users will be able to identify unusual cases without losing any
information. Moreover, clustering will help in interpreting data and understanding the
underlying patterns.

Aside from common decluttering techniques, there are other customized decluttering
approaches. For example, Bellgardt et al. [30] used immersive virtual reality (VR) to reduce
visual clutter by adding a third dimension and showing only the edges connected to the
selected node by a user in visualizing NNs as a node-link diagram. Ji et al. [31] developed
a tool, USEVis, for attention-based networks and used weight thresholds to eliminate
clutter and highlight the most important attention. Shen et al. [29] also created customized
sampling stripes to reduce visual clutter in visualizing the classification results of DNNs.

Table 1. A comprehensive comparison between visual analytics tools.

Studies

Visual Clutter

Interactions
Purpose of

ExplanationFiltering Reduction
Operations Bundling Clustering Others

Deepvix [15] X F, H, DM AA, PA

Summit [16] X C, H AA

ReVACNN [17] X F, DM AA, PA
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Table 1. Cont.

Studies

Visual Clutter

Interactions
Purpose of

ExplanationFiltering Reduction
Operations Bundling Clustering Others

Rauber et al. [20] X X C, F FA

CNNVis [8] X X DM AA, FA

Wu et al. [26] X X DM PA, FA

Activis [7] X DM AA, FA

TensorFlow
PlayGround [32] A, DM FA, PA

TensorBoard [33] X Node
Expansion C AA, PA

Bellgardt et al. [30] X 3D in VR C AA, PA

DeepVID [21] X C FA

USEVis [31] X Thresholds C, F, DM FA

Shen et al. [29] X C, F FA

Chae et al. [12] Stripes
design C FA, PA

Our VA tool X Circular
design C, H AA, FA

Interactions: H: Highlight, F: Filter, C: Controls, DM: Direct Manipulation, A: Animation. Explanation Type: AA:
Architecture Analysis/Understanding, PA: Performance Analysis, FA: Feature Analysis/Selection.

Previous VA work mainly focused on reducing visual clutter in CNNs [7,8,12,16,18,21,26]
and recurrent neural networks (RNNs) [15,29] due to their popularity in computer vision
and large language model tasks and their intuitively interpretable structure. CNNs are
structured hierarchically and can capture spatial relationships in images or videos. Similarly,
RNNs have recurrent connections and are specialized, particularly for sequence data such as
audio or natural language processing tasks. Although most real-world datasets are tabular,
their dedicated DL model, deep neural networks, are often neglected in interpretation
and visualizations due to their complexity and depth in terms of the number of hidden
layers and neurons. Moreover, the interpretation of DNNs is harder in terms of how each
layer captures and transmits the information since the structure of DNNs lacks spatial
or temporal structure. To close the research gap, TensorBoard [33], developed by Google
researchers, helps users inspect the structure of large NNs using zoom-in/-out and node
expansion options. The system focuses on a conceptual graph of users’ model design [33]
rather than displaying the inner dynamics (i.e., weights, bias, etc.) of the network. Therefore,
TensorBoard does not use a clustering algorithm to group neurons/layers to reduce visual
clutter. Similarly, TensorFlow PlayGround [32], a well-known platform, is developed
for users to explore the behavior of NNs and modify the hyperparameters (such as the
number of layers and neurons) of NNs. The platform has a limitation in terms of the
maximum number of hidden layers and neurons. It is designed for educational purposes
and is suitable for two abstract real-valued features [32]. However, the platform ignores
decluttering for possible cluttering and overlapping happens when users increase the
number of hidden layers and neurons. Unlike other studies, we aim to close the research
gap by focusing on understanding deep neural networks, known as fully connected neural
networks, using visualization for their inner dynamics. Considering the disadvantages
of filtering, such as biased analysis and overlooking outliers/unusual events, and the
disadvantages of DR techniques, such as the limitation of usability in terms of the number
of points to be visualized [13], we chose clustering algorithms to reduce visual clutter in
visualizing intermediate layers and their components. Unlike TensorFlow PlayGround [32],
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our proposed tool does not have any limitations in terms of the number of hidden layers
and neurons since we adopt clustering to reduce clutter. Moreover, we included inner
dynamics such as weights and activations. Users can analyze any NN architecture with the
proposed tool without facing the limitation of the number of layers and neurons. While
TensorFlow PlayGround [32] is designed for two abstract real-valued features, our tool can
also support any high-dimensional tabular data. Further, we support decluttering with a
unique circular design for neuron representation grouped by clustering algorithm based on
their activation similarities. Activation-based clustered neurons will help users to follow
the information flow from the input layer to the other layers and increase the interpretation
of how NNs transmit data and make predictions. Additionally, we propose a compact
view to provide detailed information on inner dynamics. Thus, the cognitive load of users
and inspecting time can also be reduced; therefore, they may gain a better understanding
of NN.

With the increase in concerns about black-box models, the usage of explainable artifi-
cial intelligence (XAI) models has increased [21,34–36]. For example, DeepVID [21] uses the
Local Interpretable Model-Agnostic Explanations LIME [37] method, one of the most popu-
lar XAI techniques, to obtain feature contributions and reflects these values over the image
by highlighting pixels based on these contribution scores to explain NNs locally. Similarly,
Wu et al. [26] also incorporated the LIME method in their VA to support instance-based ex-
planations. XAI techniques are commonly used for instance-based explanations [21,34,36].
Most of the studies focus on feature importance [21,34] by highlighting the most important
pixels on images using popular XAI methods such as Saliency maps [38], Grad-CAM [39],
and rule-based explanations [40–42] by generating logical expressions using rule extraction
techniques. XAI methods focus on analyzing the behavior and decision-making process of
DNNs rather than understanding the model architecture itself [43]. While XAI methods
offer valuable insights into specific aspects of black-box models, unlike our proposed
tool, they will not provide a complete visualization of NNs with their layers, neurons,
and model parameters. Our tool provides a visualization of the architecture itself with
averaged activations using a customized design and weights between layers. With global
(network-level view) and local (feature-level view) views in our design, we support our
users in investigating and analyzing the behavior of NNs.

3. The Proposed Tool

This section covers the design challenges often encountered by ML researchers and
design goals to resolve these challenges through our proposed tool.

3.1. Design Challenges

To properly design an interactive visual analytics tool for explaining neural networks, we
focused on the following design challenges (DCs) based on the related literature [7,16,43–45].

DC 1: Complex model architecture. Recent DNNs contain dozens of layers and hundreds
of neurons. Because of the black-box nature of NNs, their internal functioning, computational
operations among layers, and decision-making mechanisms are opaque. To open the black
box, visualizing many components of NNs from general structure (e.g., layers, neurons) to in-
dividual units (e.g., activations), particularly on how data features contribute to classification
results, is required, especially for end-users and domain experts who may be inexperienced
in ML.

DC 2: Visual clutter and scalability. Visually explaining modern NNs leads to visual
clutter and scalability issues because of the massive number of elements in DNNs. Visualizing
high-volume layers, connections between them, and other computational units such as
weights in a limited screen space cause clutter and obstruct the perception. The challenge in
providing scalable visualization is the trade-off between preserving meaningful information
while reducing visual clutter.

DC 3: Underrepresented data domains. While VA tools often adopt image and text
data in explaining DNNs [1,6–8], the tabular data domain is underrepresented, covering
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most real-world data. In addition, dealing with tabular data in explaining NNs brings
other challenges: representations of learned features, different feature formats, and miss-
ing/sparse values.

3.2. Design Goals

Based on the design challenges, we summarized our design goals (DGs) as follows:
DG 1: Presenting a compact architecture view by reducing the clutter. Presenting

information in a compact view will reduce the overwhelming for users. Since DNNs have
many layers and neurons (DC 1), we aim to provide a new compact view by displaying
neurons and layers, where a clustering algorithm is used to reduce the visual clutter (DC 2)
among neurons.

DG 2: Interpret tabular data features in NN decision. Explaining tabular data is
relatively challenging compared to other domains, e.g., image data, since they are readily
interpretable. We aim to use tabular data in our design as a case study (DC 3). We will
focus on illustrating how data features contribute to the generation of each neuron along
with classification results using various visual interactions.

4. Methodology
4.1. Use Case: CTG Dataset

In the experiments, we used the Cardiotocography (CTG) dataset retrieved from the
UCI Machine Learning repository [46]. Cardiotocography is used to evaluate the health
of fetal by recording the fetal heart rate (FHR) of the baby and uterine contractions of the
mother during pregnancy [47]. The dataset is generated using the SisPorto system [48] that
conveys digital signals from a fetal monitor. CTGs are evaluated by obstetricians using FHR
patterns. Accurate diagnosis and distinguishing normal and abnormal patterns are critical
to prevent diseases such as cerebral palsy and neurodevelopmental disability [49]. To
reduce human effort and error in the interpretation of CTGs, machine learning approaches
have often been utilized to assist in diagnosis.

The dataset contains 2126 fetal CTG records and 21 features that were processed
from cardiotocographic signals. The CTGs are also classified by three expert obstetricians
and a consensus classification label is assigned to each of them. The experiments can be
conducted using both 10-classes morphologic patterns or 3-classes fetal state. The data has
1655 instances for the normal class, 295 instances for the suspect class, and 176 instances for
the pathologic class.

4.2. Model Selection

The dataset went through cleaning, training-testing, and cross-validation process.
With grid search, the ReLu activation function and Adam optimizer are selected. The
learning rate is set to adaptive. K-fold cross-validation, in which k is 10, is utilized to
remove the randomness by dividing the dataset randomly into 80% for training and 20%
for testing. After the experiments and grid search, we selected a 4-layered NN architecture
based on the accuracy score. The selected NN architecture has 30 and 20 neurons in the
hidden layers. The best accuracy score is 0.88. All experiments are conducted using Python
and all visualizations are created using D3 [50], a JavaScript library.

4.3. Neuron Clustering Approach and Results

In the process of explaining how an NN makes predictions, the focus is often on
understanding the changes in activation values across neurons during training. Activation
functions transmit information through layers, and higher activation values generally
indicate greater neural activity. In this context, we propose a method to extract and store
the activation values for each neuron. Given that the number of neurons and activations can
be substantial, reaching hundreds or more, we suggest calculating the average activation
values per neuron for each class to address the challenge of high dimensionality.
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Suppose we have an activation matrix (A), as shown in Figure 2, where nj (columns)
indicates the jth neuron at the hidden layer, ti

k (rows) indicates the number of training
instances in class k (ck), and aij is the activation value of ith training instance of jth neuron.
Initially, we have an activation matrix A with dimensions I·J activation matrix where I
indicate the number of training instances and J indicates the number of hidden neurons at
the hidden layers. To reduce the dimension of the activation matrix, we create a subset Tk
of training instances belonging to ck. For a specific class ck, Tk represents a set of indices
of training instances that belong to class ck. For example, T1 = {i | instance i belongs to
class ck} = {t1

1, t2
1, t3

1, . . ., tI
1}. After this, we calculate the average value of each activation

group per class to obtain one averaged activation value using the following equation:

Averaged Activation Valuekj =
1

|Tk|
Σi∈Tk A

i
.
j

(1)

Thus, we obtain a new averaged activation matrix to be used in clustering experiments
with a size of Ak·j where k is the number of classes in a dataset. The averaged activation
matrix allows us to obtain a summarized representation of activation by reducing the
dimensionality from the original I·J to K·J. By applying the neuron clustering approach, we
aim to reduce visual clutter among neurons and link representations by gathering clustered
neurons into mega neurons.
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Figure 3 illustrates an example of reducing clutter in both neurons and connection
levels by creating mega clusters for 4-layered NN. The mega neurons concept will contribute
to reducing visual clutter along with grouping similarly activated neurons. End-users will
observe and analyze mega neurons to understand a group of activations of neurons such
as highly activated neurons vs. dead neurons.

We utilized various clustering algorithms to cluster neurons using an averaged acti-
vation matrix based on their similarities. These algorithms include k-means [27], mean
shift [51], and hierarchical clustering [52]. The mean shift algorithm does not require
a pre-defined number of clusters. The number of clusters for k-means and hierarchical
clustering are chosen with experiments. We calculated the number of clusters for k-means
based on the sum of the squared distance between the centroid and each cluster member,
defined as the sum of squares error (SSE). Figure 4a depicts the selection of number of
clusters for the first hidden layer using the elbow method. The elbow method helps us
select the best cluster number based on the angle form on the line among SSE scores. We
used a dendrogram with ward distance metric [53] to select the number of clusters for
hierarchical clustering. Figure 4b displays a dendrogram for the first hidden layer along
with ward distance and clusters. The height of the dendrogram indicates the distance
between clusters. The number of clusters is determined as four for the first hidden layer for
hierarchical clustering. We selected the number of clusters as five in k-means based on SSE
score for the first hidden layer.
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Since the knowledge of the ground truth clusters is unknown for neurons, we used
the Silhouette, Davies Bouldin (DB), and Calinski Harabasz (CH) performance evaluation
metrics [54]. The clustering results, the number of clusters for the second hidden layer, and
performance metrics are shown in Table 2.

Table 2. The comparison of neuron clustering results is based on evaluation metrics.

Clustering Algorithms The Number of
Clusters

Silhouette Score
(Max) DB Score (Min) CH Score (Max)

1st Hidden Layer
K-means 5 0.632 0.49 159.44

Mean Shift 6 0.60 0.40 143.28
Hierarchical Clustering 4 0.630 0.46 131.76

2nd Hidden Layer
K-means 5 0.59 0.53 41.60

Mean Shift 4 0.58 0.47 36.03
Hierarchical Clustering 4 0.56 0.60 28.50

The best scores are shown in bold in the table. Table 2 shows that mean shift and
k-means algorithms performed better than hierarchical clustering algorithms in neuron
clustering for both hidden layers. Hierarchical clustering has lower scores for silhouette
and CH performance evaluation metrics that require higher values, while k-means has the
highest scores on these metrics for both hidden layers. Similarly, the mean shift has the
best DB scores that require one to have a minimum value, while hierarchical clustering
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has the worst score on the DB metric. Even though mean shift has better performance
on DB score than k-means and hierarchical clustering, the detailed investigation of the
mean shift clustering results indicates that most neurons agglomerate into one cluster.
The variability of activation values on the clusters indicates that similarly acted neurons
are not represented well with the mean shift algorithm. Therefore, we eliminated the
use of mean shift in our visual design. Likewise, the hierarchical clustering method has
poor performance because it has the worst performance scores on DB and CH metrics.
Therefore, we adopted k-means in our visual design based on performance metrics since
it performed well with at least two performance metrics for each hidden layer neuron
clustering. According to the elbow method, we have selected five clusters (mega neurons)
for k-means at each hidden layer.

4.4. Visualization Overview and Usage Scenario

We have designed a visualization that has feature and network level views to support
detailed and overall analysis. The network level includes a Sankey diagram (Figure 5a)
that represents a whole NN architecture with clustered neurons. Connections between
the Sankey diagram’s nodes represent model weights between layers. The width of links
corresponds to the magnitude of weight between nodes. Sankey diagram helps users to
identify the magnitude of weights among neurons as well as analyze the dynamics of the
network, such as the distribution of weights from the input layer to the output layer.
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Figure 5. A compact view of neural networks with clustered mega neurons. (a) represents the legend
of input layer along with feature definitions and a color legend for activations. (b) Sankey diagram
represents network level visualization.

Each feature in the dataset is encoded as F#, where # indicates the number of the feature
in the CTG dataset. Detailed explanations of the feature set can be found in the UCI ML
repository [46]. Since the width indicates the magnitude of weights, for example, feature 6
in the input layer, F6—severe decelerations per second—have the lightest connections with
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hidden layer 1, showing that F6 has less contribution to the model predictions. On the other
hand, F2, accelerations per second, F3, fetal movements per second, F4, uterine contractions
per second, and F9, the mean value of short-term variability has a thicker connection with
hidden layer 1. These features have contributed more to the model predictions, as stated
in [55]. Uterine contractions (F4) are especially important during pregnancy to monitor the
fetus’ and mother’s wellbeing. Similar findings are stated in the literature [55].

The Sankey diagram is created using the breadth-first search method. We allow
dragging of the nodes of Sankey diagrams so domain experts and end-users can modify
the order of the input layer to group them based on their weights (Figure 6). Since the
tool was designed for tabular data, we incorporated data features (input layer) as colored
bars with definitions in a tooltip (Figure 5b). The input layer has categorical colors, each
representing an individual data feature, as seen in the first layer of the Sankey diagram
(Figure 5a). The color density on each mega neuron, represented as rectangles in the Sankey
diagram, indicates neural activity within the cluster. The color legend of activation color
scales from white to green based on their magnitude; white represents the lowest activation
value, and green represents the highest amount of activation (Figure 5a). The color density
on the output layer corresponds to the size of each class. For example, the normal class has
1655 instances and is represented with bold red, and the pathologic class has 176 instances
and is represented with the lightest red. Along with seeing the architecture itself, users can
also have insight into the dataset in terms of feature weights by highlighting the connections
between layers and the size of the output class.
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Figure 6. An example of an input layer grouped based on their contributions to the prediction with a
drag and drop option. F3, F9, F2 and F4 have the highest weights as supported in literature [55].

Users can access the feature level view by clicking the ‘feature level’ button at the
input layer legend. Feature level view (Figure 7) provides a detailed view of feature weights
for each neuron per cluster. We visualized feature weights as a stacked vertical bar chart
(Figure 7a) with feature colors for each cluster. The vertical axis indicates the weight values
of each feature per neuron, and the horizontal axis shows the corresponding neurons within
each mega neuron. The height of each box indicates the weight value, positive and negative,
based on the position on the vertical axis. The second stacked vertical bar chart shows the
weights between hidden layers. The color indicates the magnitude of the weights.
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Figure 7. A feature level view of the proposed visualization tool. Feature level shows a stacked bar
chart to represent weights, circular mega neurons, and a circular custom design to show each neuron
within clusters with activation values. (a) Vertical stacked bar chart for feature weights. Colors
indicate individual features, as seen in legend. (b) Mega neurons that represent clustered neurons
based on averaged activations. Mega neurons are colored based on their average activation value as
shown in legend.

Based on k-means clustering results, we have five clusters at each hidden layer. Users
can access the detailed view of mega neurons, as seen in Figure 7b, by clicking on any
mega cluster to view a custom circular design. The feature level view displays the training
dynamics (weights and activations) and the representation of the intermediate layer.

Figure 8 shows the detailed view of cluster 1 at the first hidden layer. The detailed
view includes a custom design created to show each individual neuron in a cluster. The
layered circles indicate the total number of classes. Since the CTG dataset has three classes,
the clustered neuron design consists of 3-layered circles (Figure 8), normal, suspect, and
pathologic classes. The color indicates the range of activation values. While the mega
neuron has a white color, which indicates near zero activations, when we click it, we can
see a detailed view and analyze each individual neuron by selecting and viewing detailed
information on the tooltip. Supported by feature weights, we can observe that highlighted
neuron 26 has a 0.117 activation value for the pathologic class, and other neurons have zero
activations, which indicates they will not pass the information to the next layers and do not
contribute to the learning process.
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Figure 8. Mega neuron 1 at the first hidden layer, along with feature weights. The color legend
indicates that most of the neurons at cluster 1 are not activated (dead).

Figure 9 compares mega neurons (cluster) 4 and 5 for both hidden layers. As seen in
Figure 9a, cluster 4 at the first hidden layer includes only one neuron (neuron 30), and at
the second hidden layer, it has two neurons (neurons 9 and 6). For both layers, it has highly
activated neurons, as seen in normal class neuron 6, which has a 1.574 activation value. We
can say that N30 can pass the information to the next layers with high activation values and
contribution to make predictions. As seen in a stacked bar chart, F2, F3, F4, and F4 (based
on color legend) have higher weights compared to other features. Cluster 5 (Figure 9b)
has three and five neurons at hidden layer 1 and 2, respectively. Cluster 5 has slightly
fewer activations compared to Cluster 4, and the amount of activation reduces at the
second hidden layer. For example, the activation value of neuron 2 at the pathologic class is
0.295. We observe that similar color density grouped together, which means the clustering
algorithm performed well to present similar activations. We provide highlighting, zoom-in,
and zoom-out features to add user interaction to the design. Thus, users can perform
zoom-in or -out features to see the overall view or access the detailed view.
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Figure 9. Clusters 4 and 5 for both hidden layers, along with the weights. Cluster 4 has highly
activated neurons while cluster 5 at the second hidden layer is almost zero.

5. Discussion

We presented a visualization tool that adopts a clustering algorithm, i.e., k-means,
and a unique circular design to support reducing visual clutter. After a grid search for NN
hyperparameters and experiments to decide the number of hidden layers and neurons,
we chose the best-performing architecture, which has input layer with 21 features (nodes),
two hidden layers with 30 and 20 neurons, and an output layer with 3 classes (nodes). The
total number of nodes on the selected architecture is 74, and there are 1290 edges between
layers. With the usage of k-means, we reduced the number of hidden neurons from 30 and
20 to 5 mega neurons. The total number of nodes is reduced from 74 to 34 with a decrease
of 54%, and, indirectly the total number of edges within layers is reduced from 1290 to 145,
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with a decrease of 88.7%. Even though we present mega neurons, we also allow users to
access detailed views of each neuron with a unique design that reduces the clutter. We also
eliminate the disadvantages of other cluttering approaches, such as information loss, by
keeping the actual hidden neurons with their actual activation values. The detailed and
global view will help users to understand the behavior of NNs by observing the information
flow with weights. Color-coded mega neurons will also ease the process of understanding
active and dead neurons that contribute to the decision-making process of networks. Based
on the idea of dead neurons, machine learning practitioners may redesign their models,
reducing the number of neurons. We summarized the discussion in three parts as follows:
scalability and clutter, efficacy of the proposed tool, and the limitations.

Scalability and clutter: This study focuses on reducing the visual clutter among neu-
ron representations in neural network visualization. To explain neural networks visually,
we worked on a common issue in the visual analytics field: visual clutter. We utilized
clustering algorithms to group neurons based on the similarity of their activation values.
We used a tabular healthcare dataset to train the deep neural network and evaluate its
components with a use-case scenario. We extracted activations after the training process
and created an averaged activation matrix by calculating average activation values per
class. The averaged matrix can help eliminate the disadvantages of high-dimensional data
by obtaining class-level activations. We evaluated the three commonly used clustering
algorithms, k-means, mean-shift, and hierarchical clustering, to adopt in our tool. We
used three performance metrics: Silhouette score, Davies Bouldin, and Calinski Harabasz
score. According to the performance evaluation, the hierarchical clustering method fails to
provide good results and k-means outperformed other clustering algorithms in at least two
performance metrics. Using the elbow method, we chose the number of clusters for each
hidden layer, which was five. The results indicated that k-means clustered neurons well
by grouping them based on their activation similarities. We represented clusters as mega
neurons that contain each neuron in the cluster. Mega neuron representation has reduced
the clutter at each hidden layer. Diminishing the number of neurons in smaller mega
neurons also reduces edge clutter among layers. We allow users to access details of mega
neurons with interactions. Our unique clustered neuron design delivers all information in
a compact view without overwhelming the end-users. The color density allows users to
follow highly activated neurons and dead neurons that do not contribute to the learning
process. We also represent input features as colored bars by providing their definitions in
a tooltip.

Efficacy: This study uses a tabular healthcare dataset to conduct a use-case scenario.
We aim to visualize activation values on the learning process that shows how the informa-
tion is transmitted from layer to layer. After the training process, we obtained weights and
other computational units (e.g., activations). This design shows the variation of activation
values among neurons. Users can observe activated and deactivated neurons at each layer
by color density. We observed that the first hidden layer contains more deactivated neurons
than the second. Also, cluster 4 in the second hidden layer has higher activation values.
This finding justifies that each layer learns and identifies more complex features to predict
the output. Therefore, the contribution of neurons in the second layer to the output layer is
higher. This design provides insights into the activation of neural networks. This system
follows the organizing principle of visualization design as follows: overview first, zoom
and filter, and detail-on-demand views. The use-case scenario shows the efficacy of the
system by analyzing components of the neural network for tabular data. We overview
the entire architecture first. Then, using interactions, we access detail-on-demand views
that display individual activations and feature weights. This design will reduce visual
clutter with a clustering algorithm and unique circular design and help open the black-box
models. In a feature-level view, we also provided feature weights as a color-coded vertical
stacked bar chart between input layer and first hidden layer, and weights between first and
second hidden layer, as well. Even at first glance, users will be able to identify the most
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contributed features to the prediction by using bar chart heights. These findings are also
justified with the other related work [40], in terms of the healthcare data domain.

Limitations: The proposed design is developed for domain experts and end-users to
understand the behavior of neural networks with network-level and feature-level views.
This design supports the visualization of the inner dynamics, i.e., activation values and
weights, of the network. However, other computational units, such as gradients and
parameters, can be integrated to understand the behavior of neural networks, especially for
data scientists and machine learning experts. While reducing clutter among neurons and
edges (indirectly) with clustering algorithms is the main contribution, adopting an edge
bundling algorithm will eliminate the limitation of overlapping edges. Another limitation is
that the proposed visualization tool is evaluated solely based on a use-case scenario within
the healthcare domain. To mitigate this limitation, future work will focus on designing
users’ studies to increase the validation of our tool. With user studies, we will obtain
feedback in terms of the usability of the tool, demonstrate the efficiency in terms of learned
insights, and improve the design based on user requirements and evaluations. The current
use-case scenario contains a small number of features that are easily visualized as input
layers. When the dimensionality of datasets increases, there is no limitation on the volume
of data, providing each feature may cause clutter. Therefore, users may want to visualize
the most important features. This limitation can be resolved in future work by adding
feature selection/feature importance techniques in the current design. Increasing the
interactions, such as allowing direct manipulation, will also eliminate another limitation
which is real-time parameter modification.

6. Conclusions

We introduced a visual design to support the interpretation of neural networks through
their computational units. We utilized clustering algorithms to group hidden neurons
based on their activation similarities to reduce visual clutter, a common issue in the visu-
alization of NN. We defined mega neurons representing clustered neurons based on the
best-performing clustering method, i.e., k-means. Visualizing neural network architecture
with mega neurons as a compact view has reduced the visual clutter. To access the detailed
activation values of each neuron, we provided interactions for users. This system allows us
to interpret the neurons based on their activation status: activated or deactivated. We also
observed that later layers contribute to the prediction higher since they learn more complex
features gradually. With color-coded feature weight visualization, we identified features
that have higher importance. These results were justified by the related work.

Future work should focus on mitigating the limitations of this study to improve the
design and present more components of the neural network. We will focus on including
other components, i.e., gradients and feature importance. Future work will also aim
to increase interactions and allow direct manipulations so users will be able to change
parameters and observe the changes in predictions. Direct manipulation will also support
identifying the most contributed features. Users may remove features one by one until the
prediction for one class changes. The proposed visualization tool will be tested using high-
dimensional tabular datasets and deep neural networks to examine its scalability. In future
work, we also aim to conduct user studies with machine learning scientists and domain
experts to improve the design and its functions and receive feedback about the usability of
the tool. In addition, future work will focus on utilizing comprehensive artificial intelligence
techniques in the VA system to explain black-box models mathematically and visually.
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