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Abstract: In the proposed paper, an artificial neural network (ANN) algorithm is applied to predict
the electronic circuit outputs of voltage signals in Industry 4.0/5.0 scenarios. This approach is suitable
to predict possible uncorrected behavior of control circuits affected by unknown noises, and to
reproduce a testbed method simulating the noise effect influencing the amplification of an input
sinusoidal voltage signal, which is a basic and fundamental signal for controlled manufacturing
systems. The performed simulations take into account different noise signals changing their time-
domain trend and frequency behavior to prove the possibility of predicting voltage outputs when
complex signals are considered at the control circuit input, including additive disturbs and noises.
The results highlight that it is possible to construct a good ANN training model by processing
only the registered voltage output signals without considering the noise profile (which is typically
unknown). The proposed model behaves as an electronic black box for Industry 5.0 manufacturing
processes automating circuit and machine tuning procedures. By analyzing state-of-the-art ANNs,
the study offers an innovative ANN-based versatile solution that is able to process various noise
profiles without requiring prior knowledge of the noise characteristics.

Keywords: ANN-MLP; electronic signal prediction; circuit noise prediction; operational amplifiers

1. Introduction

In contemporary industrial systems and manufacturing processes, the ability to ac-
curately predict and mitigate the effects of noise on electronic signals is of paramount
importance. Noise signals can adversely impact the performance of amplification circuits,
leading to distorted outputs and compromised control over critical operations. Artificial
neural networks (ANNs) have emerged as powerful tools for signal processing and pre-
diction, making them a viable approach to address this challenge. The proposed study
investigates the application of ANNs in predicting noisy voltage signals in electronic
circuits, with a focus on simulating the behavior of operational amplifiers subjected to
additive noise signals.

Previous research has explored the use of ANNs for various applications in elec-
tronics and mechatronics, including voltage distribution prediction [1,2], sound noise
classification [3,4], and parameter estimation in Industry 4.0 scenarios [5]. ANNs have also
been employed for power prediction in renewable energy sources [6], power diagnostics [7],
and fault detection systems [8]. However, the specific application of ANNs to predict noisy
signals in amplification circuits remains an area that warrants further investigation.

Furthermore, ANNs are useful to automate circuit design [9] and electronic controlled
systems [10,11]. A particular application of ANNs is in detecting and classifying parametric/
soft faults affecting analog integrated circuits [12,13]. Some authors proposed studying
analog circuits behaving as ‘black boxes’ by ANNs, analyzing signals only from inputs
and outputs of the circuits [14]. ANNs are also adopted to predict current signals [15],
and to classify noise signals [16] by filtering them from undesired disturbances or inter-
ferences [17]. ANNs are also applied to predict the behavior of electronic circuits improv-
ing circuit design [18,19] and for high electron mobility transistors (HEMTs) amplifier

AI 2024, 5, 533–549. https://doi.org/10.3390/ai5020027 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai5020027
https://doi.org/10.3390/ai5020027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0003-1744-783X
https://doi.org/10.3390/ai5020027
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai5020027?type=check_update&version=2


AI 2024, 5 534

design [20]. Further applications of ANNs include the prediction of the Quality of Trans-
mission (QoT) parameter in multi-channel systems [21], and the modelling of electronic
small signals [22,23] and noises [24,25]. In this direction, SPICE models combined with
ANN algorithms are adopted to set amplifiers modelling analogue circuits [26]. Operational
Amplifiers (Op. Amp.) are commonly adopted in industrial-production-controlled systems,
where low-noise amplifiers play an important role [27]. Op. Amp. have many functions
such as Alternating Current/Direct Current (AD/DC) signal gain, driving signals, filtering,
etc. Specifically, Op. Amp. are suitable to model amplification circuits influenced by
additive noises by summing as additive signals different input signals, including noise
ones. A way to model additive noises in circuital amplification systems is to consider the
‘Adder’ element as the amplifier [28].

The objective of this study is to develop a standalone model capable of predicting
noisy voltage signals in electronic circuits without prior knowledge of the noise profile. By
treating the circuit as a “black box” and analyzing only the input and output voltage signals,
the proposed approach aims to simulate the effects of additive noise on amplified signals,
emulating real-world scenarios where noise sources are often unknown or unpredictable.

The paper is structured in the following sections:

• ‘Material and Methods’ section explaining the adder Op. Amp. circuital model, the
simulation planning including different noises as examples, and the data processing
workflow implanting ANN data processing;

• ‘Results’ section including time domain and frequency domain results of the circuital
Adder-model, and ANN predictions of output signals;

• ‘Discussion’ section discussing advantages, perspectives disadvantages, limitations,
and use criteria of the proposed approach in embedded and automated systems
enabling corrective actions;

• ‘Conclusions’ section summarizing results and enhancing perspectives.

All of the sections explain how it is possible to integrate an ANN in a time domain
SPICE approach by providing application criteria and reading the keys of the whole
presented model.

2. Materials and Methods

Signal amplification is a typical operation implemented by circuits, sensors, and
controllers, highly important in industrial automated systems. On the other hand, the
signal gaining also enhances the noises disturbing the output of circuits. In this direction,
it is useful to model systems affected by additive noises characteristic of manufacturing
industrial scenarios, which are typically based on controlled systems amplifying input
voltage signals that able to move robots or to enable machine processing. The studied
model to simulate the additive noise effects on amplifier circuits is sketched in Figure 1a.
The model is ideated to operate as a black box circuit; the goal is to consider only input (V1)
and output (Vout) voltage signals without knowing the signal influencing the amplified
output to predict the disturbed voltage signal. The ANN is able to compute all data input
predicting the signal output trend, thus supporting a possible setting or tuning of the input
signal (see Figure 1a) to decrease the noise effects such as a signal amplitude tuning or
filtering as corrective actions. The theoretical scheme of Figure 1a represents the simulation
model of the proposed work. The simulations to be performed take into account the
signal disturbance during the gaining action performed by an operational amplifier. The
functional model of Figure 1a is ‘translated’ by the electronic circuital model of Figure 1b
(LTspice circuit model) able to gain the sum of three signals, V1 (input signal), V2 (noise1),
and V3 (noise2), through an operational amplifier behaving as an ‘Adder’ generating the
following output voltage:

VOUT = −R f ∑
i

Vi
Ri

(1)
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where Vi is the input signals (clock signal controlling a circuit) of the black box system, Ri is
the electrical resistances of the inputs, and Rf is the electrical resistance of the negative feed-
back. By assuming the resistances (as for the analyzed model) Rf = R1 = R2 = R3 = 10 kΩ,
the output voltage becomes VOUT = −(V1 + V2 + V3).
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Figure 1. (a) Theoretical black box model of a signal amplification influenced by added noises
and ANN data processing to adjust the input signal (for example, by tuning in advance the signal
amplitude). (b) LTspice circuit modelling the black box scheme of Figure 1a.

For both input and noise signals, sinusoidal signals are considered to be defined by
the following equation:

V(t) =

 Vo f f set + Vamp·sen
(

π
180 ·φ

)
, t ≤ Td

Vo f f set + Vamp·exp(−ϑ·(t − Td)·φ)·sen
(
2π· f ·(t − Td) +

π
180 ·φ

)
, t > Td

(2)

where Td is the time delay, Voffset is the offset voltage, Vamp is the voltage amplitude, φ is the
signal phase expressed in degree, f is the signal frequency, and ϑ is the damping coefficient
expressed in s−1.

The simulations have been performed by considering, as examples, the following
noise signals:

1. Input signal (V1): pure sinusoidal signal with f of 1 kHz, Voffset = 1 Volts, and
Vamp = 2 Volts;

2. Noise (a): sinusoidal pulse signal with f of 1 kHz, Td = 10−2 s, ϑ = 500 s−1, φ = 45 deg.,
and Vamp = 2 Volts;

3. Noise (b): sinusoidal pulse signal with f of 1 kHz, Td = 0 s, ϑ = 500 s−1, φ = 45 deg.,
and Vamp = 2 Volts;

4. Noise (c): sinusoidal pulse signal with f of 4 kHz, Td = 0.002 s, ϑ = 0 s−1, φ = 0 deg.,
and Vamp = 2.4 Volts;
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5. Noise (d): sinusoidal pulse signal with f of 4 kHz, Td = 0.008 s, ϑ = 500 s−1, φ = 45 deg.,
and Vamp = 2 Volts;

6. Noise (e): sinusoidal pulse signal with f of 3.3 kHz, Td = 0.003 s, ϑ = 0 s−1, φ = 0 deg.,
and Vamp = 2.4 Volts;

7. Noise (f): sinusoidal pulse signal with f of 1 kHz, Td = 0.008 s, ϑ = 500 s−1, φ = 45 deg.,
and Vamp = 2 Volts;

8. Noise (g): sinusoidal pulse signal with f of 8 kHz, Td = 0.002 s, ϑ = 0 s−1, φ = 0 deg.,
and Vamp = 2.4 Volts;

9. Noise (h): sinusoidal pulse signal with f of 8 kHz, Td = 0.008 s, ϑ = 500 s−1, φ = 45 deg.,
and Vamp = 2 Volts.

The performed simulation of the circuit of Figure 1b follows the configuration of
Table 1.

Table 1. Simulation configurations of the black box model of Figure 1b.

Simulation V2 (Noise 1 of Figure 1b) V3 (Noise 2 of Figure 1b)

Simulation 1 Noise (a) Noise (b)
Simulation 2 Noise (c) Noise (d)
Simulation 3 Noise (e) Noise (f)
Simulation 4 Noise (g) Noise (h)

The simulations are performed using the LTspice tool, a SPICE-based analog electronic
circuit simulator open-source software [29] (Version x64: 24.0.11) providing time domain
(transient analysis) and frequency domain results. The frequency domain results are
executed using the LTspice Fast Fourier Transform (FFT) plugin. The FFT is an optimized
algorithm for the implementation of the Discrete Fourier Transformation (DFT), allowing for
faster data computation. DFT transforms a sequence of N numbers (time domain samples):

{xN} = x0, x1 , . . ., xN−1 (3)

to a sequence of another set of complex numbers:

{XK} = X0, X1 , . . ., XN−1 (4)

DFT using FFT can be written using the following formula:

Xk =
1
n

N−1

∑
n=0

x(n)·e−j 2π
n kn (5)

where N is the size of the domain for the results of the sum of a value n.
The output data (Vout) obtained by adding noises (see simulation configuration of

Table 1) are locally imported by the Konstanz Miner (KNIME) [30] workflow of Figure 2
executing the ANN Vout prediction. Specifically, the workflow of Figure 2 is structured
through the macro-functions of:

1. Data pre-processing: data importing in local repository, data manipulation, and
data filtering;

2. Data processing: ANN training and ANN testing models;
3. Data output: data visualization, algorithm performance scoring, and data exporting.
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Figure 2. KNIME workflow predicting Vout signals of the circuit of Figure 1b.

The blocks (named nodes) structuring the workflow are as follows:

- ‘File Reader’: importing the .txt values of the simulations (outputs of the LTspice tool);
- ‘RowID’: generating time attributes (time steps as new column);
- ‘String Manipulation’ and ‘String to Number’: setting of the time column to integer

attribute type;
- ‘Column Filter’: selecting of only the time steps and Vout columns;
- ‘Normalize’: normalizing the Vout signal;
- ‘Partitioning’: partitioning of the dataset into training and testing dataset;
- ‘Rprop MLP Learner’: ANN training model based on Multilayer Perceptron (MLP)

with adaptive RPROP algorithm [31];
- ‘Multilayer Perceptron Predictor’: testing the ANN-MLP model;
- ‘Column Appender’: appending different Vout signals of the simulations listed in

Table 1;
- ‘Numeric Scorer’: evaluating ANN performance (R2, mean absolute error, mean

squared error, root mean squared error, mean signed difference, mean absolute per-
centage error, adjusted R2);

- ‘Line Plot’: plotting of the prediction results;
- ‘Excel Writer’: exporting prediction results in excel file format to be plotted by other

dashboards or data visualization plugins.

The modelling of the use criteria of the whole approach is sketched by the standard
(ISO/IEC 19510:2013) Business Process Modeling and Notation (BPMN) graphical symbols
using the open source Draw.io tool.

3. Results

The results proposed in this section are related to the following:

1. Ltspice simulation results (simulations of the circuit of Figure 1a configured as indi-
cated in Table 1);

2. KNIME simulation predicting the noisy predicted Vout signals.
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3.1. LTspice Results

The LTspice tool is applied to simulate the black box model of Figure 1b. A transient
analysis is performed by using a stop time of 0.02 s, 0 s as the time to start saving data, and
a maximum time step of 0.1 s. Figure 3 illustrates the time-domain of the four planned
simulations combining the noises as planned in Table 1; each simulation takes into account
three inputs of the operational amplifier of Figure 1b estimating the Vout signal. The
additive inputs are the pure sinusoidal V1 signal and two noises signals distorting the input
V1. The V1 is the desired output to be amplified behaving as a carrier controlling a machine
or a processing tool (pure sinusoidal signal typically adopted for circuits controlled by a
specific carrier).
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An example of LTspice frequency analysis is illustrated in Appendix A: the Fast Fourier
Transform (FFT) analysis compares the spectrum of the input signal V1 with the spectrum
of a Vout signal disturbed by noises characterized by peaks in the frequency response. The
results of Appendix A are a logarithmic graph with signal level (dB) on the vertical axis
and frequency (Hz) on the horizontal axis representing the spectra values of Equation (5).
By executing the four simulations of Table 1 independently, the output voltages signals
(Vout) obtained are estimated as:
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Voutput(t) = −(V1(t) + Noise1(t) + Noise2(t)) = −(V1(t) + V2(t) + V3(t)) (6)

All the voltage calculated outputs constitute (with the input V1 signal and the time
variable) the whole dataset to be processed by KNIME workflow of Figure 2 implementing
the ANN algorithm.

3.2. ANN Predicted Results

The dataset processed for the prediction of the noisy signal is formed by the four Vout
signals of the simulations (see Figure 4), including the pure sinusoidal voltage V1 and the
time step providing the temporal variation (times series forecasting application). Figure 5
illustrates a screenshot of the analyzed dataset having 657 records and 6 attributes (neural
network input nodes) of the ANN.
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The ANN-MLP network is configured to obtain the minimum calculus error fixing
the following hyper-parameters: maximum number of iterations equals to 400, 7 hidden
layers, and 25 as the number of hidden neurons per layer. The architecture of the optimized
ANN-MLP model is sketched in Appendix B. As ANN results, Figure 6a illustrates the
trend of the V1 input signal and predicted output signal Vout versus the time-step. The
zoomed predicted Vout using different sizes of the training dataset (70%, 75% and 80%) is
shown in Figure 6b. It is observed from Figure 6b that the predicted signal changes its trend
with the size of the training dataset. Being the testing dataset extracted from the last values,
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and since the last values of Vout are not influenced by noises, the choice of the relative size
of the training dataset of 70% provides the best prediction because the testing values are
strongly influenced by noises. This aspect is clearly enhanced by observing the zooming of
the predicted values in Figure 6b, highlighting the increasing trend of the minimum values
of Vout.
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The good performance of the ANN-MLP algorithm is proven by the error parameters
estimated in Table 2, where the Random Forest (RF) performance (see the KNMIE workflow
in Appendix B) is also indicated.
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Table 2. ANN-MLP performance parameters of the optimized algorithm versus RF algorithm.

Parameter ANN-MLP RF

R2 0.96 0.96
Mean Absolute Error (MAE) 0.02 0.031
Mean Squared Error (MSE) 0.001 0.002

Root Mean Squared Error (RMSE) 0.034 0.039
Mean Signed Difference (MSD) 0.021 0.014

Mean Absolute Percentage Error 0.054 0.062

The procedure adopted for the choice of the ANN parameters is summarized in the
following sequential steps: (1) the number of the hidden layers checking the minimum MAE
error are varied; (2) then the epochs number at the minimum condition of step is varied
before (1) verifying again the further minimum MAE for both step (1) and (2); (3) finally,
it is set to the number of hidden neurons per layer, finding again the minimum MAE.
For the analysis of step (2), the error plot trend (see Appendix B an example) is analyzed.
Furthermore, it is observed that by choosing a training dataset partition of 80% (best
partitioning providing the minimum error), the MAE error remains the same (MAE = 0.2)
for testing dataset take from the last dataset values, selected linearly over the whole dataset,
and using a random sampling. Further information about the cross-validation approach
are in Appendix B.

4. Discussion

The prediction of the Vout signal of a controlling device provides useful informa-
tion about possible complications in machine control. The proposed model highlights a
methodology to estimate a predicted control signal at the output of an operational am-
plifier, modelling the amplification of all the signals (input signal and noises) behaving
as a black box. The advantages and disadvantages of the proposed approach are mainly
focused on the training of the ANN model, the predictive maintenance in case of strong
input disturbances, machine tuning for possible intervention to enable, and on the cases
of further complex noises influencing the final signal trend as multiplicative noises. The
advantages and disadvantages of the ANN model are listed in Table 3.

By applying the ANN prediction, different limitations concern the computational time
to perform real time data processing, the dataset availability, the efficiency of the training
and testing datasets, and the possibility to classify correctly the noises affecting the control
circuits. Important perspectives are found in augmented data and data cleaning techniques
improving the training models, and in the use of advanced technologies such as quantum
and edge computing. The perspectives are defined in advanced Industry 4.0/Industry 5.0
scenarios. The limitations and the perspectives of the ANN prediction are summarized in
Table 4.

Despite these limitations, the study presents a novel approach to address a significant
challenge in electronic circuit design and control systems. By treating the circuit as a “black
box” and relying solely on input and output voltage signals, the proposed model offers a
versatile solution that can adapt to various noise profiles and circuit configurations without
requiring prior knowledge of the noise characteristics.

The drawback of the proposed black box model concerns the difficulty in understand-
ing how the model generated the outputs; this generates further difficulties in identifying
and correcting biases and other hyper-parameters for the training model. On the other
hand, the main limitation is that the model is not transparent; this aspect causes possible
errors of interpretations and, consecutively, uncertainties about the ANN accuracy.

The discussed method can be executed by distinguishing different sequential steps.
Table 5 summarizes all six steps followed in the work and defines the use criteria, suggesting
possible corrective actions optimizing a correct execution of the ANN model.
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Table 3. Main advantages and disadvantages of the ANN prediction of the noisy signal in manufac-
turing industries.

ANN Prediction Aspects Advantages Disadvantages

ANN training model

Possibility to construct the training model by
considering the historical output data of the
circuits without knowing the noisy profile

(black box behavior).

A good training requires a dataset including all
the potential noises which could influence the
output signal (a long time is required to store

information about the impact of probable noises).

Predictive Maintenance
The prediction of a strong noisy signal trend

could enable predictive maintenance processes
avoiding machine breakage.

Difficulty to distinguish dangerous noisy signals
to enable the predictive maintenance procedures.

Machine tuning

The signal trend prediction allows for the
automation of the input signal setting, thus
anticipating corrective actions. A feedback
system controlled by an AI engine could

optimize the parameter setting generating a
new input signal correcting control errors [10].

A correct machine tuning is performed when
probable noises are considered. New typologies
of disturbs or noises not included as historical

Vout could provide wrong predictions and,
consequently, wrong tuning or parameter setting.

Multiplicative noises
The ANN prediction is adaptable also when

unwanted random signals are multiplied into
machine control inputs [32].

The error prediction increases with the
complexity of noises as for multiplicative noises.

Intentional manumission
The prediction of possible noisy trend is
important also to find possible hardware

analog Trojans [33–35].

Difficulty to distinguish the hardware attacks to
noises and disturbs intrinsic of machinery.

Digital Twin (DT)

The proposed approach is suitable to
developing DT models [36–38] simulating the

behavior of whole production lines in
manufacturing industries.

DT models could be approximate and not
match with the real behavior of the

production processes.

Table 4. Limitations and perspectives of ANN predictions in Industry 4.0/Industry 5.0 scenarios.

Technological Limits Technology Description Technological Perspectives

Real time prediction
The time delay of the data processing defines a
quasi-real data processing. Strong delays are

possible for big data processing.

Some advanced technologies such as edge
computing or quantum computing [39] could be

adopted for a real time data processing
computing massive datasets.

Knowledge of the
noise spectra

Generally, the noises knowledge is missing: both
time domain profile and frequency spectrum are
unknown. Some useful information is possible to

obtain for noises characterized by a carrier which is
visible in the whole spectrum of the output signal

(see Appendix A).

Machine learning supervised algorithms could
be applied to also predict the behavior of the

output signal in the frequency domain by
applying denoising filtering approaches [40,41].

Dataset availability

The data availability are fundamental for data
processing of machine learning supervised

algorithms requiring a large number of cleaned
data to optimize the training model.

Some methodologies such as augmented
data [42] could be adopted to increase

the dataset.

Automated Controlling
Systems (ACS)

The big data processing requires a high
computational cost generating delays or interrupts

before to execute the decision-making automatic
systems less effective.

A specific calculus engine could be used to
increase the efficiency of the automated

controlling systems.

Testing dataset

The testing dataset (last values of Vout signals)
could be not influenced by noises and,
consecutively, the prediction could be

partially wrong.

Other techniques for the extraction of the testing
model (such as linear sampling or random

sampling) could include with a greater
probability the noisy behavior.
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Table 4. Cont.

Technological Limits Technology Description Technological Perspectives

Training dataset The training dataset should include a variety of
probable noises.

The historical dataset could be selected by
eliminating redundancies and longtime of

regular signal (pre-filtering approach of the
training dataset).

Classification of the
single noise

When many noises influence the output signal, it is
very difficult to classify each noise signal.

Due to the difficulty to classify and filter the
single noise, it is possible in advance to tune or

adjust the profile of the whole signal output.

Table 5. Use criteria of the proposed model and possible corrective actions deduced from the analysis.

Function of the Model
(Sequential Steps) Use Criteria Possible Corrective Actions

1- Data storage
Definition of the time intervals to detect

and store data outputs.
Cleaning of the dataset (filtering of

wrong data or missing values).

2- Time domain data processing
Definition of the accuracy of the sampling

(sampling time step definition).
Decrease in the sampling time to store

also highly variable noises.

3- Frequency domain data processing

Frequency analysis matching with the
time domain one to find possible noises

characterized by carriers: the trend of the
output predicted signals are compared

with the FFT spectra to extract
information about possible carries thus

supporting noise classification.

Application of narrow filters to suppress
undesired carriers.

4- Data training pre-processing
Creation of the ANN training model by

considering different voltage output.
Use of augmented data to increase the

efficiency of the training model.

5- Choice of the data testing model
Selection of the testing dataset possibly

including the noise effects.
Change in the testing dataset dimension

to include possible noises.

6- ANN data prediction interpretation Analysis and interpretation of the
predicted output signals.

Possible corrective actions are defined by
considering priorities and multi-level
Decision Support Systems (DSSs) [43].

7- Tuning approach

Tuning of the input signals matching
with ANN data prediction interpretation
by acting on the input signal (regulation
of the input signal or adding of further

control signal).

Use of denoising filters according with
the predicted output trend and with the
FFT responses (suppression of undesired
carriers). Modification of the input signal

combining other input signals able to
correct the minimum and the maximum

amplitude of the output signal.

The disturbance signal profiles are considered sinusoidal components typically ob-
served in power systems but also in low voltage ones [44–47]; harmonics sometimes
referred to electromagnetic interferences and ‘electrical pollution’ characterizing complex
electrical and electronic systems.

The use criteria, including possible corrective actions, listed in Table 5 are sketched by
the BPMN model in Figure 7, indicating all the sequential steps followed in the modelling.

A practical application for the proposed approach is in the formulation of a digital
twin specific for machine regulation and tuning for manufacturing processes, where the
prediction of the output signal is fundamental to improve product quality decreasing
defects. Future potential applications are in the integration of the ANN predictive model in
advanced electronic systems of Industry 5.0, where AI algorithms are able to automate the
machine setting according to the predicted output signal. Future research topics could be
focused on the simultaneous analysis of time-domain and frequency-domain analyses.
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In industrial scenarios, some examples of behaviors similar to the performed analysis
are as follows: due switching (recurrent damped oscillating waves), lighting, operations
in low voltage switchgears, energy transformation (presence of slot noises in genera-
tors), interferences (electromagnetic radiation), and injections of additional signals by
different utilities.

5. Conclusions

This paper proposes an innovative ANN-based approach to predict the output voltage
signal of amplifying circuits disturbed by noises. Specifically, by applying the black box
concept, the model takes into account the typical effects of noises gained by an amplifier
circuit predicting the noisy signal trend without knowing the noise typology. In order
to test the ANN model, an ‘Adder’ circuit based on operational operator that is able to
gain both input signal and noises is designed and simulated. The presented model could
be extended to also predict irregular and chaotic noises, and it is suitable to structure
a digital twin framework for Industry 5.0 scenarios, including intelligent automatisms
and optimizing machine regulation procedures. Future research efforts could focus on
validating the model’s performance across a broader range of circuit designs and noise
conditions, as well as exploring its integration with existing control systems and automated
tuning procedures. Additionally, investigating the model’s scalability and computational
efficiency would be beneficial for its practical implementation in real-time monitoring and
control applications.
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Appendix A

The FFT results of the input Voltage signal V1 are illustrated in Figure 1a, proving the
presence of a frequency peak ad f = 1 kHz (carrier of the input signal). The influence of
an additive noise is proven by the FFT analysis of the voltage output Vout of Figure A2,
indicating the presence of a peak in f = 4 kHz (as noise © and noise (d)).
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The optimized ANN-MLP is selected by minimizing the error values indicated in
Table 2. Illustrated in Figure A3 is the architecture of the optimized ANN-MLP network
characterized by 4 input nodes with V1 labelled as a class (target). The optimized ANN-
MLP network is characterized by 7 hidden layers and 25 neurons per layer.
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The cross-validation test is executed for the optimized ANN-MLP algorithm by using
the ‘X-Partitioner’ and the ‘X-Aggregator’ blocks of KNIME blocks. The performed test
cross-validation takes into account ten number of validations using a stratified sampling
approach defining the ten test subsets to process named folds. For the specific case, an
average MSE value of 0.001 is observed.



AI 2024, 5 547

AI 2024, 5, FOR PEER REVIEW 15 
 

 
Figure A4. RProp MLP error trend versus the epochs number. 

The cross-validation test is executed for the optimized ANN-MLP algorithm by using 
the ‘X-Partitioner’ and the ‘X-Aggregator’ blocks of KNIME blocks. The performed test 
cross-validation takes into account ten number of validations using a stratified sampling 
approach defining the ten test subsets to process named folds. For the specific case, an 
average MSE value of 0.001 is observed.  

 
Figure A5. Screenshot of the cross-validation test applied to the optimized MLP algorithm. 

Figure A5. Screenshot of the cross-validation test applied to the optimized MLP algorithm.

Figure A6 illustrates the KNIME workflow adopted for the comparative analysis of
Table 4.
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