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Abstract: The fatigue strength of cast steel components is severely affected by manufacturing process-
based bulk and surface imperfections. As these defect structures possess an arbitrary spatial shape,
the utilization of local assessment methods is encouraged to design for service strength. This work
applies the elastic–plastic strain energy density concept to study the fatigue strength properties of a
high-strength cast steel alloy G12MnMo7-4+QT. A fatigue design limit curve is derived based on
non-linear finite element analyses which merges experimental high-cycle fatigue results of unnotched
and notched small-scale specimens tested at three different stress ratios into a unique narrow scatter
band characterized by a scatter index of 1 : T

∆W
(t) = 2.43. A comparison to the linear–elastic

assessment conducted in a preceding study reveals a significant improvement in prediction accuracy
which is assigned to the consideration of the elastic–plastic material behaviour. In order to reduce
computational effort, a novel approximation is presented which facilitates the calculation of the elastic–
plastic strain energy density based on linear–elastic finite element results and Neuber’s concept.
Validation of the assessment framework reveals a satisfying agreement to non-linear simulation
results, showing an average root mean square deviation of only approximately eight percent in terms
of total strain energy density. In order to study the effect of bulk and surface imperfections on the
fatigue strength of cast steel components, defect-afflicted large-scale specimens are assessed by the
presented elastic–plastic framework, yielding fatigue strength results which merge into the scatter
band of the derived design limit curve. As the conducted fatigue assessment is based solely on linear–
elastic two-dimensional simulations, the computational effort is substantially decreased. Within the
present study, a reduction of approximately 400 times in computation time is observed. Hence, the
established assessment framework presents an engineering-feasible method to evaluate the fatigue
life of imperfective cast steel components based on rapid total strain energy density calculations.

Keywords: cast steel; notch fatigue; bulk defects; surface defects; local fatigue assessment; strain
energy density; elastic–plastic approximation

1. Introduction

Due to strict environmental regulations, modern production strives for a lightweight
design of mechanical components [1]. Engineering tools such as topology optimization
represent feasible methods to combine application-tailored parts and economic produc-
tion [2,3]. Such designs often lead to complex-shaped components possessing thin-walled
cross-sections and therefore high loading conditions of their respective parts. In order to
simultaneously fulfil the requirements in terms of manufacturability and fatigue strength of
these complex structures, high-strength cast steel alloys are suitable engineering materials
due to their favourable mouldability and high load-bearing capacities. The chemical com-
position of such alloys facilitates their utilization in welded hybrid constructions such as
bogie frames in railway applications, consisting of complexly shaped cast components and
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standardized parts with various beam geometries. However, despite the latest advances in
numerical simulations in the casting process [4–8], the formation of manufacturing process-
based shrinkage imperfections within highly loaded sections cannot be fully prevented.
Due to high-volume contraction, these spatial defect structures often reach dimensions
of several millimetres [9–12]. Hence, the fatigue strength of the respective components is
significantly affected by the presence of such macroscopic imperfections [13–17].

Design guidelines such as the commonly utilised guideline FKM (Forschungskuratorium
Maschinenbau) [18] propose safety factors to consider the detrimental effect of defects on the
fatigue strength of cast steel components. These safety factors only consider the applied methods
of non-destructive testing during quality control of respective cast steel structures, fully neglect-
ing the geometrical shape and location of inherent imperfections. Hence, the application of such
safety factors often results in conservatively designed, overweight components which often
repeal the advantages achieved by topology optimization. In order to take the geometrical shape
of casting defects into account, the standard ASTM E446 [19] provides reference radiographs
depicting representative imperfection geometries. Defect structures are classified into categories
which reflect their causes of appearance, such as slag inclusions or shrinkage imperfections.
Within a category, each reference radiograph represents a certain severity grade which is mainly
defined based on the size and amount of the depicted imperfections. During the design process,
specific combinations of defect category and severity grade are denoted as not acceptable for
operation. Utilizing this defect classification system, assessment of defect-afflicted cast steel
components is simply conducted by comparison of X-ray images of corresponding compo-
nents to the reference radiographs. If occurring imperfections match a defect class denoted
as non-acceptable, the component must be repaired or even scrapped and a new part has to
be manufactured, increasing cost and time expenses significantly. A major drawback of this
assessment method lies in the sole consideration of the defect geometry, fully neglecting its
location in the assessed component. This circumstance implies that the existence of a certain
imperfection could lead to the rejection of a manufactured component, even if it is located in a
cross-section subjected to negligible stress. Furthermore, the interpretation of radiographs is
a highly subjective task which depends strongly on the experience of the responsible person-
nel [20]. Hence, the same imperfection could be classified as either acceptable or non-acceptable,
depending on the subjective interpretation of the non-destructive testing results.

In order to provide an objective quantitative assertion about the effect of imperfections
on the fatigue behaviour of cast steel components, local assessment methods which consider
the shape and location of inherent defect structures should be applied.

Defect structures such as shrinkage porosity networks induce a locally acting multiax-
ial stress state. Due to the ductile material behaviour of cast steel alloys, the resulting local
loading conditions cause elastic–plastic deformation in the vicinity of each imperfection.
Considering cyclic loading of notched or defect-afflicted parts, the non-linear material
response results in mean stress relaxation [21–24] which alters the cyclic loading hystere-
sis until stabilization of the material behaviour. This stabilization process leads to the
formation of a local effective stress ratio Re f f , similar to the case of residual stresses that
interact with stresses induced by external loading [25,26]. In order to consider non-linear
deformations during finite element analysis, the constitutive material equation provides the
connection between strains and stresses [27]. Several elastic–plastic models are reported in
the literature to include plasticity effects during cyclic loading such as Bauschinger’s effect
or ratcheting [28,29]. A common constitutive model to describe the inelastic behaviour
of metallic materials is given by Chaboche [30]. The approach presents a combined hard-
ening model which considers isotropic as well as non-linear kinematic hardening and is
therefore capable of describing the evolution of size and position of the yield surface in
the space of stresses. The evaluation of the applicable constitutive model parameters is a
well-researched topic and comprehensively published [31–35]. The application of combined
hardening material models covers a broad variety of advanced research topics such as
creep-fatigue analysis at elevated temperatures or uni- to multiaxial loading conditions in
static and dynamic structural integrity analysis [36–39].
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Dealing with the fatigue analysis of defect-afflicted ductile cast steel components,
the non-linear deformation behaviour can be implemented into the assessment procedure
to consider the cyclic evolution of the multiaxial stress state induced by the respective
imperfections. This necessitates an assessment methodology capable of considering local
plastic strains in order to accurately describe their influence on fatigue strength. The strain
energy density (SED) concept presents a local fatigue assessment method that is utilised to
assess arbitrarily shaped notches subjected to varying loading conditions. Fatigue failure
occurs if the SED averaged over the control volume Ω reaches a critical value [40]. Herein,
Ω represents a finite volume in the vicinity of a stress concentrator and is described by the
material-dependent control radius Rc and the notch geometry [41]. Figure 1 visualizes the
definition of Ω for sharp and blunt V-notches, characterized by the notch opening angle 2α
and the notch root radius ρ [40,42].

Figure 1. Definition of the control volume Ω: (a) Sharp V-Notch. (b) Blunt V-Notch.

In the case of a sharp notch, the control volume is centred in the notch root and takes
the shape of a circle segment. Dealing with blunt notches as a generalized case, the control
volume takes the form of a crescent shape with its centre located at a distance r0 from the
notch root, where r0 is a function of 2α and ρ [40,42].

In analogy to strains, the total cyclic strain energy density ∆W(t) can be defined as the
superposition of an elastic ∆W(e) and plastic contribution ∆W(p) as given in Equation (1) [43].

∆W(t) = ∆W(e) + ∆W(p) (1)

Equation (1) also holds true when dealing with SED values averaged over the control

volume which are denoted by an overline accent, for example ∆W(t).
Concerning linear–elastic material behaviour, analytical formulations for the calcula-

tion of the averaged SED ∆W(e) are reported for notched and unnotched specimens [42].
The elastic framework was successfully applied to describe the static and cyclic failure of
notch-like geometries such as welded joints under uniaxial and multiaxial loading con-
ditions [44–54]. More recently, the linear–elastic energy-based fatigue assessment of cast
steel specimens afflicted by macroscopic shrinkage imperfections was presented, featuring
the evaluation of the fatigue strength in the finite life, as well as in the endurance limit
region. The calculations are based on finite element analyses of each arbitrarily shaped
imperfection, as the analytical framework established for notched components cannot be
directly applied in this case [10].

In order to improve the prediction accuracy during fatigue assessment, the energy
dissipated by non-linear deformation will be included in the framework in terms of the

plastic averaged SED ∆W(p) [55]. Regarding the contribution of the elastic SED ∆W(e) to the

total SED ∆W(t) given in Equation (1), different approaches are reported in the literature:

• Consideration of ∆W(e) regardless of its sign [56].



Appl. Mech. 2023, 4 531

• Equal contributions of ∆W(p) and only the positive part of ∆W(e) caused by tensile
stresses [57,58].

• Consideration of a weighting factor, which modifies the contribution of the positive

part of ∆W(e) to the total strain energy density [59].

Benedetti et al. [60] summarized different approaches in a visual way, highlighting the
absence of a general consensus about the relative importance of the elastic and plastic part
in the calculation of the total strain energy density. In order to preserve consistency with
the linear–elastic methodology reported in the literature [46,61–63], the elastic and plastic

contributions ∆W(e) and ∆W(p) to the total SED ∆W(t) are equally considered following

Equation (1), where ∆W(e) is included regardless of its sign. This approach was also referred
to in a preceding study [10]. Figure 2 exemplifies the applied convention, depicting the
individual parts of the SED for an illustrative stabilized hysteresis loop.

Figure 2. Definition of the elastic and plastic strain energy density on a stabilized hysteresis loop.

The total strain energy density concept was successfully applied to calculate the
fatigue life of unnotched and notched components made of various materials under uni-
axial and multiaxial loading conditions [64–68]. However, as an analytical calculation of

∆W(p) is only reported for unnotched specimens [43], the assessment procedure generally
relies on numerical methods. Due to the non-linear material behaviour, computational
efforts significantly rise, especially if the load history changes the hysteresis loop severely
until stabilization.

Recalling established approximation concepts in notch fatigue, engineering-feasible
methods by Neuber, Molski and Glinka [69,70] come to mind, which enable the approxima-
tion of the elastic–plastic stresses on the basis of linear–elastic results. Originally formulated
for shear loading, Neuber [69] investigated the approximation of non-linear stresses and
strains at the roots of sharp notches. A subsequent study by Seeger and Heuler confirmed
the general applicability of Neuber’s concept on other loading configurations by utiliz-
ing strain measurements at the notch root [71]. The graphical interpretation of Neuber’s
concept is given in Figure 3 and considers equality of the areas which are defined by
the stresses and strains in the case of linear–elastic and elastic–plastic material behaviour.
The respective parameters are highlighted by the superscripts (e) in the linear–elastic case
and (t) in the elastic–plastic one.
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Figure 3. Graphical interpretation of Neuber’s concept.

Equality of the linear–elastic and elastic–plastic areas in Figure 3 is achieved if the
points (ε(e), σ(e)) and (ε(t), σ(t)) are connected by a hyperbola [69]. This condition is ex-
pressed by Equation (2), considering the stress concentration factor Kt, the nominal stress S
in the net cross-section of the notched component and the Young’s Modulus E [72].

σ(t) · ε(t) = σ(e) · ε(e) = (Kt · S) ·
(

Kt ·
S
E

)
=

(Kt · S)2

E
(2)

Due to the simplicity of Neuber’s concept in approximating elastic–plastic stresses and
strains based on linear–elastic material behaviour, the methodology is applied in various
research fields investigating local plasticity effects [73–78].

Molski and Glinka [70] presented an energy-based approach to calculate the elastic–
plastic stress at the notch root. The introduced equivalent strain energy density concept
assumes that the value of strain energy density in a notched body stressed by a specific load
remains unaffected by the investigated material law. Hence, the strain energy density of the
theoretical linear–elastic material and the real elastic–plastic one is the same [79,80]. In order
to investigate the physical relationship between Neuber’s concept and the equivalent strain
energy density method, Ye et al. [81,82] presented an approach based on the thermodynamic
analysis of plastic deformation. The concept states that the plastic strain energy splits into
heat energy and stored energy. Only the heat energy is dissipated during loading, while
the remaining stored energy contributes to the local elastic–plastic stress and strain fields.
The fraction of dissipated energy for one loading cycle is described by the so-called energy
dissipation coefficient which constitutes the ratio of the dissipated heat energy to the plastic
strain energy [82]. Furthermore, it was shown that Neuber’s concept presents a special
case of the equivalent strain energy density approach, as the approach by Neuber neglects
the cyclic plastic strain energy density when approximating the non-linear stresses. Hence,
the concept presented in [81] yields elastic–plastic stress calculations resulting in values
between the equivalent strain energy density concept as the lower limit and Neuber’s
concept as the upper conservative limit. More recent studies deal with the formulation of
pseudomaterials [83–86] as well as the approximation of the elastic–plastic stress and strain
fields in the vicinity of crack tips [87].

However, as most fatigue studies reported in the literature focus on the assessment of
notched components, the application of elastic–plastic approximation methods to arbitrarily
shaped casting defects is a promising field of research. By evaluating the elastic–plastic
stresses and strains induced by the complex geometry of such imperfections, the corre-
sponding total strain energy density could be derived as given in Figure 2, considering
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local plasticity effects such as mean stress relaxation. Such elastic–plastic approximation
methods significantly reduce computational effort and therefore feature a rapid fatigue
design of defect-afflicted cast steel components.

Hence, this paper contributes to the following scientific topics:

• Evaluation of an elastic–plastic design limit curve for the high-strength cast steel alloy
G12MnMo7-4+QT.

• Development and validation of a numerically efficient methodology to assess the
elastic–plastic strain energy density based on elastic stresses and strains.

• Application of the introduced rapid total strain energy density-based design to arbi-
trarily shaped, spatial bulk and surface imperfections found in cast steel components.

2. Materials and Methods

In order to establish the elastic–plastic assessment framework, the high-strength cast
steel alloy G12MnMo7-4+QT in quenched and tempered heat treatment condition was
chosen. This material is a promising alternative to weldable low-strength alloys such as
G21Mn5+N to facilitate improved lightweight design. This holds especially true for large
structures subjected to a high number of load cycles, as for example in railway components.
The chemical composition of G12MnMo7-4+QT is given in the standard SEW 520 [88].
The high-cycle fatigue behaviour of the high-strength cast steel alloy was reported by
axisymmetric, unnotched plain and notched small-scale specimens in a previous study [10].
Concerning the notched samples, V-notch opening angles of 2α = 45◦ and 2α = 135◦ were
considered, where both geometries possess identical notch depths of 3 mm and notch root
radii of ρ = 0.1 mm. The investigated stress ranges are referred to the cross-section of
the V-notched specimens with a diameter of 16 mm. Concerning the plain specimens, stress
ranges are referred to the diameter of 10 mm. Figure 4 presents the specimen geometries
investigated in [10].

× ×

×

Figure 4. Plain and notched specimen geometries investigated in a preceding study [10].

The high-cycle fatigue experiments were conducted on a RUMUL® Testronic 150 kN
(Russenberger Prüfmaschinen AG, Neuhausen am Rheinfall, Switzerland) resonance test
rig. The experimental setup is depicted in Figure 5.
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Figure 5. Experimental setup of small-scale specimen high-cycle fatigue investigations conducted in
a preceding study [10].

All experimental investigations concerned uniaxial tension-compression loading at
room temperature. Detailed information about the utilised number of small-scale specimens
and the considered stress ratios are given in [10]. Additionally, this preceding paper
includes high-cycle fatigue test results of large-scale specimens affected by macroscopic
bulk shrinkage imperfections. It should be noted that only a linear–elastic energy-based
approach was applied for fatigue assessment in this preceding study [10].

The present study reassessed these small- and large-scale specimen test results by
means of an elastic–plastic energy-based approach. In order to characterize the non-linear
material behaviour, low-cycle fatigue experiments were carried out. Furthermore, addi-
tional high-cycle fatigue experiments utilizing bulk defect-afflicted large-scale specimens
and a stress ratio of R = 0.5 were conducted in the present study to investigate the influence
of high mean stresses. The current experimental investigations also involved high-cycle
fatigue experiments of surface defect-afflicted large-scale specimens in order to further
enhance the experimental database of real-life casting imperfections. This extended dataset
is used to demonstrate the uniform applicability of the formulated assessment framework.
All experimental investigations were conducted at room temperature.

2.1. Low-Cycle Fatigue Investigations

The specimen geometry utilised in the conducted low-cycle fatigue experiments
corresponds to the standard DIN EN 3988 [89] and is depicted in Figure 6.

×

Figure 6. Specimen geometry utilised in low-cycle fatigue experiments.
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The strain-controlled experiments were conducted on a servo-hydraulic test rig, utiliz-
ing an extensometer attached to the specimen for strain measurement. A triangular loading
sequence was applied, featuring a constant strain rate of 1% per second. The specimens
were tested at an alternate strain ratio of Rε = −1 and subjected to total strain amplitudes
between 0.18% and 1%. Figure 7 depicts the experimental setup utilised for the conducted
low-cycle fatigue investigations.

Figure 7. Experimental setup of low-cycle fatigue investigations.

2.2. High-Cycle Fatigue Investigations of Bulk Defect-Afflicted Specimens

To extend the existing experimental database reported in [10] towards higher stress
ratios, additional high-cycle fatigue experiments of bulk defect-afflicted large-scale speci-
mens made of G12MnMo7-4+QT were conducted. The utilised specimen geometry was
identical to the one investigated in [10] and is presented in Figure 8. It should be noted that
although the specimen geometry was the same, each sample was affected by an arbitrarily
shaped bulk imperfection possessing a unique geometry.

××

Figure 8. Geometry of bulk defect-afflicted large-scale specimens utilised in high-cycle fatigue experiments.

X-ray investigations in two perpendicular planes, denoted as X- and Y-view, were
carried out prior to testing in order to characterize the spatial shape of each individual bulk
defect. The obtained radiographs were evaluated in terms of the calculation of geometrical
shape parameters which are given in Table 1.
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Table 1. Shape parameters of investigated bulk defects evaluated based upon radiographs.

Parameter Minimum Maximum Mean Standard Deviation

Area [mm2] 89.99 160.98 132.54 22.10
Feret Max. [mm] 25.55 49.53 36.51 8.20
Feret Min. [mm] 6.62 9.96 8.07 0.87
Aspect ratio [−] 3.05 7.47 4.60 1.32
Circularity [−] 0.08 0.32 0.18 0.08
Convexity [−] 0.47 0.72 0.61 0.08
Elongation [−] 6.97 18.04 10.28 3.74

The experiments were carried out on a SincoTec® MOT600kN (SincoTec Test Systems
GmbH, Clausthal-Zellerfeld, Germany) resonance test rig under constant amplitude and
uniaxial tension-compression loading. Six specimens were tested utilizing a stress ratio
of R = 0.5 and stress ranges between 100 MPa and 175 MPa at a testing frequency of
approximately 75 Hz. The test strategy introduced in preceding studies [10,11,17] was fol-
lowed for the experimental investigations. This strategy involved testing of each individual
specimen at up to two target load levels. The first experiment was conducted at a stress
range which was expected to result in a run-out of the specimen as the experiment reached
ten million load cycles. In the following experiment, the load was increased in order to
provoke burst failure of the re-inserted specimen. Hence, the testing procedure provided an
experimentally derived assertion about the limiting impact each individual defect had on
the fatigue strength. All investigated load levels refer to the cross-section of the specimens
possessing a diameter of 30 mm. Figure 9 presents the experimental setup utilised for the
conducted high-cycle fatigue investigations.

Figure 9. Experimental setup utilised for high-cycle fatigue investigations of defect-afflicted large-
scale specimens.

Subsequent to testing, the fracture surfaces were investigated using a KEYENCE®

VHX-5000 (Keyence Corporation, Osaka, Japan) digital microscope. The conducted analysis
revealed the bulk defects as the primary sites of fatigue crack initiation. Additionally, the
fracture surfaces were geometrically evaluated in terms of shape parameters. Table 2 depicts
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the evaluated results and exemplifies the geometrical variety of investigated imperfections.
As these defects were assessed in terms of fatigue strength by the framework which will
be introduced in the following sections, the presented shape parameter results serve as a
reference for possible future work.

Table 2. Shape parameters of investigated bulk defects evaluated on the fracture surfaces of respec-
tive specimens.

Parameter Minimum Maximum Mean Standard Deviation

Area [mm2] 22.41 63.44 35.72 15.93
Feret Max. [mm] 7.53 13.02 9.47 2.14
Feret Min. [mm] 4.58 8.50 6.41 1.26
Aspect ratio [−] 1.07 1.97 1.48 0.36
Circularity [−] 0.11 0.30 0.20 0.07
Convexity [−] 0.64 0.82 0.76 0.07
Elongation [−] 1.89 3.77 2.66 0.63

In order to graphically demonstrate the variety in geometrical appearance of defect
structures inherent in cast steel components, Figure 10 depicts the radiographs and fracture
surfaces of three representative investigated bulk imperfections.

Figure 10. Radiographs and fracture surfaces of representative bulk defect-afflicted large-scale
specimens tested at R = 0.5: (a) Specimen #33. (b) Specimen #35. (c) Specimen #36.
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2.3. High-Cycle Fatigue Investigations of Surface Defect-Afflicted Specimens

In order to investigate the influence of macroscopic surface imperfections on the
fatigue strength of the cast steel alloy G12MnMo7-4+QT, high-cycle fatigue investigations
were conducted. The experiments utilize surface defect-afflicted large-scale specimens
possessing a cross-section diameter of 32.5 mm, as depicted in Figure 11.

× ×

Figure 11. Geometry of surface defect-afflicted large-scale specimens utilised in high-cycle fatigue ex-
periments.

In order to ensure the surface defect as the site of fatigue crack initiation, a shape
optimization study using Tosca® was conducted. The clamping conditions of the utilised
test rig were modelled and the region around the clamping area was optimized aiming for a
minimum stress concentration. Figure 12 depicts the result of the numerical study, revealing
a maximum stress concentration factor of Kt,max = 1.115 in the optimized specimen design.

X

Z

Y

×100
×100
×10−1
×10−1
×10−1
×10−1
×10−1
×10−1
×10−1
×10−1
×10−1
×10−1
×10−2

Figure 12. Resulting stress distribution around the clamping area of the optimized specimen design.

The specimens were manufactured by the shell mould casting process. In order
to achieve an arbitrary surface defect, a sand particle of several millimetres in size was
inserted into the mould. During casting, the particle floated on top of the liquid metal
due to the difference in density, featuring the intended macroscopic as-cast surface notch.
Subsequent to casting, the specimens were machined in the clamping areas to achieve the
geometry depicted in Figure 11. Non-destructive testing in terms of X-ray examinations was
conducted to prove that no other sand particles were enclosed in the specimen cross-section
which could act as possible sites of fatigue crack initiation. Furthermore, the spatial surface
defect geometry of each specimen was measured non-destructively by a digital microscope.
A three-dimensional image stack was captured for each defect, acquiring its spatial surface
which served as an input parameter for the fatigue assessment procedure outlined in the
following sections. Table 3 summarizes the minimum, maximum and mean values, as well
as the standard deviation of the derived shape parameters, whereat 17 specimens were
investigated in the present study.
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Table 3. Shape parameters of investigated surface defects evaluated on the shell surfaces of respec-
tive specimens.

Parameter Minimum Maximum Mean Standard Deviation

Area [mm2] 6.82 114.89 59.71 23.36
Feret Max. [mm] 3.52 16.93 11.03 2.93
Feret Min. [mm] 2.84 9.97 7.67 1.70
Aspect ratio [−] 1.06 1.87 1.44 0.27
Circularity [−] 0.46 0.77 0.63 0.08
Convexity [−] 0.83 0.96 0.91 0.03
Elongation [−] 1.61 2.75 2.12 0.33

Subsequent to the geometrical characterization of the defect structures, high-cycle
fatigue experiments were conducted on the resonance test rig depicted in Figure 9, applying
constant amplitude and uniaxial tension-compression loading. In order to investigate the
effect of mean stress on the fatigue strength, the specimens were tested at stress ratios
of R = −1, R = 0 and R = 0.5. The same test strategy involving subsequent testing of
individual specimens at up to two load levels, as described in Section 2.2, was applied to
surface imperfections samples. The conducted experiments featured stress ranges between
50 MPa and 325 MPa at an average testing frequency of approximately 84 Hz. It should
be noted that the investigated load levels refer to the cross-section of the specimens with
a diameter of 32.5 mm, as the definition of a net cross-section is complicated due to the
arbitrary spatial shape of the surface imperfections.

After completion of the experiments, fracture surface analysis was carried out utilizing
the digital microscope. The analysis confirmed the macroscopic surface imperfections as
the primary site of fatigue crack initiation. Analogous to the optical assessment prior to the
conducted high-cycle fatigue experiments, the geometrical shape parameters of the defects
were evaluated on the fracture surfaces. Table 4 presents the derived minimum, maximum
and mean values, as well as the standard deviations, providing further information about
the spatial geometry of the investigated surface defects.

Table 4. Shape parameters of investigated surface defects evaluated on the fracture surfaces of
respective specimens.

Parameter Minimum Maximum Mean Standard Deviation

Area [mm2] 2.96 35.72 22.03 7.16
Feret Max. [mm] 4.24 15.29 10.01 2.60
Feret Min. [mm] 1.26 5.17 3.68 0.93
Aspect ratio [−] 1.34 5.16 2.72 1.05
Circularity [−] 0.34 0.62 0.49 0.10
Convexity [−] 0.76 0.95 0.89 0.06
Elongation [−] 2.68 7.24 4.91 1.61

Figure 13 depicts three representative surface defect-afflicted specimens prior to test-
ing, as well as the respective fracture surfaces investigated after burst failure.
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Figure 13. Surface defects and fracture surfaces of investigated large-scale specimens: (a) Specimen #02
tested at R = −1. (b) Specimen #09 tested at R = 0. (c) Specimen #17 tested at R = 0.5.

3. Results and Discussion

As the experimental database covering low- and high-cycle investigations is concluded,
evaluation of the non-linear material behaviour as well as the definition, validation and
application of the energy-based fatigue assessment framework is studied next.

3.1. Characterization of the Low-Cycle Fatigue Strength

Evaluation of the experimental results obtained by the low-cycle investigations pre-
sented in Section 2.1 is conducted according to DIN EN 3988 [89], identifying the number of
cycles until failure N f by a decrease in the measured stresses of 10% subsequent to stabiliza-
tion of the material behaviour. Furthermore, the elastic–plastic strains at half-life N f /2 are
evaluated and a strain-based fatigue assessment curve is derived according to Basquin [90],
Manson [91] and Coffin [92]. Figure 14 depicts the evaluated Manson–Coffin curve.

The total strain amplitude ε
(t)
a is given by Equation (3) as a superposition of the elastic

and plastic strains [90–92].

ε
(t)
a = ε

(e)
a + ε

(p)
a =

σ′f
E′
· (2N f )

b + ε′f · (2N f )
c (3)

The elastic strain amplitude ε
(e)
a is described by the fatigue strength coefficient σ′f ,

the stabilized cyclic Young’s Modulus E′ and Basquin’s fatigue strength exponent b.
The plastic strain amplitude ε

(p)
a is evaluated utilizing the fatigue ductility coefficient ε′f

and Manson–Coffin’s fatigue ductility exponent c [90,92,93].
To describe ε

(t)
a in the stabilized material condition in terms of the acting stress σa,

the formulation according to Ramberg–Osgood given in Equation (4) is utilised [94].

ε
(t)
a = ε

(e)
a + ε

(p)
a =

σa

E′
+
( σa

K′
) 1

n′ (4)

The cyclic strength coefficient K′ and the cyclic strain hardening exponent n′ fea-
tured in Equation (4) are related to the parameters of the Manson–Coffin curve, following
Equations (5) and (6) [95,96].



Appl. Mech. 2023, 4 541

K′ = σ′f · (ε
′
f )
−n′ (5)

n′ =
b
c

(6)

Figure 14. Manson–Coffin curve for Rε = −1.

Equation (4) can be visualized as a cyclic stress–strain curve, utilizing the experimental
data in the stabilized material condition; see Figure 15. Herein, cyclic softening of the inves-
tigated cast steel alloy G12MnMo7-4+QT can be perceived clearly, as the initial yield stress
determined by preceding quasi-static tensile tests possesses a value of σYS = 549 MPa [10].

Figure 15. Cyclic stress–strain curve for the stabilized material behaviour.
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Table 5 summarizes the parameters of the cyclic stress–strain curve.

Table 5. Parameters of the cyclic stress–strain curve.

E′ [MPa] K′ [MPa] n′ [−] b [−] c [−]

203,981 892.56 0.0901 −0.069 −0.766

3.2. Parametrization of Elastic–Plastic Material Model

The low-cycle fatigue experiments reported in Section 2.1 are conducted utilizing the
plain specimen geometry depicted in Figure 6. Hence, the description of the elastic–plastic
strain as a function of stress according to Equation (4) is only valid for unnotched specimens,
where the deformation behaviour is uniform in the loaded cross-section. As notched
specimens exhibit a stress gradient emanating from the notch root, local plastic deformation
can occur in the highly-stressed vicinity of the notch root, while elastic deformation is
predominant in regions further away from it. Dealing with cyclic loading, this local plastic
deformation results in effects such as mean stress relaxation in the notch vicinity, leading to
a complex evolution of the acting stress field which cannot be described in an analytical
manner. Thus, numerical analyses are necessary utilizing a proper material model capable
of describing the inelastic material behaviour.

In the present study, a combined hardening model considering isotropic and non-linear
kinematic hardening is chosen to describe the non-linear material behaviour. The model is
based on the definition of a yield function f given in Equation (7) [30].

f = J(σ − X)− I − k (7)

The term J(σ − X) corresponds to the von Mises criterion and is defined by
Equation (8) [30].

J(σ − X) =

√
3
2
(σ′ − X ′) : (σ′ − X ′) (8)

Herein, the parameter σ represents the stress tensor and X corresponds to the kinematic
back stress tensor. The parameters σ′ and X′ denote the deviatoric parts of σ and X, respectively.

The yield function f reported in Equation (7) represents a surface in the space of
stresses where plastic deformation of the stressed component takes place if the condition
f = 0 is fulfilled. In the case of f < 0, the material flow is of a linear–elastic type. The initial
size of f at zero plastic strain is described by the parameter k. During cyclic plastic loading,
the dislocation structure inherent in the material is altered, resulting in a change of the size
and the position of the yield surface f . The evolution of the surface size is described by the
isotropic part I of the combined hardening approach according to Equation (9) [97].

I = Q ·
(

1− e−bs p
)

(9)

The size of the yield surface changes as a function of the accumulated plastic strain p,
where the parameter Q denotes the difference between the initial and stabilized size of the yield
surface and bs represents the stabilization rate under constant strain amplitude loading [28,30].

The position and translation of the yield surface in the space of stresses are governed
by the kinematic part of the combined hardening model [97]. In order to improve the
description accuracy of the non-linear material model, the kinematic back stress tensor X is
defined according to Equation (10) as a superposition of individual contributions Xi [30].

X =
n

∑
i=1

Xi (10)

Each part Xi follows a differential equation [98] which can be integrated to give
Equation (11) for the uniaxial load case [28,30].
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Xi = ψ
Ci
γi

+

(
X0,i − ψ

Ci
γi

)
· e−ψγi

[
ε(p)−ε

(p)
0

]
(11)

The parameters X0,i and ε
(p)
0 represent the initial conditions, where ε(p) denotes the

plastic strain. The direction of the flow is described by ψ which takes values of ψ = ±1.
In the present study, the parameters of the combined hardening model, including the

kinematic material parameters Ci and γi, as well as Q and bs of the isotropic part, are evalu-
ated utilizing an optimization routine [31] which was developed at the Chair of Mechanical
Engineering at the Montanuniversität Leoben. This routine was comprehensively validated
for various materials under ambient and elevated temperatures [99–103]. In the present
study, the material parameters featured in Equation (9) and (11) are determined based on
the experimental data reported in Section 2.1. Concerning the non-linear kinematic part
of the combined hardening model, two back stress components are considered. Table 6
summarizes the parameters of the elastic–plastic material model.

Table 6. Parameters of the combined hardening material model.

k [MPa] Q [MPa] bS [−] C1 [MPa] γ1 [−] C2 [MPa] γ2 [−]

470 −290.5 150.2 899,436 8996 133,620 522.7

As the material parameters are determined, validation of the constitutional model is
carried out by a non-linear finite element analysis in Abaqus® 2021. A single three-dimensional
element of unity edge length is utilised to evaluate the stabilized hysteresis loop at a total strain
amplitude of ε

(t)
a = 0.5%. The element is of the type C3D20 and features quadratic shape

functions. Figure 16 depicts the finite element model, as well as the numerically evaluated
hysteresis loop for the stabilized material condition in contrast to the experimental results. In this
case, a stabilization of the hysteresis loop has been obtained after approximately 1100 cycles.

Figure 16. Validation of the evaluated combined hardening model: (a) Single element test model and
loading sequence. (b) Comparison of numerically and experimentally derived stabilized hysteresis

loop for ε
(t)
a = 0.5%.
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The comparison of numerical and experimental results given in Figure 16 reveals
a satisfying representation of the stabilized cyclic material behaviour by the established
combined hardening model.

3.3. Evaluation of the Elastic–Plastic Design Limit Curve

As the non-linear material behaviour of the investigated cast steel alloy G12MnMo7-
4+QT is characterized, the elastic–plastic design limit curve can be assessed by means
of an energy-based approach. This limit curve is further utilised to calculate the fatigue
strength of defect-afflicted components. In order to derive the elastic–plastic design limit
curve, the experimental high-cycle fatigue results of small-scale specimens, reported in a
preceding study [10], are reassessed.

The elastic–plastic design limit curve is evaluated based on the averaged total strain en-

ergy density ∆W(t). Therefore, finite element analyses are conducted utilizing Abaqus® 2021.
The non-linear material behaviour is considered by implementation of the combined hard-

ening model presented in Section 3.2. Axisymmetric models are utilised to evaluate ∆W(t)

of the respective plain and notched specimens, featuring elements of type CAX6/CAX8
with quadratic shape functions. The control volume is modelled by partitioning of the
notched geometries, considering a control radius of Rc = 0.083 mm, as evaluated in [10]
for G12MnMo7-4+QT. Herein, the evaluation of Rc was conducted following the linear–
elastic framework given in [40,41], considering the fatigue strength and long-crack growth
threshold stress intensity factor range which correspond to the fatigue limit at ten million
load cycles. Three different stress ratios R have been observed, where Rc is defined as the
arithmetic mean value. In order to ensure appropriate element sizing within the control
volume Ω, the results of a mesh sensitivity study conducted in a preceding study [104]
are considered. The SED within Ω is rather insensitive to the element size. Hence, control
volumes consisting of a minimum of three elements yield appropriate SED values without
sacrificing accuracy, as also stated in [105]. The position r0 of the control volume center
point is derived according to [42] for the investigated notch opening angles of 2α = 45◦

and 2α = 135◦. The numerical models are stressed under uniaxial tension-compression
loading, covering the tested load amplitudes and stress ratios of the high-cycle fatigue
experiments conducted in [10]. A cyclic load is applied during numerical analysis until
stabilization of the material behaviour is achieved. Stabilization is assumed if the iterative
change in stresses of each cycle is less than approximately one percent. This was obtained
after approximately one hundred load cycles for the conducted simulations. The cyclic load
in Abaqus® 2021 is realized by the definition of a time-dependent multiplier mR, altering
the currently acting load which corresponds to the investigated stress range ∆σ. Figure 17
exemplarily depicts the finite element model of the investigated V-notched specimen geom-
etry possessing a notch opening angle of 2α = 45◦. The presented stress result refers to the
stabilized material condition at a stress range of ∆σ = 120 MPa and a stress ratio of R = −1.
The specimen is depicted for the maximum value of the numerical cyclic load. Furthermore,
the course of the load multiplier mR utilised for the cyclic simulations is depicted for all
investigated load ratios for the first two cycles.

Finally, the elastic and plastic strain energy contributions are evaluated from the control
volume elements and the averaged total strain energy density in the stabilized material
condition is calculated. Figure 18 summarizes the elastic–plastic fatigue assessment results.

Concerning the long-life fatigue strength, the presented results are statistically evalu-
ated according to the arcsin

√
P approach [106]. The finite-life fatigue regime is assessed

following ASTM E739 [107], including the statistical evaluation of the fatigue limit curves
for a probability of survival of PS = 50%, as well as for values of PS = 10% and PS = 90%.
Furthermore, the limit curve for PS = 97.5% is depicted, which serves as an assessment
basis in fatigue design, according to the widely used guideline FKM (Forschungskuratorium
Maschinenbau) [18].
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Figure 17. Finite element analysis strategy for the assessment of investigated small-scale specimens:
(a) Numerical model and boundary conditions. (b) Course of the load multiplier mR utilised to apply
numerical cyclic loading.

Figure 18. Elastic–plastic strain energy density-based fatigue assessment of small-scale specimens.

As depicted in Figure 18, the elastic–plastic fatigue assessment based on the total strain
energy density summarizes the fatigue results of three different specimen geometries tested
at three different stress ratios into a unique narrow scatter band. The scatter index which is
defined by the limit curves of PS = 10% and PS = 90% possesses a value of 1 : T

∆W(t) = 2.43.
Comparing to the scatter index of 1 : T

∆W(e) = 4.32 as reported in [10] utilizing a linear–
elastic SED approach, the consideration of the non-linear material behaviour by the total SED
provides a significant improvement in prediction accuracy. As stated in [10], the comparably
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high value of 1 : T
∆W(e) is primarily assigned to the assessment results at a stress ratio

of R = 0.5. Due to the high maximum loads, inelastic material deformation and related
mean stress relaxation occur, which cannot be considered by the linear–elastic framework.
This leads to an overestimation of the local inherent deformation energy and therefore an
increased scatter index when gathering the fatigue assessment results obtained at different
stress ratios. The overestimation due to the linear–elastic formulation holds especially true
when dealing with high provoked stress concentrations, as in the case of sharply notched
components. To illustrate the localized plastic deformation effect and its associated mean
stress relaxation, a comparison between the results of the linear–elastic and the elastic–
plastic SED concept is presented in Figure 19. Both concepts are utilised to assess V-notched
specimens with a notch opening angle of 2α = 45◦ and a notch root radius of ρ = 0.1 mm.

The linear–elastic SED ∆W(e) is calculated analytically utilizing the framework given in [42].

To consider the stress ratio in the calculation of ∆W(e), the correction factor cw according

to [61] is implemented. The total SED ∆W(t) is evaluated numerically utilizing the set up
combined hardening model. The derived SED values are depicted over the linear–elastic
maximum stress as a reference.

Figure 19. Comparison of linear–elastic and elastic–plastic strain energy density for a sharp V-notched
specimen geometry.

Reflecting the data points given in Figure 19, the effect of cyclic mean stress relaxation
can be observed. As the theoretical linear–elastic maximum stress increases, the total
SED and the purely linear–elastic SED diverge from each other due to occurring plastic
deformation in the vicinity of the notch root. In order to describe the effect of stress ratio,
the behaviour of a common load level ∆σi is studied first. These calculations are highlighted
by an additional bounding box in Figure 19. ∆σi is chosen such that the deformation is
mainly linear–elastic in the case of R = −1. Hence, there is no significant difference

between ∆W(e) and ∆W(t). As the stress ratio and therefore the maximum stress increases,
the mismatch between the elastic–plastic and the purely linear–elastic solution becomes
more pronounced. This behaviour is explained by the occurring mean stress relaxation due
to plastic deformation and the associated decrease in the locally acting stress ratio.

Second, the combined effect of stress range and stress ratio is investigated. Examining

the depicted results in Figure 19, one can observe opposite trends of ∆W(t) compared to
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∆W(e) as the stress range and stress ratio increase; while ∆W(t) takes higher values than

∆W(e) with an increasing stress range in the case of R = −1, the calculated results of ∆W(t)

decrease compared to ∆W(e) in the case of higher stress ratios. This is reasoned by the
cyclic plastic deformation which contributes a significant amount to the total SED in the
case of R = −1. Considering R = 0 and R = 0.5, the bearable stress ranges are relatively
small compared to R = −1, resulting in a mainly elastic cyclic deformation. Hence,

the contribution of the cyclic plastic SED to ∆W(t) cannot compensate for the dominant
reduction of the cyclic elastic SED term due to mean stress relaxation. This results in an

overall decrease of ∆W(t) compared to ∆W(e).
As demonstrated, the implementation of the non-linear material behaviour severely

affects the local stress field and therefore the fatigue behaviour of cast steel components.
However, the elastic–plastic finite element analyses necessary to evaluate the total strain
energy density increase computational efforts significantly. In order to keep time and
cost expenses at a minimum, an alternative evaluation methodology based on the acting
linear–elastic stress and strain field is studied next.

3.4. A Numerically Efficient Approximation Approach to Evaluate the Elastic–Plastic Strain
Energy Density

In order to derive an engineering-feasible methodology for the approximation of

the averaged elastic–plastic strain energy density ∆W(t) at complexly shaped casting
imperfections, the V-notched specimens are investigated firstly. The respective specimen
geometries correspond to the ones utilised for evaluation of the elastic–plastic design limit

curve presented in Section 3.3. As ∆W(t) is defined by the stabilized hysteresis loop, see
Figure 2, the non-linear stress and strain fields have to be calculated within the finite control

volume Ω in order to derive ∆W(t). Due to the general multiaxiality of the local acting
stress state, the presented methodology is formulated to include all components of the
stress tensor σ and strain tensor ε given in Equations (12) and (13).

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (12)

ε =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 (13)

In the following, the components of σ and ε are denoted as σij and εij, where i, j ∈ {1, 2, 3}.
For the sake of completeness, it should be noted that σij = σji and εij = ε ji, due to the symmetry
of σ and ε.

The definition of the applied approximation method for a component loaded under an
arbitrary stress range ∆σ and a stress ratio of R is demonstrated for V-notched specimens,
possessing a notch opening angle of 2α = 45◦ and a notch root radius of ρ = 0.1 mm. In the
present study, the conservative concept according to Neuber [69] is chosen to evaluate the
elastic–plastic stresses and strains in the control volume Ω. This necessitates the evaluation
of the linear–elastic stress tensor σk for each finite element Ck within Ω. Therefore, a linear–
elastic finite element analysis is carried out, utilizing a stress of 1 MPa in the cross-section
with a diameter of 16 mm. Figure 20 schematically depicts the numerical model and the
control volume of the investigated V-notched specimen geometry.
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Figure 20. Evaluation of the linear–elastic stress tensor for each element within the control volume.

The stress components σij,k are evaluated in the centroid of the respective element Ck.
Due to the utilization of a stress of 1 MPa in the specimen cross-section, σij,k constitutes
the elemental stress concentration factors for the individual directions in the space of
stresses. In order to approximate the elastic–plastic stresses and strains for cyclic loading
of the specimen, the cyclic stress–strain curve, as evaluated in Section 3.1, is utilised
with some additional considerations. The low-cycle fatigue experiments conducted to
determine the cyclic stress–strain curve utilised plain specimens loaded under uniaxial
tension-compression loading. This implies the existence of a uniaxial stress state in the
specimen cross-section. Hence, the cyclic stress–strain curve described by Equation (4)
is only valid for a uniaxial stress state. As the evaluated stress tensor of element Ck
possesses in general more than one non-zero component, an equivalent stress has to be
calculated in order to apply Neuber’s approximation concept. Therefore, the von Mises
yield criterion [108] is applied, which is based on the second invariant J2 of the deviatoric
part of the stress tensor σk. The derived equivalent stress represents the stress concentration
factor K(uni)

t,k , which is calculated according to Equation (14). The superscript (uni) denotes
that the respective parameter is evaluated for the equivalent uniaxial stress state.

K(uni)
t,k =

√
3 · J2 =

√
1
2

[(
σ11,k − σ22,k

)2
+
(
σ22,k − σ33,k

)2
+
(
σ33,k − σ11,k

)2
+ 6
(
σ2

23,k + σ2
31,k + σ2

12,k
)]

(14)

Utilizing K(uni)
t,k and the cyclic stress–strain curve given by Equation (4), the elastic–

plastic stresses and strains within Ck can be approximated. At first, the uniaxial maximum
stress σ̃

(uni)
max,k during cyclic loading is calculated by minimizing the objective function given

in Equation (15). The tilde accent denotes elastic–plastic parameters evaluated by the
approximation framework.

1
E′
[
σ̃
(uni)
max,k

]2
+ σ̃

(uni)
max,k

 σ̃
(uni)
max,k

K′

 1
n′

− 1
E′

∆σ · K(uni)
t,k

1− R

2

= 0 (15)
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To derive the maximum stress values of the components of the elastic–plastic stress
tensor σ̃k from the approximated uniaxial maximum stress σ̃

(uni)
max,k, an additional assumption

has to be made. Hereby, the ratio between the linear–elastic components σij,k and the

equivalent stress K(uni)
t,k is studied and it is assumed that this ratio remains valid in the case

of non-linear material behaviour. Thus, the elastic–plastic maximum values σ̃ij,max,k of the
components of σ̃k can be computed according to Equation (16).

σ̃ij,max,k = σij,k ·
σ̃
(uni)
max,k

K(uni)
t,k

(16)

The values of σ̃ij,max,k constitute the upper reversal points of the approximated hys-
teresis loops during cyclic loading. In order to define also the lower reversal points,
the elastic–plastic stress ranges ∆σ̃ij,k have to be calculated. As the investigated cast steel
alloy G12MnMo7-4+QT exhibits Masing behaviour [109], the cyclic strains can be described
as a function of the stress ranges according to Equation (17).

∆ε(t) = ∆ε(e) + ∆ε(p) =
∆σ

E′
+ 2
(

∆σ

2 · K′

) 1
n′

(17)

It should be noted that Equation (17) results from Equation (4) by substituting the am-
plitude terms for half of the respective ranges, for example, σa = ∆σ/2. Thus, Equation (17)
is also only valid for the uniaxial stress state. Utilizing K(uni)

t,k , the equivalent uniaxial stress

range ∆σ̃
(uni)
k of the finite element Ck within Ω is calculated by minimizing the objective

function given in Equation (18).

1
E′
[
∆σ̃

(uni)
k

]2
+ 2 · ∆σ̃

(uni)
k

[
∆σ̃

(uni)
k

2 · K′

] 1
n′

− 1
E′
[
∆σ · K(uni)

t,k

]2
= 0 (18)

In order to evaluate the elastic–plastic stress ranges ∆σ̃ij,k, the relationship reported
in Equation (16) is utilised in terms of cyclic stresses according to Equation (19).

∆σ̃ij,k = σij,k ·
∆σ̃

(uni)
k

K(uni)
t,k

(19)

Subsequently, the minimum stresses σ̃ij,min,k can be calculated following Equation (20),
constituting the lower reversal points of the approximated cyclic hysteresis loops.

σ̃ij,min,k = σ̃ij,max,k − ∆σ̃ij,k (20)

As the cyclic hysteresis loops in element Ck are characterized in terms of the acting stress
components, the corresponding strain components of the elastic–plastic strain tensor ε̃k have
to be evaluated. Utilizing Hooke’s law, the elastic strain ranges are computed according to
Equation (21), where ν represents Poisson’s ratio and δij represents the Kronecker delta.

∆ε̃
(e)
ij,k =

1 + ν

E′
∆σ̃ij,k −

ν

E′
(∆σ̃11,k + ∆σ̃22,k + ∆σ̃33,k)δij (21)

While the elastic strain components in the multiaxial stress state can be analytically evalu-
ated following Equation (21), the calculation of the plastic strain contributions ∆ε̃

(p)
ij,k needs some

further consideration. The evaluation of the plastic strain ranges following Equation (17) is
only valid for the uniaxial stress state, as the underlying experiments were conducted utilizing
plain specimens subjected to uniaxial tension-compression loading. Hence, a direct calculation
of the individual components ∆ε̃

(p)
ij,k of ε̃k utilizing Equation (17) is impermissible. Similar to

Equations (16) and (19), an assumption based on the behaviour in the uniaxial stress state has to
be made to approximate the plastic contributions ∆ε̃

(p)
ij,k. Therefore, the ratio between the plastic
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and elastic strain for the equivalent stress ∆σ̃
(uni)
k is calculated based on Equation (17) and it is

assumed that this ratio is valid also in the case of a multiaxial stress state. Hence, the plastic
strain ranges ∆ε̃

(p)
ij,k are approximated according to Equation (22).

∆ε̃
(p)
ij,k = ∆ε̃

(e)
ij,k · E

′ ·
(

2n′−1

K′

) 1
n′

·
[
∆σ̃

(uni)
k

] 1−n′
n′ (22)

Finally, the total strain ranges ∆ε̃
(t)
ij,k are calculated as a superposition of the elastic and

plastic contributions, as given in Equation (23).

∆ε̃
(t)
ij,k = ∆ε̃

(e)
ij,k + ∆ε̃

(p)
ij,k (23)

As the stress and strain parameters describing the elastic–plastic hysteresis loops during
cyclic loading are evaluated for the elements within the control volume Ω, the total averaged

strain energy density ∆W(t) is calculated. The evaluation is carried out for each component
of σ̃k. After computation of the individual contributions, a superposition is carried out to derive

∆W(t). The general evaluation procedure is exemplified for element Ck within Ω.
As illustrated in Figure 2, the cyclic stabilized hysteresis loop defines the elastic and

plastic SED during cyclic loading. Hence, the respective contributions to the total SED can be
evaluated simply by calculating the corresponding areas in the stress–strain diagram. In the
uniaxial load case, the ascending and descending branches of the hysteresis loop are described
by Equation (17). When dealing with a local multiaxial stress state, simply inserting the stress
range component ∆σ̃ij,k into Equation (17) will therefore not result in the calculated total strain

range ∆ε̃
(t)
ij,k. In order to derive a valid description of ∆ε̃

(t)
ij,k when dealing with individual

stress components ∆σ̃ij,k, some other considerations have to be made. Stress and strain in a
specific volume element are connected through the stiffness of the respective body. Hence,
modulation of the stiffness leads to a change in strain when the acting stress parameter is kept
constant. In terms of cyclic loading, the stiffness in the stress–strain relationship according
to Equation (17) is described by E′ and K′. The influence of the two parameters on the shape
of the cyclic stabilized hysteresis loop is depicted in Figure 21.

Figure 21. Influence of the parameters E′ and K′ on the shape of the cyclic stabilized hysteresis loop:
(a) Influence of E′, ∆σ and K′ are kept constant. (b) Influence of K′, ∆σ and E′ are kept constant.

Concerning Figure 21, the hysteresis loop depicted in blue constitutes the reference
state. Varying E′, as shown in Figure 21a, alters the elastic SED ∆W(e), while the plastic
SED ∆W(p) is unaffected. Then again, modulating K′ changes ∆W(p), while ∆W(e) remains
virtually unchanged, as depicted in Figure 21b.
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The difference in strain response between the uniaxial and multiaxial stress state can
be interpreted as some kind of constraint, which can be considered by a local change of
stiffness in the volume element. In order to quantitatively describe this variation of stiffness,
the modulation factors ξ

(e)
ij,k and ξ

(p)
ij,k are defined according to Equations (24) and (25). Both

parameters are based on the comparison between the respective strain component ∆ε̃
(e)
ij,k

or ∆ε̃
(p)
ij,k in the present multiaxial stress state and the corresponding hypothetical uniaxial

strain component.

ξ
(e)
ij,k =

∆σ̃ij,k

E′ · ∆ε̃
(e)
ij,k

(24)

ξ
(p)
ij,k =

∆σ̃ij,k

21−n′ · K′ ·
[
∆ε̃

(p)
ij,k

]n′ (25)

Utilizing ξ
(e)
ij,k and ξ

(p)
ij,k , the stress–strain relationship given in Equation (26) is defined,

which yields the total strain ∆ε̃
(t)
ij,k in the multiaxial stress state consistent with Equation (23).

∆ε̃
(t)
ij,k = ∆ε̃

(e)
ij,k + ∆ε̃

(p)
ij,k =

∆σ̃ij,k

ξ
(e)
ij,k · E′

+ 2

 ∆σ̃ij,k

2 · ξ(p)
ij,k · K′

 1
n′

(26)

As the stress–strain relation for the individual components of the multiaxial stress state
is now defined according to Equation (26), the elastic and plastic SED contributions can be
evaluated. At first, the calculation of the respective SED parts is carried out for a stress ratio
of R = 0, independent of the effective stress ratio Re f f ,ij,k. Combining Equation (26) with

trivial geometrical observations based on Figure 2, the total SED ∆W(t)
ij,k,R=0 is evaluated

according to Equation (27).

∆W(t)
ij,k,R=0 = ∆σ̃ij,k · ∆ε̃

(t)
ij,k −

∫ ∆σ̃ij,k

0

 σ̂

ξ
(e)
ij,k · E′

+ 2

 σ̂

2 · ξ(p)
ij,k · K′

 1
n′
 dσ̂ (27)

Subsequently, the plastic SED ∆W(p)
ij,k,R=0 is calculated following Equation (28).

∆W(p)
ij,k,R=0 = ∆σ̃ij,k · ∆ε̃

(t)
ij,k − 2

∫ ∆σ̃ij,k

0

 σ̂

ξ
(e)
ij,k · E′

+ 2

 σ̂

2 · ξ(p)
ij,k · K′

 1
n′
 dσ̂ (28)

The elastic SED ∆W(e)
ij,k,R=0 represents the difference between the total and the plastic

SED, as given by Equation (29).

∆W(e)
ij,k,R=0 = ∆W(t)

ij,k,R=0 − ∆W(p)
ij,k,R=0 =

∫ ∆σ̃ij,k

0

 σ̂

ξ
(e)
ij,k · E′

+ 2

 σ̂

2 · ξ(p)
ij,k · K′

 1
n′
 dσ̂ (29)

Finally, the SED components are calculated for the effective stress ratio Re f f ,ij,k, which
is induced by the mean stress relaxation during cyclic loading and is given by Equation (30).

Re f f ,ij,k =
σ̃ij,min,k

σ̃ij,max,k
(30)

As the plastic SED relies solely on the shape of the cyclic stabilized hysteresis loop, it
follows that ∆W(p)

ij,k at Re f f ,ij,k equals ∆W(p)
ij,k,R=0 given by Equation (28).
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The elastic SED ∆W(e)
ij,k depends on Re f f ,ij,k and is evaluated according to Equation (31).

∆W(e)
ij,k =


∆W(e)

ij,k,R=0 + σ̃ij,min,k · ∆ε̃
(t)
ij,k 0 ≤ Re f f ,ij,k ≤ 1∫ |σ̃ij,min,k |

0

 σ̂

ξ
(e)
ij,k ·E′

+ 2

(
σ̂

2·ξ(p)
ij,k ·K′

) 1
n′
 dσ̂ +

∫ σ̃ij,max,k
0

 σ̂

ξ
(e)
ij,k ·E′

+ 2

(
σ̂

2·ξ(p)
ij,k ·K′

) 1
n′
 dσ̂ −∞ ≤ Re f f ,ij,k < 0

(31)

As the elastic and plastic contributions are evaluated, the total SED ∆W(t)
ij,k is calculated

as their superposition following Equation (32).

∆W(t)
ij,k = ∆W(e)

ij,k + ∆W(p)
ij,k (32)

Figure 22 summarizes the individual steps of the approximation methodology in
a graphical way.

Figure 22. Evaluation of ∆W(t)
ij,k for the finite element Ck by the introduced approximation procedure.

The last step in the calculation procedure for the element Ck constitutes the evaluation of
the strain energy. Utilizing the element volume VElement,k derived from the finite element model,
the elastic, plastic and total strain energy contributions are evaluated following Equations (33)–(35).

∆E(e)
ij,k = ∆W(e)

ij,k ·VElement,k (33)

∆E(p)
ij,k = ∆W(p)

ij,k ·VElement,k (34)

∆E(t)
ij,k = ∆W(t)

ij,k ·VElement,k (35)

The approximation framework according to Equations (14)–(16) and (18)–(35) is
utilised to calculate the strain energy terms for each of the n finite elements within Ω.
In order to calculate the SED terms averaged over the whole control volume, the individ-
ual strain energy contributions of each element are summed and finally divided by the
sum of the element volumes within Ω. To preserve consistency with the finite element
simulations utilised to validate the approximation framework, it should be noted that each
strain energy term ∆E(e)

ij,k or ∆E(p)
ij,k contributes either positively or negatively to the total

sum. The respective sign depends on the ones of the stress and strain components and is
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implemented based on their product. As the resulting plastic strain energy is dissipated,
the resulting sum of the individual contributions is defined as positive by convention.
Finally, Equations (36)–(38) yield the averaged SED terms considering all n elements within
Ω, where sgn represents the signum function.

∆W(e)
=

∑n
k=1 ∑3

i=1 ∑3
j=1 sgn

[
∆σ̃ij,k · ∆ε̃

(e)
ij,k

]
· ∆E(e)

ij,k

∑n
k=1 VElement,k

(36)

∆W(p)
=

∣∣∣∑n
k=1 ∑3

i=1 ∑3
j=1 sgn

[
∆σ̃ij,k · ∆ε̃

(p)
ij,k

]
· ∆E(p)

ij,k

∣∣∣
∑n

k=1 VElement,k
(37)

∆W(t)
= ∆W(e)

+ ∆W(p) (38)

Equation (38) concludes the definition of the introduced elastic–plastic approximation
framework. In order to prove its capabilities for the elastic–plastic fatigue assessment of notched
and defect-afflicted cast steel components, the following section validates the methodology.

3.5. Validation of the Elastic–Plastic Approximation Framework

The obtained results of the approximation framework defined in Section 3.4 are val-
idated utilizing non-linear finite element analyses. The validation procedure covers the
non-linear simulations of the V-notched fatigue samples, which served as an experimental
basis for the evaluation of the elastic–plastic design limit curve presented in Section 3.3.
Both specimen geometries possessing notch opening angles of 2α = 45◦ and 2α = 135◦

are assessed by the presented elastic–plastic approximation framework, covering all ex-
perimentally tested stress ranges ∆σ and stress ratios R. The elastic and plastic SED terms

∆W(e) and ∆W(p), as well as the total SED ∆W(t), are evaluated and compared to the ones
obtained by the finite element analyses. Figure 23 depicts a comparison of the non-linear
simulation results and those obtained by the elastic–plastic approximation framework for
both specimen geometries and a stress ratio of R = −1.

Figure 23. Comparison of assessment results obtained by non-linear finite element analyses and the
presented approximation methodology for R = −1: (a) V-Notch with 2α = 45◦. (b) V-Notch with
2α = 135◦.

Reflecting the results depicted in Figure 23, a sound accordance of the results obtained
by elastic–plastic finite element analyses ∆WFEM and the ones derived by the presented
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approximation framework ∆W can be perceived. Both the elastic and plastic SED compo-
nents show only a small deviation from the simulation results, therefore leading to a quite
satisfying approximation of the total SED. Comparing (a) and (b) in Figure 23, the effect of
the notch geometry can be perceived clearly. Considering loading of both notch geometries
under an identical stress range ∆σ, the elastic and plastic SED contributions possess higher
values at a notch opening angle of 2α = 45◦ than at 2α = 135◦. To further investigate the
capabilities of the introduced assessment method, the stabilized hysteresis loops evaluated
by non-linear simulation and the presented approximation procedure are compared to each
other. Figure 24 depicts respective hysteresis loops for the stress component σ22 parallel to

the specimen axis which yields the main contribution to ∆W(t).

Figure 24. Comparison of stabilized hysteresis loops evaluated by elastic–plastic simulations and
the presented approximation methodology.

Table 7 summarizes the comparison between elastic–plastic simulations and the ap-
proximation framework for the investigated notch geometries and stress ratios in terms of
the unsigned and signed deviations ∆unsigned and ∆signed, as well as the root mean square
error ∆RMS; see Equations (39)–(41).
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∆unsigned =
1
n
·

n

∑
i=1

∣∣∣∆W(t)
i − ∆W(t)

FEM,i

∣∣∣
∆W(t)

FEM,i

· 100% (39)

∆signed =
1
n
·

n

∑
i=1

∆W(t)
i − ∆W(t)

FEM,i

∆W(t)
FEM,i

· 100% (40)

∆RMS =

√√√√√ 1
n
·

n

∑
i=1

∆W(t)
i − ∆W(t)

FEM,i

∆W(t)
FEM,i

· 100%

2

(41)

Table 7. Average deviations obtained by the applied assessment methodologies.

2α [◦] R [−] ∆unsigned [%] ∆signed [%] ∆RMS [%]

45
−1 3.9 +0.3 4.5
0 6.4 −5.3 6.9

0.5 10.7 −5.0 11.7

135
−1 2.1 +1.7 2.9
0 10.9 −10.6 12.0

0.5 6.9 +5.9 10.7

The depicted values in Table 7 confirm the sound applicability of the presented approx-
imation methodology as a maximum root mean square deviation of only 12.0% is achieved.
To put this value into perspective, it should be noted that this energy-based deviation translates
to 5.8% in terms of stress when considering a hypothetical linear–elastic material behaviour.
In order to demonstrate the difference in numerical efficiency, Figure 25 depicts a comparison
of the computation time needed for total strain energy density calculation using non-linear
finite element analyses and the elastic–plastic approximation framework. The depicted values
summarize the evaluation effort of all experimentally tested stress ranges ∆σ.

Figure 25. Comparison of computation time to evaluate the total strain energy density based on non-
linear finite element analyses and the presented elastic–plastic approximation framework: (a) V-Notch
with 2α = 45◦. (b) V-Notch with 2α = 135◦.



Appl. Mech. 2023, 4 556

Considering Figure 25, the enhanced numerical efficiency obtained by the presented
elastic–plastic approximation framework can be perceived clearly. Regarding the non-
linear finite element analyses, the evaluation of the cyclic stabilized material behaviour
constitutes the main contribution to the observed computation times. Due to the occurring
elastic–plastic deformations, the investigated loads have to be applied in small increments
in order to achieve an equilibrium condition in the implicit simulations. As the presented
approximation procedure is solely based upon a quasi-static linear–elastic finite element
analysis, no incremental load stepping has to be applied, which significantly reduces
numerical efforts and therefore computation time. Hence, the application of the established
approximation method enables a calculation of the total strain energy density which is on
average approximately 400 times faster compared to non-linear finite element analyses.

Finally, Figure 26 depicts the approximation results for the notched specimens with
2α = 45◦ and 2α = 135◦ tested at R = −1, R = 0 and R = 0.5, which merge well into the
previously evaluated scatter band; compare Figure 18 as a reference.

Figure 26. Fatigue assessment results of V-notched small-scale specimens based on the presented
approximation framework.

3.6. Calculation of the Elastic–Plastic Strain Energy Density of Bulk and Surface Defects

As the established approximation framework is validated, the methodology is applied to
assess the fatigue strength of large-scale specimens affected by bulk and surface imperfections.

Starting with bulk defect-afflicted cast steel specimens, the consistency of the presented
elastic–plastic approximation method in the linear–elastic fatigue regime is investigated at
first. Therefore, the numerical results of the large-scale specimens given in [10] are reassessed
utilizing Abaqus® 2021 and plane strain elements of the type CPE6/CPE8. Twenty defect
contours are considered, including ten specimens tested at R = −1 and R = 0, respectively.
Furthermore, the selected specimens tested at R = 0.5 which are reported in Section 2.2 are
also included. A stress range of ∆σ = 1 MPa acting in the cross-section with a diameter of

30 mm is utilised in order to evaluate the elastic SED ∆W(e)
DEF,97.5% according to [10]. The eval-

uation of ∆W(e)
DEF,97.5% includes the partitioning of individual control volumes along the

respective defect contour which corresponds to Method 1 reported in a preceding study [104].
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Based on the investigated control volumes, the fatigue parameter ∆W(e)
DEF,97.5% is evaluated,

which is defined as the averaged SED value that exceeds 97.5% of all derived values along the

defect perimeter [10]. Subsequent to the evaluation of ∆W(e)
DEF,97.5%, the derived linear–elastic

stress fields in the investigated control volumes along the defect perimeter are assessed by
the methodology introduced in Section 3.4 and evaluated as a 97.5% elastic–plastic SED ex-

ceedance limit ∆W(t)
DEF,97.5%. Figure 27 depicts a comparison of ∆W(e)

DEF,97.5% and ∆W(t)
DEF,97.5%

for a gross stress of ∆σ = 1 MPa.

Figure 27. Consistency check of the established approximation method in the linear–elastic fa-
tigue regime.

The consistency between the approximation framework and the fatigue assessment
method introduced in [10] in the linear–elastic fatigue regime can be perceived clearly. Nearly
all evaluated data points are on the diagonal line, indicating a match of the calculated SED val-
ues. The derived statistical deviations possess values of ∆unsigned = 0.56%, ∆signed = −0.19%
and ∆RMS = 1.24%, confirming the sound applicability of the elastic–plastic approximation
framework in the linear–elastic fatigue regime.

Subsequent to the consistency check, the elastic–plastic approximation framework
is utilised for the elastic–plastic fatigue assessment of the bulk defect-afflicted large-scale
specimens as reported in Section 2.2 and [10]. This includes the evaluation of the linear–
elastic stress fields in the control volumes along the defect contour. Two-dimensional finite
element models subjected to a gross stress of ∆σ = 1 MPa are used, featuring plane strain
elements of type CPE6/CPE8. Considering the stress ranges investigated in the respective

experiments, the total SED ∆W(t)
DEF,97.5% is evaluated at increased stress levels of hundreds

of Megapascals of gross stress under uniaxial tension, utilizing an exceedance limit of 97.5%
along the defect contour in accordance with [10]. It should be noted that each defect is
assessed in terms of the two radiographs captured prior to testing. Hence, the energy-based

fatigue assessment method yields two values of ∆W(t)
DEF,97.5% for each individual defect.

Concerning the surface defect-afflicted specimens presented in Section 2.3, the energy-
based fatigue assessment considers the three-dimensional image stacks of the individual defect
structures, which were captured prior to testing. The image stack contains the spatial coordi-
nates of the defect contour which are processed for projected edge detection. The scripted pro-
cedure includes the alignment of the defect structure on the specimen. The three-dimensional
point cloud is utilised to derive a virtual radiograph by projecting the volumetric surface
defect onto a plane which is parallel to the specimen axis, as shown in Figure 28.
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Figure 28. Schematic representation of the evaluation of the planar defect projection.

Based on this planar edge projection, a linear–elastic plane strain finite element model
is set up. Analogous to the assessment of the bulk defect-afflicted specimens, the finite
element submodeling technique is utilised to derive the linear–elastic stress tensors of
each element within the control volume Ωi. Subsequently, Ωi is assessed following the
elastic–plastic approximation framework presented in Section 3.4. As the total SED is
evaluated for Ωi, the numerical procedure is repeated until the whole defect contour has
been assessed. As in the case of the bulk defect-afflicted specimens, the fatigue effective

total SED ∆W(t)
DEF,97.5% is derived by considering an exceedance limit of 97.5%. Figure 29

exemplarily depicts the implemented finite element submodeling technique.

XZ

Y

Figure 29. Finite element analysis strategy to assess surface defect-afflicted large-scale specimens.

As the investigated bulk and surface defects are assessed by the elastic–plastic approx-

imation framework, the evaluated data points ∆W(t)
DEF,97.5% are plotted as a function of the

experimentally derived numbers of load cycles. Figure 30 depicts the original scatter band,
as evaluated in Section 3.3, as well as the fatigue assessment results of the defect-afflicted
large-scale specimens.
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Figure 30. Elastic–plastic fatigue assessment of defect-afflicted large-scale specimens based on the
presented approximation framework.

Concerning Figure 30, the elastic–plastic fatigue assessment of bulk and surface defect-
afflicted cast steel specimens yields satisfying results, as nearly all data points fall within
the scatter band derived by small-scale specimen experiments. This highlights the ability
of the total strain energy density concept to assess arbitrarily notched geometrical features.
Bearing in mind that each data point in Figure 30 represents only a planar projection of
a complexly shaped spatial imperfection, the depicted results also prove the presented
approximation framework as an engineering-feasible fatigue assessment methodology.
Focusing on the data points at a stress ratio of R = 0.5, the implementation of the mean
stress relaxation and the resulting effective stress ratio is emphasized, which constitutes a
significant improvement in prediction accuracy compared to the linear–elastic SED concept.
As associated numerical efforts are substantially reduced compared to non-linear finite
element analyses, the elastic–plastic approximation method represents a promising tool
to assess arbitrarily shaped defect geometries. In order to minimize computational efforts
for complex defect geometries or imperfection networks even further, the implementation
of a free-mesh approach as reported in [104] is encouraged for future work. Moreover,
the presented elastic–plastic approximation framework can be expanded from planar case
studies towards spatial fatigue assessment as well.

4. Conclusions

The present paper focuses on the elastic–plastic energy-based fatigue assessment of
notched and imperfective cast steel components. Based on the conducted experimental and
numerical investigations, the following scientific conclusions are drawn:

• A design limit curve for the high-strength cast steel alloy G12MnMo7-4+QT was
evaluated based on the elastic–plastic strain energy density concept and non-linear
finite element analyses. The evaluated design limit curve considers the results of
high-cycle fatigue experiments of three different specimen geometries tested at stress
ratios of R = −1, R = 0 and R = 0.5. Implementation of the elastic–plastic material
behaviour results in a significant improvement of prediction accuracy compared
to the linear–elastic assessment conducted in a previous study, as the considered
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experimental results merge into a unique narrow scatter band which is characterized
by a scatter index of 1 : T

∆W(t) = 2.43.

• The effect of mean stress relaxation results in the formation of an effective stress ratio
that is smaller than the stress ratio of the applied load and generally tends towards
R = −1. For cyclic loading at stress ratios of R ≥ 0, this leads to a decrease of the total
SED compared to the results of the linear–elastic SED concept.

• A novel elastic–plastic approximation approach to evaluate the total strain energy
density was presented. The framework facilitates the rapid assessment of the elastic–
plastic stress and strain tensors in the cyclic stabilized material state, invoking only
linear–elastic finite element analysis and low-cycle fatigue properties. Hence, numeri-
cal efficiency is significantly increased compared to time-consuming non-linear finite
element analyses.

• Validation of the elastic–plastic approximation framework utilizing comprehensive
elastic–plastic finite element analyses of two V-notched small-scale specimen geome-
tries proved a sound agreement of obtained approximation and non-linear simula-
tion results, showing an average root mean square deviation of only approximately
eight percent.

• The fatigue assessment of bulk and surface defect-afflicted large-scale specimens uti-
lizing the introduced elastic–plastic approximation method results in quite satisfying
fatigue life calculations. A total of 56 defect-afflicted large-scale specimens tested
at stress ratios of R = −1, R = 0 and R = 0.5 were investigated by the presented
framework, yielding calculated fatigue life results which merge into the scatter band
of the derived high-strength cast steel design fatigue curve.

• As the elastic–plastic approximation framework is solely based on linear–elastic simu-
lations currently utilizing planar projections of complexly shaped spatial imperfections,
cost and time expenses are significantly decreased compared to three-dimensional
non-linear finite element simulations. Hence, the presented approximation methodol-
ogy presents an engineering-feasible design tool to assess the fatigue strength of bulk
and surface defect-afflicted cast steel components.
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1 : T
∆W

(e) Scatter index in terms of elastic strain energy density
1 : T

∆W
(t) Scatter index in terms of total strain energy density

2α Notch opening angle
γi Kinematic material parameter
δij Kronecker delta
ε̃ Elastic–plastic strain tensor
ε(e) Strain considering linear–elastic material behaviour
ε(p) Plastic strain
ε(t) Strain considering elastic–plastic material behaviour
εa Strain amplitude

ε
(e)
a Elastic strain amplitude

ε
(p)
a Plastic strain amplitude

ε
(t)
a Total strain amplitude

ε′f Fatigue ductility coefficient
εij Component of the linear–elastic strain tensor
ε Strain tensor
ν Poisson’s ratio

ξ
(e)
ij Elastic modulation factor assigned to component of the stress tensor

ξ
(p)
ij Plastic modulation factor assigned to component of the stress tensor

ρ Notch root radius
σ Stress tensor
σ′ Deviatoric part of the stress tensor
σ(e) Stress considering linear–elastic material behaviour
σ(t) Stress considering elastic–plastic material behaviour
σa Stress amplitude
σ′f Fatigue strength coefficient
σij Component of the linear–elastic stress tensor
σmax Maximum stress

σ
(e)
max Elastic maximum stress

σmin Minimum stress
σYS Yield strength
σ̂ Integration variable
σ̃ Elastic–plastic stress tensor
σ̃ij,max Maximum value of the component of the elastic–plastic stress tensor
σ̃ij,min Minimum value of the component of the elastic–plastic stress tensor

σ̃
(uni)
max Maximum stress in the equivalent uniaxial stress state

ψ Parameter to describe the direction of the flow
∆RMS Root mean square error
∆signed Signed deviation
∆unsigned Unsigned deviation
∆ε(e) Elastic strain range
∆ε(p) Plastic strain range
∆ε(t) Total strain range

∆ε̃
(e)
ij Elastic range of the component of the elastic–plastic strain tensor

∆ε̃
(p)
ij Plastic range of the component of the elastic–plastic strain tensor

∆ε̃
(t)
ij Total range of the component of the elastic–plastic strain tensor

∆σ Stress range
∆σi Stress range to be assessed
∆σ̃(uni) Equivalent uniaxial stress range
∆σ̃ij Range of the component of the elastic–plastic stress tensor

∆E(e)
ij Elastic strain energy component

∆E(p)
ij Plastic strain energy component

∆E(t)
ij Total strain energy component
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∆W(e) Elastic strain energy density range
∆W(p) Plastic strain energy density range
∆W(t) Total strain energy density range

∆W(e) Average elastic strain energy density range

∆W(p) Average plastic strain energy density range

∆W(t) Average total strain energy density range

∆W(e)
DEF,97.5% Average elastic strain energy density range for an exceedance limit of 97.5%

∆W(t)
DEF,97.5% Average total strain energy density range for an exceedance limit of 97.5%

∆W(e)
ij Elastic strain energy density range component

∆W(p)
ij Plastic strain energy density range component

∆W(t)
ij Total strain energy density range component

∆W(e)
ij,R=0 Elastic strain energy density range component for R = 0

∆W(p)
ij,R=0 Plastic strain energy density range component for R = 0

∆W(t)
ij,R=0 Total strain energy density range component for R = 0

∆W(e)
FEM Average elastic strain energy density range derived by non-linear simulations

∆W(p)
FEM Average plastic strain energy density range derived by non-linear simulations

∆W(t)
FEM Average total strain energy density range derived by non-linear simulations

Ω Control volume
Ωi Control volume at the node Pi
b Fatigue strength exponent
bs Stabilization rate
c Fatigue ductility exponent
f Yield function
k Initial size of the yield function
mR Load multiplier for numerical cyclic load
n′ Cyclic strain hardening exponent
p Accumulated plastic strain
r0 Distance between V-notch apex and origin of coordinate system
Ci Kinematic material parameter
Ck Element within the control volume
E Young’s Modulus
E′ Stabilized cyclic Young’s Modulus
I Isotropic part of the combined hardening model
J(σ − X) von Mises criterion
K′ Cyclic strength coefficient
Kt Stress concentration factor
Kt,max Maximum stress concentration factor

K(uni)
t Stress concentration factor in the equivalent uniaxial stress state

N Number of cycles
N f Number of cycles to failure
Pi Node on the defect contour in the finite element model
PS Probability of survival
Q Difference between initial and stabilized size of yield surface
R Stress ratio
Rε Strain ratio
Rc Control radius
Re f f Effective stress ratio
Re f f ,ij Effective stress ratio assigned to component of the stress tensor
S Nominal stress in the net cross-section of a notched component
VElement Volume of finite element
X Kinematic back stress tensor
X′ Deviatoric part of the kinematic back stress tensor
FKM Forschungskuratorium Maschinenbau
SED Strain energy density
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