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Abstract: This study outlines a comprehensive strategy for designing and implementing robust
controllers tailored for intelligent structures. This study presents a robust control-based structural
identification technique that uses the input/output data of the system to construct a state-space
mode and frequency domain. To reduce vibrations, a robust controller is created using the control
Simulink model. The identification and robust control of smart structures using Simulink involve a
combination of system identification techniques and control design within the MATLAB Simulink
environment. The key challenge is dealing with uncertainties and variations in system dynamics.
Robust control methods have been employed to suppress the vibrations during dynamic disturbances.
These methods are important for mechanical systems operating under stochastic loading conditions.
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1. Introduction

This study represents an innovation in intelligent structural control. The problem in
this study was the suppression of oscillations caused by the dynamic vibrations. Smart
materials such as piezoelectric materials are used to achieve vibration damping. In this
work, control methods are applied to constructions that were originally modeled with
finite elements, and the discovery of advanced control techniques greatly increases the
accounting requirements of the auditor, while an appropriate selection of control weights
is made to achieve complete suppression of oscillations. Innovation is the application
of robust control to suppress structural oscillations, which is a problem that has not yet
been solved. This study applies robust control to smart structures [1–15]. One of the main
problems in engineering is the damping of structural oscillations, which can be caused
by winds or earthquakes [5–8,16]. The application of the theory of control mentioned in
the reports is a problem that still concerns engineers, and an attempt is being made to
introduce it into structures stressed by dynamic loads, such as airplane wings, bridges, and
tall buildings [5–15].

This process is crucial for understanding the responses of structures to various loads
and environmental conditions. Robust control focuses on ensuring that a system remains
stable and performs effectively despite uncertainties or variations in its parameters or envi-
ronment. In structural engineering, this may involve Active Control Systems [5,7–9,16,17].
These include active mass dampers and tunable vibration absorbers that can adapt to
changing conditions to mitigate undesirable vibrations [5,8–15,18].

Smart structures, also known as intelligent or adaptive structures, are designed to
sense changes in their environment and respond in a controlled and effective manner [1–3].
This entails combining sensors, actuators, and control systems to improve the performance
and functionality of structures [4,19–21]. Smart structures often exhibit nonlinear behavior,
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parameter variations, and external disturbances [21–26]. Piezoelectric materials play a
crucial role as sensors and actuators in smart structures. When mechanical stress is exerted
on a piezoelectric material, it produces an electric charge that can be used for sensing.
Conversely, when an electric field is applied, these materials undergo deformation, leading
to their use as actuators for precise control and adjustment of smart structures [27–30].
The capability of piezoelectric materials to convert mechanical and electrical energy has
been harnessed for diverse engineering applications. In this study, robust control for the
reduction in structural oscillations was applied. Smart materials, mainly piezoelectric
materials, are used to control the oscillations.

Our research offers a more specialized method for implementing robust control in the
field of smart structures using MATLAB Simulink v. 5.0.2 (MathWorks, Natick, MA, USA).
A detailed dynamic model of the smart structure in Simulink was developed by considering
factors such as the piezoelectric actuators, sensors, and structural dynamics. H-infinity
control is selected as the robust control strategy. The “H-infinity Loop Shaping” and
“H-infinity Synthesis” blocks were utilized in Simulink to design controllers that optimize
performance while considering uncertainties. These controllers were designed to effectively
reject external disturbances [4,19–21]. Disturbance rejection techniques include feedforward
control and disturbance observers. Adaptive control techniques were implemented in
cases where the smart structure exhibited time-varying behavior or uncertainties that
changed over time. Simulink provides adaptive control blocks for this purpose. Where
applicable, real-time implementation using Simulink Real-Time for hardware-in-the-loop
(HIL) testing was considered by exploiting Simulink’s extensive toolbox and simulation
capabilities [31,32].

The use of smart materials to reduce structural oscillations has attracted the attention
of several researchers. If the smart structure exhibits time-varying behavior or unknown
changes over time, adaptive control strategies can be applied. Controllers that success-
fully resist external interference were also created. Disturbance rejection strategies such
as disturbance observers or feedforward control were used. Adaptive control blocks are
available in Simulink for this purpose. Several simulations of closed-loop systems with
varying uncertainties and disturbances have been conducted [33–35]. The resilience and
performance characteristics of the system were analyzed using Simulink. Combining smart
structures with µ analysis allows the optimization of materials and design for enhanced
functionality and efficiency. By understanding how materials behave at the microscale, we
can make informed decisions regarding their composition, structure, and fabrication tech-
niques [5,6,36,37]. This, in turn, contributes to the development of structures that are not
only intelligent in their response to external stimuli but also finely tuned at the micro level
for optimal performance [5,8–15,18]. Intelligent structure identification and robust control
implementation represent cutting-edge approaches in engineering and offer significant ben-
efits in terms of the safety, reliability, and performance of structures [5–15,18]. Continued
advancements in technology and engineering are likely to expand their applications and
effectiveness in the coming years.

2. Methods

The dynamics of a structure with piezoelectric patches can be described using equa-
tions of motion that incorporate electromechanical coupling introduced by the piezo-
electric effect [6–8]. Piezoelectric materials possess a distinctive capability to convert
mechanical energy into electrical energy, and conversely, electrical energy into mechanical
energy [1–3,10,15]. When used as patches on structures, they can act as sensors or actu-
ators owing to their bidirectional energy conversion properties. The dynamic equation
of motion for a structure with piezoelectric patches generally combines the mechanical
and electrical behaviors into a unified framework [7–10,16,17]. A piezoelectric patch at-
tached to a mechanical structure (such as a beam, plate, or shell) can be modeled using
the principles of piezoelectricity and structural dynamics. The mechanical vibration of
the structure induces strain in the piezoelectric material, which generates an electric field
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(and hence, a voltage) across the material owing to the direct piezoelectric effect [10,15].
Conversely, when an external electric field is applied across a piezoelectric material, strain
is induced in the material, thereby altering the vibration of the structure owing to the
converse piezoelectric effect [10,11,13,14]. Sensors, actuators, and control systems are fre-
quently integrated to enable intelligent structures to respond to changing environmental
conditions [6–12,15]. Dynamic equations governing intelligent structures can be intricate
and contingent on the particular assembly and components employed. In the subsequent
section, the performance of an eight-element cantilever smart structure equipped with four
pairs of symmetrically linked piezoelectric patches on the top and bottom surfaces of each
beam element is discussed [19,20,24–27]. Equation (1) is a dynamic equation of mechanics,
as mentioned in [15]. This equation is second-order, and, with a proper transformation, is
converted into a different first-order equation. The equation is in the state-space domain.
The smart system was a smart cantilever beam with piezoelectric patches. The disturbances
are the dynamic force fm(t) and electric force fe(t) [10–15]. The following section presents a
list of dimensions of each intelligent structure component. The dynamic characterization of
the system can be understood using the following equation:

The dynamical equation without the electrical force of the Pzt is [7–10,15]:

M
..
q(t) + D

.
q + Kq(t) = f m(t)

The dynamical equation with the electrical force of the pzt patches [7–10,15] is:

M
..
q(t) + D

.
q + Kq(t) = f m(t) + f e(t) (1)

The independent q(t) variable was defined using the finite element method, with
two degrees of freedom for each node. The rotations ψi and transverse deflections wi are
independent variables q(t) in this context.

q(t) =


w1
ψ1
...

wn
ψn

 (2)

In Framework (1), K represents the overall stiffness matrix, fe represents the compre-
hensive force vector derived from electromechanical coupling effects, and fm is the total
external mechanical force vector. These elements are generally adjusted using a feedback
control mechanism that leverages sensor data to alter the behavior of a structure dynami-
cally. The primary objective is to augment the response or effectiveness of the structure
under various conditions. The symbols D and M denote the matrices for viscous damping
and overall mass, respectively, with ψi indicating rotation and transverse deflection. The
analysis employed n to signify the aggregate count of the finite elements. Both the vectors
w and fm are directed upward. The rotations ψi and transverse deflections wi are indepen-
dent variables q(t) in this context. Allow (in a customary way) a transition to state-space
control representation.

x(t) =
[

q(t)
.
q(t)

]
(3)

Furthermore, fe(t) can be described as Bu(t) by formulating it as Fe
∗u, where Fe

∗ with
dimensions 2n × n symbolizes the unit piezoelectric force attributed to the corresponding
actuator, as referenced in [36,37], where u denotes the actuator voltage as discussed in [5–8].
Finally, d(t) = fm(t) is identified as a disturbance vector.
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.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1K

]
x(t) +

[
02n×n

M−1F∗
e

]
u(t) +

[
02n×2n
M−1

]
d(t)

= Ax(t) + Bu(t) + Gd(t)

= Ax(t) +
[
B G

][u(t)
d(t)

]
= Ax(t) + B

∼
u(t)

(4)

In this formulation, d represents a 2n × 1 vector (where n is the number of nodes), and
u is at most an n × 1 vector (although it could be smaller). The units used are Newtons (N),
seconds (s), radians (rad), and meters (m). Through a more thorough examination of
stability in the frequency domain, our approach maintains stability in the time domain.

y(t) = [x1(t) x3(t) . . . xn−1(t)]T = C x(t) (5)

This state-space representation encapsulates the first-order dynamics of the smart
structure, wherein the state vector x(t) encompasses both displacement and velocity. The
dynamic equation of motion of intelligent construction is second-order, whereas, with
appropriate transformation, it is modified into a differential equation of first order. We
consider the response of the smart structure in the space-state domain with and without
control. There were two degrees of freedom at each node, and we obtained the results for
displacements, rotations, velocity, angular velocity, acceleration, and angular acceleration.
The displacement and rotation results were also presented. We employed the following
approach to handle the uncertainty in the M and K matrices.

K = K0(I + kpI2n×2nδK)

M = M0(I + mpI2n×2nδM)
(6)

Furthermore, since D = 0.0005(K + M), a suitable form for D is,

D = 0.0005[K0(I + kpI2n×2nδK) + M0(I + mpI2n×2nδM)]

where D0 = 0.0005K0 + 0.0005M0

Then, D = D0 + 0.0005[K0kpI2n×2nδK + M0mpI2n×2nδM]

(7)

D denotes the damping matrix associated with the structure, where damping is
considered a minor fraction of both the mass and stiffness matrices. Using the experimental
apparatus, this fraction was determined to be 0.0005 for both the mass and stiffness matrices,
as noted in [16]. The lower the damping value, the more challenging it is to halt the
vibrations of the structure, as indicated in [17]. However, it is generally understood that

D = α K + β M

The structural damping matrix, denoted as D, can be understood as a linear combina-
tion of the mass and stiffness matrices, a concept referred to as Rayleigh damping. Under
this paradigm, the coefficients α and β were determined by examining the first and second
normal modes of vibration, with both values set to 0.0005. Thus, D can be formulated
similarly to K (stiffness matrix) and M (mass matrix), as follows:

D = D0 (I + dpI2n×2nδD) (8)

We introduced uncertainty as the proportional deviation of the relevant matrices. This
approach to incorporating uncertainty is particularly effective in our context because the
length can be measured with high precision. The likelihood of uncertainty arises more
from specific terms than from the core matrices. The following assumptions were made in
this case.
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||∆||∞
def
=

∥∥∥∥[In×nδK 0n×n
0n×n In×nδM

]∥∥∥∥
∞
< 1 (9)

Therefore, mp and kp were employed to scale the proportionality value with nominal
values denoted by subscripts of zero.

(It is urged that for matrix An×m, the norm is determined via ||A||∞ = max
1≤j≤m

n
∑

j=1

∣∣aij
∣∣.)

Taking these specifications into consideration, Equation (4) changes to

M0
(

I + mp I2n×2nδM
..
q(t)

)
+ K0

(
I + kp I2n×2nδKq(t)

)
+
[

D + 0.0005
[
K0kp I2×2δK + M0mp I2×2δM

] .
q(t) + fm(t) + fe(t)

⇒ M0
..
q(t) + D0

.
q(t) + K0q(t) = −

[
M0mp I2n×2nδM

..
q(t) + 0.0005

[
K0kp I2×2δK + M0mp I2×2δM

] .
q(t) + K0kp I2n×2nδKq(t)

]
+ fm(t) + fe(t)

⇒ M0
..
q(t) + D0

.
q(t) + K0q(t) =

∼
Dqu(t) + fm(t) + fe(t)

(10)

where

qu(t) =

 ..
q(t)
.
q(t)
q(t)

∼
D = −

[
M0mp K0kp

][I2n×2nδM 02n×2n
02n×2n I2n×2nδK

][
I2n×2n 0.0005I2n×2n 02n×2n
02n×2n 0.0005I2n×2n I2n×2n

]
== G1 · ∆ · G2 (11)

G1 = −
[
M0mp K0kp

]
, G2 =

[
I2n×2n 0.0005I2n×2n 02n×2n
02n×2n 0.0005I2n×2n I2n×2n

]
When Equation (7) is expressed in the state-space form, it yields the following representation:

.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1D

]
x(t) +

[
02n×n

M−1 f ∗e

]
u(t) +

[
02n×2n
M−1

]
d(t) +

[
02n×6n

M−1G1 · ∆ · G2

]
qu(t)

= Ax(t) + Bu(t) + Gd(t) + GuG2qu(t)
(12)

Equations (11) and (12) are the dynamic equations of motion of the structure in which
the mass and stiffness of the structure are inserted, which are modeled using the finite
element method. This relationship is in the space state domain, and we can obtain the
dynamic response of the construction, that is, how the structure oscillates with and without
control. The initial conditions of construction change can be considered by changing the
mass and stiffness registers using Kp and mp. This implies that the structure can be damaged
and the initial conditions can be changed. In other words, the modeling uncertainty of the
initial construction conditions was introduced. For example, on a bridge, when there is
wind damage or an earthquake, the distribution of mass and stiffness changes.

In this approach, the uncertainty of the original matrices is treated as an additional
uncertainty parameter. These equations capture the concept of incorporating active and
flexible controls into smart structures in order to respond to dynamic loads or changing
situations. The hard part is coming up with efficient control algorithms and systems that
react as best they can to the external forces and the status of the structure.

Robust Synthesis: µ-Controller

A popular approach in control system design for analyzing and addressing uncer-
tainty in dynamic systems is µ analysis, which is sometimes called mu-analysis. This is
particularly beneficial for understanding the impact of uncertainties on the stability and
robustness of the control systems.

In the field of robust control, µ analysis involves the evaluation of the stability and
performance of a system under uncertain conditions. The structured singular value (µ)
serves as a measure of robust control to quantify the extent of uncertainty that a system can
withstand while remaining stable.

We analyzed our smart structures using a µ analysis. The purpose of µ analysis is to
define a performance measure, represented by µ, and to evaluate system performance in
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the face of uncertainty. The same restrictions involving the constants mp and kp enclose
this uncertainty [20,24,30,31,36]. The outcome of each simulation was based on MATLAB
Simulink (Figure 1) and the noise was represented as ±2% of the disturbance in each
case. The results concern the rotation and displacement of smart beam nodes. Figure 1
shows the displacements of the nodes that have piezoelectric actuators. Each node has two
displacements one vertical displacement and one rotational. The outputs are the vertical
displacement and the rotation. The outputs are the results of the displacements with and
without control and the voltages of the actuators. In addition, measurement noise as a
percentage of the measurements is taken into account.
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Figure 1. The simulation outcome was based on MATLAB Simulink, and noise was represented as
±2% of the disturbance in each case. The results pertain to the rotations and displacements of the
smart beam nodes.

The µ synthesis is a robust control technique used to design controllers for systems
with uncertainties. It aims to maximize the system performance while ensuring stability in
the presence of uncertainties. The “µ” denotes the maximum singular value of the transfer
function from uncertainty to performance [11–14].
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Here, a step-by-step guide on how to apply µ synthesis in a Simulink environment
is provided.

System Modeling Simulink was used to create a comprehensive dynamic model of the
system that included all its essential components and dynamics.

Modeling Uncertainty: The uncertainty of the system is determined and represented.
Examples include variations in the parameters, external disturbances, and other sources
of uncertainty.

Transfer Function Representation: Simulink’s transfer function blocks were used to
represent uncertainty. Each block represents a dynamic fluctuation or unknown parameter.

µ Sensitivity Analysis: Examine how uncertainties impact the sensitivity of the system
using Simulink’s “µ Sensitivity Analysis” tool.

µ Synthesis Tool: To start the µ synthesis process, Simulink’s µ Synthesis Tool is used,
if required. The user was guided by the design process using this tool.

Controller design: Controllers are created using µ synthesis findings as a guide.
Simulink offers blocks to represent controllers created using this method.

A closed-loop simulation simulator was used to simulate the closed-loop system and assess
the performance of the planned controller under various conditions, including uncertainties.

Analysis and Tuning: To attain the intended performance, the simulation results were
analyzed, and the controller parameters were adjusted as needed.

Validation: The resilience of the developed controller is examined by subjecting it to
various uncertainties and disturbances. To confirm its validity, the planned resilience of the
controller is tested against a range of uncertainties and disturbances.

Reporting and Documentation: Keep track of controller design, simulation outcomes,
and µ synthesis procedure. A Simulink Report Generator was used to create the reports.

Systems with complicated uncertainties and fluctuating operating conditions signifi-
cantly benefit from µ synthesis. This makes it possible to create resilient controllers that
can continue to operate and remain stable, despite these uncertainties. The Simulink tool-
box offers a suitable environment for developing and testing controllers built using the µ
synthesis approach [10,34–37].

In Figure 1, we present a block diagram in Simulink for our intelligent structure
problem. The inputs were the mechanical disturbance and noise, and the outputs were the
control force u and displacements of the four Pzt patches of the smart beam. The noise
was represented as ±2% of the disturbance in each case. The outputs of each node were
displacement and rotation.

It should be noted that Simulink was not used exclusively but was combined with
finite element analysis, programming in MATLAB, and subroutines in Simulink, which
are good for better simulation of the problem. Advanced intelligent control techniques
were used, and all calculations were performed with high accuracy. This problem has been
addressed by many researchers [1–15], but the results presented below are much improved
compared to other publications [5,8–15,18].

3. Results

This section investigates an eight-element cantilever smart structure (as depicted in
Figures 2 and 3) featuring four pairs of piezoelectric patches that are symmetrically bonded
to both the top and bottom surfaces of each beam element. Several sections of the building
were subjected to the measurements listed in Table 1.

The function fm(t) in Equation (1) was derived from the wind velocity data shown
in Figure 4.

fm(t) =
1
2

ρCuV2(t) (13)

where V = velocity, ρ = density and Cu = 1.5.
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Table 1. Parameters of the smart beam.

Parameters Values

L, for beam length 1.20 m

W, for beam width 0.003 m

Wp, pzt width 0.003 m

h, for beam thickness 0.096 m

hp, piezoelectric thickness 0.0002 m

ρ, for beam density 1700 kg/m3

E, for Young’s modulus of the beam

1.7 × 1011 N/m2Ep, Young’s modulus of pzt

6.3 × 1010 N/m2

bs, ba, for Pzt thickness 0.002 m

d31 the piezoelectric constant 240 × 10−12 m/V
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3.1. Controller Synthesis

The solutions to the analytical problems and methods for evaluating controller perfor-
mance are addressed in the aforementioned sections. It is feasible to calculate a controller
that delivers a specific performance by using a structured singular value [14,15,18]. This
is the so-called (D, G − K) iteration [24–26] in which finding a µ-optimal controller Ks
such that µ(Φu(F(jω), Ks(jω)) ≤ β, ∀ω, is transformed into the problem of finding transfer
function matrices D(ω)ϵ∀∆ and G(ω)ϵΓ, such that:

supσ
ω

[(
D(ω)

(
Fu(F(jω), K(jω))D−1(ω)

γ
− jG(ω)

)(
I + G2(ω)

)− 1
2

]
≤ 1, ∀ω (14)

Unfortunately, this method does not guarantee the discovery of the local maxima.
However, for complex perturbations, an alternative method called D-K iteration (also
implemented in MATLAB Simulink, Mathworks, Natick, MA, USA) [28,29,32] is available,
often providing favorable results through a combination of µ analysis and Hinf synthe-
sis. The initial value represents the upper bound of µ in terms of the scaled singular
value [14,18,19,36,38].

µ(N) ≤ min
D∈D

σ(DND−1) (15)

The goal was to determine a controller that reduces the peak frequency of the upper limit.

min
K

(
min
D∈D

∥∥∥DN(K)D−1
∥∥∥

∞

)
(16)

By alternately minimizing
∥∥DN(K)D−1

∥∥
∞ with respect to either Ks or D (while main-

taining the other constant) [18,24–26,36,39]. The term D-K iteration specifically denotes a
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method that combines µ analysis and Hinf synthesis. This approach focuses on obtaining a
controller that reduces to the minimum peak of the upper limit across frequencies. This
is achieved by iteratively minimizing either the controller (Ks) or the transfer function
matrices (D) while keeping the other constant [18,24–26,36,39].

Figure 5 shows a Simulink block diagram of the intelligent structure problem. The
measurements pertain to the four nodes of the beam, and modeling of the intelligent
structure was conducted through Finite Element Analysis (part 2 methodology). Control
Voltages, the rotations with and without control, and outputs include displacements with
and without control, as shown in Figure 6, Figure 7, and Figure 8, respectively. Figure 6
shows the voltages utilized and obtained in Figure 5 (output diagram) for the four measured
nodes of the smart structure. These voltages were maintained below 500 Volts, adhering to
PZT limits.

In Figure 7, the rotations (output diagram) of the four measured nodes of the intelligent
beam with and without control are presented. The uncontrolled rotations are depicted in
blue, representing the turns in the open loop, whereas the rotations in green represent the
closed loop with the application of the µ synthesis. A noteworthy decrease in the number
of revolutions was nearly zero.
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Figure 8. Displacements for the four nodes of the smart structure without control (green line) and
with control (red line) using µ synthesis.

In Figure 8, the displacements (output diagram) of the four measured nodes of the
smart beam are illustrated with and without control. The uncontrolled displacements are
shown in green, indicating the displacements in the open loop, whereas the displacements
in red indicate the closed loop with µ analysis applied. The substantial reduction in the
number of revolutions was nearly zero. Equation (15) is then used in Figure 9, considering
the modeling uncertainty. Various values of the mass and stiffness matrices were derived
from this connection.

K = K0(I + kpI2n × 2nδK)

M = M0(I + mpI2n × 2nδM)

The initial matrices M0 and K0 were used with varying values of mp and kp, respectively.
Figure 9a (upper part) shows the displacements at the free end of the smart structure with
control (µ analysis) for different mass (M) and stiffness (K) matrix values. In Figure 9b
(middle), the displacements at the free end of the smart structure are presented with (blue
line) and without control considering the different prices of the M and K matrices. Figure 9c
(lower part) shows the control voltages for the free end of the smart structure with control
(µ analysis) for various mass (M) and stiffness (K) matrix prices. The blue line is in the
top and middle figure is the displacement of the free end of the beam using the intelligent
Hinfinity controller. In the lower figure the blue line is the piezoelectric actuator voltages
for the free end of the beam.

These results are noteworthy because the oscillations were significantly reduced by
varying the values of mass and stiffness parameters. The oscillation of the smart beam
approaches zero, which is a crucial outcome in mechanical construction owing to the damp-
ing of the oscillations. This vibration reduction is vital in engineering applications such as
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aerospace, automotive, and civil engineering, as it not only enhances performance but also
mitigates the risk of structural failures associated with varying mass and stiffness values.
All simulations were conducted using MATLAB and Simulink v. 5.0.2 software. The combi-
nation of Simulink, Modal Identification, and µ analysis proved to be a potent approach for
addressing and optimizing the performance of smart structures by reducing vibrations.
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different prices of the mass (M) and stiffness (K) matrices; (b) displacements for the free end of the
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3.2. The Structured Singular Value (µ)

The structured singular value µ measures the smallest amount of uncertainty that
can destabilize a system. It considers the specific structure of the uncertainty (e.g., real,
complex, or diagonal) that affects the system. Unlike other measures of system robustness
such as the singular value, µ considers the interaction between different uncertainties and
provides a more accurate measure of the robustness of the system.

Complexity: The µ synthesis process can be mathematically complex and computation-
ally intensive, particularly for high-dimensional systems with large-uncertainty models.

Modeling uncertainties: Accurate modeling of uncertainties in a system is crucial for
the success of µ synthesis. Overestimating or underestimating these uncertainties can lead
to overly conservative and inadequate control design.
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Despite these challenges, µ synthesis remains a powerful tool for designing robust
controllers for complex and uncertain systems, offering a level of performance and stability
assurance that is difficult to achieve by using other methods.

The limits of µ in the frequency domain are shown in Figure 10. This corresponds to a
deviation of approximately 90% from the nominal values of the stiffness and mass matrices
M and K, respectively. As observed, the system maintains robust and stable performance
because the upper limits of both values remain below one across all relevant frequencies.
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4. Discussion

Variations in the parameters, nonlinear behavior, and sensitivity to external pertur-
bations are typical characteristics of smart structures. Piezoelectric materials are essential
for these structures because they can act as both sensors and actuators. When mechanical
stress is applied to piezoelectric materials, an electric charge is produced, which can be
used for sensing. However, when an electric field is applied, these materials undergo defor-
mation, which makes them suitable actuators for smart structures for accurate control and
adaptation. The specific results of vibration reduction in intelligent structures using robust
control may differ depending on the control mechanisms employed, the system dynamics,
and the applications. Some typical results and advantages are offered by strong control
strategies for vibration reduction. Robust control strategies attempt to promote system
stability. Consequently, the smart structure exhibited better dynamic behavior and was less
susceptible to instability. Robust controllers are designed to function effectively in a variety
of working environments, including variations in the load and structural factors. This
flexibility guarantees efficient vibration attenuation in various situations. Ensuring robust
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control reduces the effects of the errors and uncertainties in the model. This is particularly
important for smart structures, where precise modeling of control and structural aspects
may be difficult. Sturdy controllers can react quickly to system changes, enabling prompt
vibration mitigation modifications. This is significant for dynamic systems, in which the
conditions may change quickly. Robust control techniques can reject external disturbances
that may cause smart structures to vibrate. Consequently, the system becomes more robust
and continues to function, even when external factors are present. By accurately and
consistently suppressing the vibrations, it can be ensured that the smart structure performs
within predetermined bounds. This is essential for applications that require an accurate
vibration control. Uncertainties and complex dynamics are common in smart structures.
Robust control offers a dependable and flexible vibration-reduction solution by adjusting
the parameter uncertainty. µ analysis measures the worst-case performance loss caused
by uncertainty to evaluate the resilience of a control system. It is crucial to remember that
real outcomes rely on the particular effective control approach used, that is, the standard of
robust control techniques for reducing vibrations in smart structures.

Smart structures also referred to as intelligent or adaptive structures, are designed to
detect and respond to environmental changes in a controlled and efficient manner. This
involves the integration of sensors, actuators, and control systems to improve the overall
performance and capability of structures. It is known that the system parameters of in-
telligent structures constantly change for various reasons. Under altered circumstances,
ordinary controllers are ineffective and cannot ensure the reliability of closed-loop systems.
However, robust control-theory-based controllers not only preserve the highest perfor-
mance but also the closed-loop stability of the perturbed system with wide variations in
system parameters. The relative superiority of these controllers is discussed based on a
few time-domain features of the closed-loop system, which cannot be represented by the
frequency-domain findings alone. Specific examples of multi-objective robust control chal-
lenges include strong stabilization, which necessitates an inherently stable controller, and
simultaneous stabilization, which entails designing a single controller to stabilize multiple
plants. Moreover, many current approaches or heuristics for addressing these challenges
often lead to excessively high-order controllers. The results underscore the significance
of the proposed model and techniques, and the control behavior of the beam aligns with
the predictions.

In conclusion, we use µ analysis, also known as structured singular value analysis,
which focuses on analyzing and designing controllers for systems with structured uncer-
tainty (such as parameter variations within known bounds). Deals with uncertainties can
be described using known structures or bounds. The system robustness is evaluated by
computing the µ value, which represents the worst-case gain of the uncertainty in the
output. Mathematical techniques, such as singular value decomposition and optimization
algorithms, are involved. Compared to other works and other controllers [13,15,17,18,36],
our work considers modeling uncertainties and fully suppresses oscillations even with
varying mass stiffness dampers. The structural oscillations are fully damped. In works
dealing with the same subject, complete suppression of oscillations was not achieved in
references [8,9,13,15,18,36]. The use of the H∞ control did not achieve complete rejection
of the oscillations. H∞ control minimizes [9,13,15,17,36] the sensitivity to disturbances,
whereas µ-analysis evaluates robustness using the µ-value, representing the worst-case
gain. The µ analysis can be more complex owing to its mathematical techniques and
the explicit consideration of structured uncertainties. Both methods find applications in
industries where robust control is crucial, but the choice between them depends on the
nature of the uncertainties and the desired trade-offs between performance and robustness.

In summary, H-infinity (H∞), analysis, and µ analysis are powerful tools for designing
robust controllers, with H∞ [13,15,17] focusing on general robustness and disturbance
rejection, while µ analysis specializes in handling structured uncertainties and explicitly
evaluating robustness using the µ value. In our work, we achieved complete rejection of
the structural oscillations, even for the uncertainty plan in the initial smart model. The
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results are remarkable and different from those of previous studies [6,8,9,15,17,21]. This
study investigated the benefits of intelligent control in smart systems. It uses µ analysis
and synthesis techniques in state-space and frequency simulations in comparison with
other studies in that we have state-space [8,9,15] or frequency [6,9,13] simulations. The
advantages of this approach include leveraging the measurement noise, achieving full
oscillation suppression, decreasing the controller complexity, and introducing white noise
as a disturbance input.

5. Conclusions

This paper presented advanced control techniques for suppressing oscillations caused
by dynamic loads. Intelligent control was used, whereas a robust µ controller was used
to dampen oscillations. We evaluated the robustness and usefulness of the system after
performing system analysis. Disturbance rejection in smart structures with piezoelectric
materials is a critical aspect, and this study investigated the advantages of resilient control
in intelligent systems by implementing µ analysis in state-space simulations and frequency
analyses. This study presents a thorough approach to the design and implementation
of robust controllers, specifically for intelligent structures. This paper proposes a robust
control-based structural identification method that builds a state-space mode and frequency
domain using the input and output data of the system. Using this control model, a
reliable controller was developed to reduce the vibrations. Managing the uncertainties and
fluctuations in system dynamics is the main difficulty. Techniques for controlling vibrations
have been used to dampen them during dynamic disturbances. These techniques are crucial
to the functioning of mechanical systems under stochastic loading conditions. In this work,
complete suppression of oscillations is achieved, which has not been achieved in other
publications [5,8–15,18], and very good results are presented in both the state-space and
frequency domains. The oscillations were suppressed, even after introducing uncertainty
into the simulation model. It should be noted that Simulink was not used exclusively but
was combined with finite element analysis, programming in MATLAB, and subroutines
in Simulink, which are good for better simulation of the problem. Advanced intelligent
control techniques were used, and all calculations were performed with high accuracy. This
problem has been addressed by many researchers [1–15], but the results presented below
are significantly improved compared with other publications [5,8–15,18].

The benefits of this work are as follows: To obtain the desired outcomes, programming
was performed in MATLAB by leveraging the measurement noise from the beam’s state;
our approach achieves complete suppression of oscillations while reducing the controller’s
order. White noise was introduced as the disturbance input and its magnitude was set as a
percentage of the disturbances. We created reliable controllers capable of managing uncer-
tainty. We achieved disturbance rejection, particularly in smart structures with piezoelectric
materials. This study explores the advantages of resilient control in intelligent systems by
implementing µ analysis and synthesis in state-space simulations. The benefits of this work
include utilizing measurement noise, achieving complete oscillation suppression, reducing
the controller order, and introducing white noise as a disturbance input.

Programming involves obtaining desired outcomes, such as creating reliable con-
trollers capable of handling uncertainty. The objective of robust control techniques is to
maintain the system stability and peak efficiency, even when the parameters change. Future
research will focus on applying these control mechanisms to actual intelligent structures in
experimental contexts and utilizing artificial intelligence to mitigate vibrations and noise
in structures.
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