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Abstract: Contrast is not uniquely defined in the literature. There is a need for a contrast measure
that scales linearly and monotonically with the optical scattering depth of a translucent scattering
layer that covers an object. Here, we address this issue by proposing an image contrast metric, which
we call the Haziness contrast metric. In its essence, the Haziness contrast compares normalized
histograms of multiple blocks of the image, a pair at a time. Subsequently, we test several prominent
contrast metrics in the literature, as well as the new one, by using milk as a scattering medium in front
of an object to simulate a decline in image contrast. Compared to other contrast metrics, the Haziness
contrast metric is monotonic and close to linear for increasing density of the scattering material,
compared with other metrics in the literature. The Haziness contrast has a wider dynamic range, and
it correctly predicts the order of scattering depth for all the channels in the RGB image. Utilization of
the metric to evaluate the performance assessment of dehazing algorithms is also suggested.

Keywords: image contrast; optical scattering; haziness measurement; image quality

1. Introduction

Establishing a contrast of an image is a classical problem in image processing. The
challenge is somewhat ill-posed, and several approaches to this issue have been proposed
in the past. One of the oldest ways to calculate contrast is the Weber contrast, which is
appropriate for a uniform foreground and a uniform background image [1]. For images
with patterns, in which the bright and dark intensities occupy similar fractions of the
image, the Michelson contrast [2]. is more appropriate. Another traditional way to define
contrast is the root-mean-square (RMS) of the image [3]. Modern contrast scales successfully
measure contrast for image optimization and image haziness removal [4–7], which require
low levels of scattering, as shown in the top row of Figure 1. Contrast metrics with better
sensitivity, such as the image Histogram Spread [8] presents better contrast discrimination
also at high haziness levels. More recently, computationally sophisticated contrast metrics
have been developed and studied, including psychophysical contrast measurements [9] and
with machine learning algorithms to select the best dehazing of an image [10]. However,
the literature lacks a metric that changes monotonically with the haziness or fogginess
occluding an object, which is insensitive to changes like image histogram equalization,
min-max contrast correction, and brightness correction and is nearly linear for a large
dynamic range of optical scattering depth.
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Figure 1. Experimental images. Notice contrast worsening with the addition of milk in a transparent 
bowl, on top of an image, filled with water. From left to right, top row: (a) just water, (b) 5 mL, (c) 
10 mL, and (d) 15 mL of milk. Bottom row: (e) 20 mL, (f) 25 mL, (g) 30 mL, and (h) 35 mL of milk. 
The contrast differences in the bottom row can be better appreciated in a monitor set for high con-
trast. 

In media where scattering plays a major role, optical scattering depth (OD) grows 
linearly with both optical path length (l) and with the scattering coefficient (𝜇𝜇): 𝑂𝑂𝑂𝑂 =  𝜇𝜇L. 
If the medium is air or water, for example, light rays are absorbed and scattered using the 
medium and other materials dissolved in it. The absorption and scattering depend both 
on the wavelength and the size distribution of the suspended particles [11]. The optical 
scattering depth depends specifically on the scattering component of the optical depth. 
Scattering media between the observer and an object causes the contrast of the image of 
the object to decrease. The definition we use for contrast is the one where the reduction in 
contrast in the features of a scene is proportional to the optical scattering depth between 
the observer and the object. 

In this paper, we present a quantitative way of measuring contrast that is nearly lin-
ear for a large dynamic range of optical scattering depth. This scale, which we call the 
Haziness scale, fulfills the requirement of linearity for increasing density of the scattering 
material and works well over a dynamic range wider than possible for other contrast 
scales shown in the literature. To test the proposed metric in a controlled environment, 
use actual photographs where milk is added along the optical path to simulate a decline 
in image contrast due to the scattering of light with the milk constituents (Figure 1). Later, 
we apply the Haziness metric to quantify and compare some defogging algorithms from 
the literature. Applications of the Haziness metric include, for example, the study of opti-
cal coherence tomography (OCT), eye retina images, measurement of the amount of fat 
present in milk, and eye fundus photography.  

The rest of the article is organized as follows. In Section 2, we will describe several 
prominent metrics from the literature. In Section 3, we define our proposed Haziness 

Figure 1. Experimental images. Notice contrast worsening with the addition of milk in a transparent
bowl, on top of an image, filled with water. From left to right, top row: (a) just water, (b) 5 mL,
(c) 10 mL, and (d) 15 mL of milk. Bottom row: (e) 20 mL, (f) 25 mL, (g) 30 mL, and (h) 35 mL of milk.
The contrast differences in the bottom row can be better appreciated in a monitor set for high contrast.

In media where scattering plays a major role, optical scattering depth (OD) grows
linearly with both optical path length (l) and with the scattering coefficient (µ): OD = µL.
If the medium is air or water, for example, light rays are absorbed and scattered using the
medium and other materials dissolved in it. The absorption and scattering depend both
on the wavelength and the size distribution of the suspended particles [11]. The optical
scattering depth depends specifically on the scattering component of the optical depth.
Scattering media between the observer and an object causes the contrast of the image of
the object to decrease. The definition we use for contrast is the one where the reduction in
contrast in the features of a scene is proportional to the optical scattering depth between
the observer and the object.

In this paper, we present a quantitative way of measuring contrast that is nearly
linear for a large dynamic range of optical scattering depth. This scale, which we call the
Haziness scale, fulfills the requirement of linearity for increasing density of the scattering
material and works well over a dynamic range wider than possible for other contrast scales
shown in the literature. To test the proposed metric in a controlled environment, use actual
photographs where milk is added along the optical path to simulate a decline in image
contrast due to the scattering of light with the milk constituents (Figure 1). Later, we
apply the Haziness metric to quantify and compare some defogging algorithms from the
literature. Applications of the Haziness metric include, for example, the study of optical
coherence tomography (OCT), eye retina images, measurement of the amount of fat present
in milk, and eye fundus photography.

The rest of the article is organized as follows. In Section 2, we will describe several
prominent metrics from the literature. In Section 3, we define our proposed Haziness scale;
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the relevant imaging experiments are conducted in Section 4. We present our results and
discussion in Section 5 using the images we have produced and images from the literature,
finishing with relevant conclusions in Section 6.

2. Prior Art

The following section provides some details regarding existing popular contrast
measures.

2.1. Weber Contrast

Weber contrast [1] is one of the oldest contrast metrics, used to measure the contrast
when there is a uniform background and a well-defined target: Weber = (I − Ib)/Ib ,
where I and Ib represent target and background luminances, respectively. However, this
definition is not appropriate for a global contrast measurement, since very bright or dark
spots would determine the contrast of the entire image. Thus, we have modified the
conventional definition to handle grayscale images, by changing the denominator to the
average luminance of the image, denoted with I:

Weber =
I − Ib

I
, (1)

where I is measured for each pixel and Ib represents the darkest pixel of the grayscale
image.

2.2. Michelson Contrast

The Michelson Contrast [1,2] can be defined for a grayscale image as

Michelson =
Imax − Imin
Imax + Imin

, (2)

where Imax and Imin are the maximal and minimal luminance values of the image. The
Michelson contrast is a metric originally used for images with sinusoidal patterns and is a
poor measure for complex images.

2.3. Root Mean Square Contrast

The root mean square (RMS) contrast has been related to human perception [12,13]
and is widely used as an image summary statistic [3]. The RMS contrast is defined as

RMS =

[
1
n

n

∑
i=1

(xi − x)2

] 1
2

, (3)

where xi ∈ [0, 1] is a normalized gray-level value, x = 1
n ∑n

i=1 xi is the mean gray level,
and n is the number of pixels in the image. For color images, RMS is calculated separately
for each channel.

2.4. Histogram Spread

Histogram Spread (HS) is defined as the interquartile range of the cumulative his-
togram divided by the pixel value range [8]: We first take the image’s histogram and
normalize it such that its sum is 1. Next, we calculate the positions of the first and third
quartiles of the cumulative histogram and take the difference from those positions. His-
togram Spread is this difference divided by the pixel range, the difference between the
highest and lowest possible intensity for the pixels:

HS =
Q3 −Q1

pmax − pmin
, (4)
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where Qn is the n-th quartile and pmax and pmin are the maximum and minimum values
for the pixels, respectively. Histogram Spread has a range of values from 0 to 1.

2.5. Rizzi

A method suggested by Rizzi et al. [14], estimates global and local components of
contrast. The algorithm works as follows: First, it under-samples the original image, then
the under-sampled images are transformed to CIELAB color space [15]. Afterwards, it
calculates the mean value of the 8-Neighborhood local contrast for each pixel in the L*
channel, and finally sums the averages of each of the under-sampled images to obtain a
global measure.

3. Haziness Metric Definition

Here, we describe our proposed metric. When a uniform scattering medium is added
to a scene, the scattering light contribution is added to all regions of an image of such scene.
To define the Haziness contrast metric, we take advantage of the fact that an increase in
scattering within a scene increases similarity of histograms of any two small subregions
of the image, on average. We normalize the histogram of each small subregion to ensure
invariance to image renormalizations such as full-image histogram equalization, brightness,
or contrast correction. The Haziness metric is determined using the average difference
between pairs of normalized histograms of small image patches. Figure 2 shows the general
idea: as the haziness in the image increases, the histograms of two different regions of
the image become more similar. The unitary area normalized histograms are represented

by vectors
→
Hi and

→
Hj. The Haziness contrast metric is inspired by the foreground to

background histogram contrast as described in [16] (see also the preliminary and relevant
analysis in [17,18]). One of the several differences here is that the two blocks, i and j, are at
random positions in the image for the Haziness contrast metric, and thus, there is no need
to manually select the foreground and background.
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Figure 2. Pixel intensities for 8 × 8 pixels regions on most top-left and lower-left regions of the
experimental images for (a) 0 mL, (b) 5 mL, and (c) 20 mL of milk added to clean water on top
of the image (From Figure 1). On average, the difference between the normalized histograms in
different regions of the image decreases as the contrast decreases. The normalized frequencies are

256-dimensional vectors
→
Hi and

→
Hj.

The Haziness contrast metric is calculated as follows. Two random image blocks, i
and j, of s × s pixels are sampled. The s × s pixels image blocks have area-normalized

histograms
→
Hi and

→
Hj, respectively, where the vectors

→
H represent the values of each image

block. By area-normalized we mean that the sum of their entries is 1, that is, ‖
→
Hi ‖1 = 1,

where ‖ · ‖1 is the taxicab l1-norm [19]. Each histogram vector,
→
Hi and

→
Hj, has 2b entries,

where b is the bit-depth of the image (e.g., 8-bit). With these definitions we have
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Haziness =

〈∥∥∥∥→Hi −
→
Hj

∥∥∥∥
1∥∥∥∥→Hi +

→
Hj

∥∥∥∥
1

〉
N

, (5)

where 〈·〉 represents the average of N random pairs of blocks (N � 1).
As can be seen from the definition, a minor disadvantage of the metric is the existence

of two tuning parameters: the number and size of patches. The number of patches N
must be enough for the haziness contrast value to converge. For N ~ 1000 the Haziness
metric converges to within 1% of a finite constant value for the image. In our analysis,
we used N = 104. For the metric to represent haziness, s must be small compared to the
image’s features. For s of the order of the size of the image, the s × s image blocks are
almost identical, resulting in similar histograms for the different patches, and the Haziness
contrast metric value will tend to zero. Measures at a granular level (s < 10) provide a more
monotonic behavior for the Haziness metric as a function of increasing optical scattering.
After experimentation we chose and recommended s = 2 because this is the minimum

size for a square patch that can still produce a non-trivial histogram
→
H. Although a very

small s goes against our initial intuition (Figure 2), small histograms are compensated by
the large N, represent a better map of the local structure of the image, and thus maximize
monotonicity of haziness contrast as a function of the optical scattering level. Appendix A
shows empirical examples where the standard deviation of haziness converges to a finite
value, which is a sufficient but not necessary condition for the haziness mean value to
converge. The standard deviation of the Haziness metric can be used to further characterize
the image, but such analysis is out of the scope of the current study.

4. Image Acquisition Experiment

Instead of using digital image processing techniques to change the image, such as
Gaussian blur, we decided to take a physical, empirical approach. To test the performance
of the Haziness metric, we simulated fogginess or haziness using water and milk. Starting
with a clean image, we gradually added more milk, increasing the optical scattering depth,
and thus, the opacity of the image.

Photographs were taken using the main camera of a mobile phone. The phone was
mounted above a container filled initially with water and positioned above an image. A
photo was taken for every 5 mL of milk added to the water container, with a pipette, up to
35 mL to simulate a linear decline in contrast, or similarly, an increase in the amount of fog
in the image. The images have a size of 1188 by 1446 pixels and a resolution of 96 dpi, in
JPEG format.

The conversion from RGB to grayscale (luma) used OpenCV’s [20] formula Y =
0.299R + 0.587G + 0.114B, where the relative weights are based on the spectral sensitivity
of the human eye. All details are provided on GitHub in the Python scripts and data used
to produce the results of this paper [21].

5. Results and Discussion

In this section, we focus on how the metrics correlate with optical scattering depth, for
each RGB channel, and in grayscale. The purpose of the Haziness metric is to quantify the
contrast in the image, thus it does not identify the haze nor tries to de-haze the images, as
some previous studies have done [4–7]. The scales were analyzed in two ways: in grayscale,
and in RGB with each channel treated separately. In this study, we do not consider the
polarization caused by scattering [22], neither we have tried polarized imaging techniques.

The application of the various contrast metrics discussed earlier in this paper is shown
in Figure 3. A log scale is used to better discriminate the scattering for higher depths.
The red, green, and blue colors represent the respective RGB channels, and the black line
represents the grayscale measurements. We notice that the new Haziness metric (Figure 3a)
is monotonic and quasi-linear as a function of increasing scattering medium concentration.
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None of the other metrics showed a perfectly linear behavior. Moreover, the Haziness
measurement has a wider dynamic range, and it is possible to identify which color is
most scattered even for a high amount of added scatterer (milk). In the case of grayscale
images, the Haziness values are also monotonic and quasi-linear, as the concentration of
milk increases, the range of color diminishes, and the contrast declines. For Michelson
(Figure 3b) and RMS (Figure 3c) metrics, the slope of the curve for low milk concentrations
is high, and we can see a difference as milk is added to the bowl of water. However, from
20 mL and onward, there are no significant differences, both for the RGB values and for
the grayscale. The Michelson and RMS measurements are monotonic but possess poor
discrimination power for high scattering depths. The graphs for the Weber and Rizzi
metrics were omitted here (they will be shown in Figure 3) since their behavior is very
similar to RMS and Michelson. The Histogram Spread metric (Figure 2d) presents a non-
linear behavior and fails to show lower scattering for the red light, as physically expected.
Despite the histogram spread showing good discrimination for the different colors, the
monotonicity is poor, with somewhat better results for the blue channel.
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For a better comparison of all the studied metrics, we use min-max normalization to 
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son, Weber, and Rizzi metrics all have similar nonlinear monotonic curves. The Haziness 
metric (Figure 3a) shows a more adequate behavior than the others. 

Figure 3. Various contrast metrics as a function of optical scattering depth. (a) Haziness, (b) Michelson,
(c) RMS, and (d) Histogram Spread metrics for the RGB channels and grayscale. Red (denoted by
circles), Green (denoted by triangles), Blue (denoted by squares), and grayscale (denoted by stars).
The Haziness metric correctly predicts lower scattering for the red light, has a fair dynamic range,
and is quasi-monotonic. Notice that metrics (b,c) are monotonic but have poor discrimination power
for high scattering depths. (d) shows a high optical scattering depth for the different colors, but poor
monotonicity.
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For a better comparison of all the studied metrics, we use min-max normalization to
present all the results for grayscale images on the same axes (Figure 4). The RMS, Michelson,
Weber, and Rizzi metrics all have similar nonlinear monotonic curves. The Haziness metric
(Figure 3a) shows a more adequate behavior than the others.
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Figure 4. Normalized metrics for grayscale images. The Haziness (denoted by circles) is monotonic
and is the closest to linear. The other metrics are Histogram Spread (HS, denoted by triangles), RMS
(denoted by squares), Michelson (denoted by stars), Weber (denoted by inverted triangles), and Rizzi
(denoted by right triangles).

In general, we interpret the Haziness such that the larger its value (the closer it is to
one), the better the image contrast. A possible interpretation for the different behavior ob-
served for distinct RGB colors is the distinct amount of scattering each color demonstrates.,
e.g., in Figure 3a, the blue color has lower values than red (except in the last measurement)
since blue scatters more than red. We speculate that the low amount of red and the excess of
green color in the image used as a sample (Figure 1) might explain the exceptional Haziness
metric behavior, especially for the green channel and at high optical scattering depths.

An interesting follow-up question would be how the metrics behave when we change
the contrast and brightness and when we apply a histogram equalization. In other words,
the images are modified via image processing tools, and the degree to which the studied
metrics are invariant under transformations is observed. To reach that goal, the contrast and
brightness of the images of Figure 1 were manipulated via the Pillow library in Python [23],
within the ranges of [0.8, 1.2] in both contrast and brightness, in 0.1 increments (with factors
of 1.0 corresponding to the original images).

Figure 5 shows the behavior of the metrics when we change the contrast. Michelson
and RMS metrics vary monotonically with the variation in contrast, with higher contrast
values translating into higher metric values. The Histogram Spread demonstrates a non-
linear behavior, while the Haziness metric is, to a large extent, monotonic.
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ness. The Histogram Spread has a non-linear behavior. The Haziness metric is monotonic 
and demonstrates a higher discrimination in the values when the brightness is low and 
the density of milk is high (above 15 mL, in our experiment). 
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Michelson, RMS, and Histogram Spread values. A perfect metric would be robust against changes in
contrast, having all the points of different contrasts (but the same milk concentration) superpose.

Figure 6 shows the behavior of the metrics when we change the brightness. The
RMS metric varies linearly with the variation in brightness, with higher brightness values
translating into higher metric values. The Michelson metric is not affected by changes
in brightness. The Histogram Spread has a non-linear behavior. The Haziness metric is
monotonic and demonstrates a higher discrimination in the values when the brightness is
low and the density of milk is high (above 15 mL, in our experiment).
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Histogram equalization is another common and useful contrast adjustment method in
image processing. We applied the equalizeHist method of OpenCV [20] to the images and
observed the behavior of the different metrics. As can be seen in Figure 7, the Haziness
metric is robust for histogram equalization, while Michelson, RMS, and Histogram Spread
metrics are equalization-sensitive.

It is also of interest to observe the behavior of the different metrics on the ubiquitous
Lena test image, with contrast and brightness variations as above. Figure 8 shows how
changes in brightness and contrast on Lena affect the metrics. Haziness varies less than the
other metrics, which is good.

Another interesting area of study in image processing, and certainly related to the
current paper, is image dehazing. Properly removing haze can naturally increase the
visibility of the scene. We now compare two single image dehaze algorithms by Fatal [24]
and Berman et al. [25], while checking whether the algorithms improved or worsened the
Haziness values between the original images (taken from [26,27]; see Figure 9) and the
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dehazed ones. A higher Haziness metric value represents a better contrast image, with
better visibility.
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Figure 8. Stability of the Haziness metric to image adjustments to the Lena image compared to the
Michelson, RMS, and Histogram Spread values. (a) Brightness changes. (b) Contrast changes. Note
that for both brightness and contrast changes, the Haziness metric is virtually invariant. Histogram
spread is the second-best metric.
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Figure 9. Images [26,27] for application of the de-haze algorithms and for comparisons. (a) Cityscape,
(b) forest, (c) pumpkins, and (d) train.

Table 1 summarizes the results for the Berman and Fattal algorithms, with their
respective mean, standard deviations, and p-values for the Haziness metrics; 100 runs of
the Haziness metric with N = 1000 were performed in each case. The table also shows
whether the Haziness values for the output images increased (+) or decreased (−) from
the original image. Overall, the values for Berman increased, except for the image of
the pumpkin (where the decrease was very slight). However, the Haziness metric before
and after application of Berman’s dehazing is statistically inconclusive (p-value > 5%) for
the pumpkins’ image correction. Meanwhile, in Fattal’s algorithm, the Haziness metric
(contrast) increased (improved) only for cityscape images. As argued in [25], Fattal’s
method leaves some haze and artifacts in the results, and generally, the Berman non-
local image dehazing method produces superior results. Notice that the Haziness metric
automatically determined Berman’s algorithm to be superior to Fattal’s algorithm, without
room for subjectivity.

Table 1. Haziness values for the original images and Berman et al. and Fattal dehazing algorithms,
with their respective p-values. Whether the Haziness values for the output images increased or
decreased after the dehaze algorithm and their p-values, (+) represents if the value increased and (−)
if the value decreased. A higher value of the Haziness metrics means better (higher) contrast. Here,
the standard uncertainty is determined from 102 runs of the Haziness metric with N = 103.

Original Std Fattal [24] p-Value Berman et al. [25] p-Value

cityscape 0.967 0.0003 0.978 (+) 8 × 10−11 0.983 (+) 4 × 10−11

forest 0.974 0.0003 0.965 (−) 2 × 10−5 0.979 (+) 4 × 10−4

pumpkins 0.980 0.0002 0.975 (−) 4 × 10−4 0.979 (−) 0.27

train 0.972 0.0003 0.971 (−) 0.27 0.975 (+) 2× 10−2
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6. Conclusions

The proposed Haziness metric is monotonic and closer to linear as a function of the
optical scattering depth, compared with other metrics in the literature. It also has a wider
dynamic range, being able to quantify haziness levels at scattering levels at least two times
deeper than existing metrics. Finally, the Haziness metric correctly predicts the correct order
of scattering depth for the red, green, and blue channels of the RGB image. An application
of the metric for performance comparison of dehazing algorithms looks promising as well.
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Appendix A

The standard deviation of the haziness contrast measurement converges to a finite
value (Figure 9), which implies that the mean value also converges to the true value of the
haziness for the image of interest, as empirically found. The standard deviation of haziness
could complement the mean value and be used to characterize the homogeneity of the
image. The average value of the haziness contrast converges in a similar way and is faster
than the standard deviation.
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