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Abstract: Spatially disordered but uniformly distributed point patterns characterized by so-called
blue-noise long-range spatial correlations are of great benefit in computer graphics, especially in
spatial dithering thanks to the spatial isotropy. Herein, the potential photonic properties of blue-
noise disordered, homogeneous point processes based on farthest-point optimization are numerically
investigated for silicon photonics. The photonic properties of blue-noise two-dimensional patterns are
studied as a function of the filling fraction and benchmarked with photonic crystals with a triangular
lattice. Ultrawide and omnidirectional photonic band gaps spanning most of the visible spectrum
are found with estimates of gap–midgap ratios of up to 55.4% for transverse magnetic polarization,
59.4% for transverse electric polarization, and 32.7% for complete band gaps. The waveguiding
effect in azimuthal defect lines is also numerically evaluated. These results corroborate the idea
that long-range correlated disordered structures are helpful for engineering novel devices with the
additional degree of freedom of spatial isotropy, and capable of bandgap opening even without total
suppression of infinite-wavelength density fluctuations.
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1. Introduction

Photonic technologies benefit from the availability of broad spectral ranges at which light
propagation is inhibited, especially in the visible spectral range, for instance to increase light ex-
traction efficiency in ultra-low-threshold semiconductor lasers [1,2], light-emitting diodes [3],
or perovskites thin films [4]. The existence and engineering of suitable light stopbands is at
the foundation of photonic crystals (PhCs) [5,6], in which the geometry and symmetries of the
dielectric arrangement determine most of the overall properties of the system.

Many kinds of periodic, quasi-periodic, and aperiodic photonic structures [7–9] have
been designed, aiming at maximizing the gap–midgap ratio ∆ω/ωc (∆ω = stopband width,
ωc = center frequency) for increasing the operational spectral range; and achieving omnidi-
rectional light stopbands capable of waveguiding light along complex embedded paths.
For two-dimensional periodic PhCs, a hexagonal arrangement of circular columns con-
nected to their nearest neighbors by slender rectangular rods allows obtaining a complete
(i.e., blocking all directions and polarizations of light) photonic band gap (PBG), char-
acterized by a theoretical value of ∆ω/ωc of 24.2% by a proper choice of r/a and d/a
ratios, where r is the radius of the columns, d is the width of the slender rods, and a is
the lattice constant [10]. It can be shown that the structures that maximize the width of
a PBG between bands n and n + 1 in a two-dimensional PhC can be obtained starting
from the minimum-energy distribution of n points in the unit cell satisfying symmetry
and periodicity of the crystal [11]. In turn, these n points correspond to the center of n
high refractive index dielectric cylinders that ensure the quasi-optimal PBG for transverse
magnetic (TM) polarization. A proper tessellation [12] based on the same points defines
a partition of the unit cell into n subdomains whose walls constitute the quasi-optimal
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structure for transverse electric (TE) polarization. For a relative permittivity εr = 11.56 of
the high index material (silicon) in air, values of ∆ω/ωc of 48% have been reported for TM
polarization and hexagonal close-packed (HCP) arrangement of cylinders, and 50% for TE
polarization and HCP-tiled air inclusions into a high index material, assuming a Voronoi
tessellation [6,11].

Rotational symmetries higher than 6-fold (HCP case) aim at omnidirectional stop-
bands, which can be employed to embed waveguides with complex pathways in the
confining photonic environment. In this direction, a higher spatial isotropy associated
with quasi-crystalline configurations (e.g., 8-, 10-, 12-fold rotational symmetry) [13–17]
introduces an important advance. Florescu et al. [18] designed an optimization scheme
that allows obtaining, for 5-fold symmetric quasicrystals (10-fold rotational symmetry)
composed of silicon and air, values of ∆ω/ωc of 39%, 42.3%, and 16.5% for TM, TE, and
complete PBGs, respectively.

It is interesting that biological structures such as Lepidiota stigma and Cyphochilus sp.
white beetles are characterized by high reflectance in all the visible spectrum [19] (a PBG
property) that is associated with a disordered morphology at the nanoscale, because of a
certain degree of homogeneity and spatial correlation [20]. On the other hand, randomly
disordered Poisson patterns are perfectly isotropic but lack the mutual spatial correlation
to engineer the scattering suppression at the basis of stopbands. In this direction, a few
years ago, hyperuniformity metrics was introduced to describe a material configuration
that is characterized by disordered isotropic patterns with a high degree of homogeneity
on the large scale, i.e., long-range spatial correlation capable of inducing the distinctive
interference proper of a PBG [18,21–25]. Hyperuniform disorder corresponds, in reciprocal
space, to an azimuthally averaged structure factor, S(k), that tends to zero with a specific
behavior as the wavenumber k = |k| tends to zero, which implies that infinite wavelength
density fluctuations vanish because of spatial correlation [21,26,27]. Indeed, disordered
hyperuniform point patterns have been employed to design highly homogeneous and
isotropic two-dimensional photonic structures characterized by the presence of omnidi-
rectional PBGs with gap–midgap ratios of 36.5% and 29.6% for TM and TE polarizations,
respectively [22,28].

In the field of computer graphics, the general class of blue-noise disordered (BND)
patterns was also introduced to achieve point spatial distributions capable of providing
the highest quality in printed and digital images [29]. The use of point distributions char-
acterized by uniformity (average point density approximately constant) but disorder to
guarantee isotropy (absence of symmetries or regular structures) is indeed of great benefit
in computer graphics, especially in spatial dithering, when the illusion of continuous-tone
pictures on displays that are capable of only binary elements is requested [30]. These pecu-
liarities are associated with blue noise, i.e., the density fluctuations (noise) are suppressed
at low spatial frequencies (large length scale) [31]. Distributions characterized by blue
noise are distinguished by homogeneous mutual distances between points and no apparent
regularity artifacts, allowing the generation of good-quality digital halftones [32]. In the
Fourier domain, blue noise implies that the spectral energy is low in a circular disk around
the origin (as a consequence of the wide mutual spacing of points) and the energy varies
smoothly outside this disk due to the disorder of the distribution [29]. In contrast to Poisson
point processes characterized by white noise in the reciprocal space, BND patterns possess
only short wavelength noise.

Now, we can recognize that the main attribute of hyperuniform disorder is in that
the structure factor shows long-range fluctuations that are totally suppressed with a well-
defined scaling law, and thus only short-range fluctuations—blue noise—are allowed.
Thereby, hyperuniform disordered point distributions are a very specific type of blue-noise
patterns requiring precise engineering of spatial correlations since hyperuniformity can
be destroyed by point displacement [33,34]. In addition, no complete PBGs have been
observed for finite levels of infinite-wavelength density fluctuations [22]. To the best of
our knowledge, removing this stringent constraint by investigating photonic applications
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for the more general class of blue-noise patterns with finite levels of infinite-wavelength
density fluctuations, as used in computer graphics, has not been reported yet.

Here, therefore, we studied a kind of uniform and irregular point distribution based
on the farthest-point optimization algorithm [29]. In particular, we found that this specific
disordered structure is capable of supporting ultrawide, omnidirectional band gaps cov-
ering most of the visible spectrum, and benchmarked the results against the HCP lattice.
The presence of complete PBGs and the possibility to design waveguides with an arbitrary
bending angle is also discussed.

2. Results
2.1. Farthest-Point Optimization Algorithm for Blue-Noise Disorder Design

The farthest-point optimization (FPO) method was introduced by Schlömer et al., in
order to compute a BND pattern with good spatial isotropy [29]. This iterative method
enlarges the minimum reciprocal distance between points of a random set, thus improving
the blue-noise characteristics of the ensemble, starting from a Poisson point distribution.
Given a random set, X, of n = ||X|| points and starting from the distance dT(x, y) based on
toroidal metrics between points x and y, the following definitions hold:

dx = min
y∈X\{x}

dT(x, y) (1)

d̄X =
1
n ∑

x∈X
dx (2)

dmax =
( 2√

3n

) 1
2

(3)

δ̄X =
d̄X

dmax
(4)

where dx is the local minimum distance, d̄X is the average minimum distance, dmax is the
largest minimum distance (obtained for a hexagonal lattice), and δ̄X is the normalized
average minimum distance. In brief, a single step of the algorithm consists of moving each
point, x, of the ensemble to a new position that is as far away from the remaining points as
possible, thus increasing δ̄X . In practice, before moving it, each point, x, is removed from
the Delaunay triangulation (DT) of the remaining points, X \ {x}. The remaining triangles
are inspected in order to find the farthest point, f , which is finally reinserted as a new point
in the DT, which is thus updated during the iteration until convergence. This procedure
converges as n log n; the algorithm is implemented with MathWorks Matlab 2022 (Natick,
MA, USA), and convergence time is of the order of seconds. Other iterative methods aimed
at the maximization of the average minimum distance between points often converge
towards locally regular patterns [35], failing to obtain blue-noise distributions, or are costly
in terms of time per iteration (typically converging as n2), and, moreover, lead to values of
δ̄X not significantly higher than those obtained by non-iterative methods [32].

In Figure 1a–d, HCP and BND point patterns from FPO with relative structure factor
maps are reported for comparison. As it can be seen, the structure factor of the BND
pattern, unlike that of an ordered, hexagonal distribution of points, shows a high level
of isotropy, and thus it lacks changes in the spatial occurrence of points along different
directions. A look at the azimuthally averaged structure factor, S(k), for the BND pattern
reveals the lower density fluctuations at low spatial frequencies (Figure 1e). In this sense,
the BND pattern can be considered as a near-hyperuniform disordered structure since
S(k) < 0.1 for a spatial frequency below 0.1 in normalized units. It is worth mentioning
that ideal hyperuniformity is a property of infinitely large systems [36] but the structure
factor asymptotic scaling can be evaluated in finite patterns fitting the variance number
σ2

N(R) = a R2 + b R ln(R) + c R, as a function of the pattern size in normalized units
R = RD/L, according to refs. [27,37], where RD is the radius of the sampling disk and
L is the side size of the square pattern. The fitting coefficients found for the FPO BND
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pattern were {a, b, c} = {0.005, 0.24, 0.52} with a Pearson’s coefficient of R2
p = 0.9964 (see

Figure S1 in Supplementary Materials). The suppression of the quadratic term in the fit and
the dominant surface-term scaling c > b provide indication of large spatial correlations, a
near-hyperuniformity since a = S(k = 0) = 5× 10−3, but without ideal hyperuniformity
(a = 0). It is thus significant to evaluate whether a PBG can be achieved via the BND FPO
pattern. Indeed, it must be noted that, in Ref. [22], no complete PBGs were observed for
finite a = S(k = 0), and PBGs opened only for zero fluctuations within a finite disk of
wavevectors in the reciprocal space, i.e., S(k) = 0, for k < kC = RC/L, where RC is some
critical radius value. Finding complete PBGs in the FPO BND pattern could be interesting
both from a fundamental point of view and for practical applications given the simplicity
of the calculation, as for instance for the realization of efficient isotropic thermal radiation
sources and the fabrication of waveguides characterized by an arbitrary bending angle.
Therefore, we will now evaluate the existence of the PBG and compare the results with
the HCP case, which represents the most performing pattern in terms of the PBG, yet is
anisotropic (hampering designing free-form defect pathways).

Figure 1. Hexagonal close-packed (HCP) (a) and blue-noise disordered (BND) (b) point patterns
with relative structure factor maps (c,d). The BND pattern has been obtained with farthest-point
optimization [29] after 63 iterations, starting from a random set of n = 1024 points (see text).
In (e), the azimuthally averaged structure factor, S(k), relative to the BND point pattern is reported,
showing the suppression of density fluctuations at low spatial frequencies.

2.2. Photonic-Band-Gap Analysis of Farthest-Point Optimization Pattern

At each point of the FPO distribution, a cylinder of a given material was placed, as
characterized by a radius, r, and a normalized average minimum distance with respect to
its neighbors, δ̄X = a. We investigated the onset of PBGs and compared the results with
HCP patterns as a function of the refractive index of the materials and filling fraction ratio,
r/a. All numerical simulations were based on the finite difference time domain (FDTD)
method, as detailed below.

For what concerns the FPO finite structure that lacks periodicity, Maxwell’s equations
were solved using the FDTD method in FullWAVE, Rsoft CAD Photonics Suite environ-
ment, Synopsys [38]. The discretization grid provided a minimum of 16 grid points per unit
length a for basic analyses, then up to 64 grid points for fine futures. It is not possible to de-
fine a Brillouin zone in a nonperiodic structure like our FPO pattern since the Wigner–Seitz
cell in the direct space changes point by point. Therefore, for the disordered patterns we
used a near-field dipole source with a short-pulse temporal decay profile (Gaussian time
pulse excitation) to excite the modes of the system and calculate the local density of states
and associated band gap. The source point was placed at the center of the structure generally,



Optics 2023, 4 577

but also outside the boundaries of the pattern for a further consistency check. The ramp time
was 0.03(λ/c) in order to have a pulse wide enough to cover the range of wavelengths of
interest (in-plane wavevector modulus). In order to detect the radiation transmitted through
the dielectric pattern and radiating outside of the structure in free space, field monitors were
placed in a set of positions inside and outside the pattern at different orientations with respect
to the center. The discrete positions were selected to cover 30 in-plane scattering wavevectors
directions in a disk around the center of the pattern. Field components and power flows along
different propagation directions were stored. After a sufficiently large time of calculation (typi-
cally 217∆t, where ∆t is the FDTD time step given by 0.5 dg, where dg is the grid size), the field
was Fourier transformed to calculate the transmission spectrum along specific directions, as also
discussed in previously reported methods [17].

For what concerns HCP patterns, due to the periodicity of this structure, disper-
sion curves and PBGs were retrieved by means of the plane wave expansion technique
(BandSOLVE, Rsoft CAD Photonics Suite environment, Synopsis [39]). This means that
the structure is virtually infinite and associated PBGs are likely to be overestimated with
respect to a real-world finite structure.

HCP Pattern: TM case. PBG properties of HCP structures are a gold standard in
photonic applications. Data of PBGs (gap–midgap ratio) are shown as a function of the
r/a ratio, together with the trends of the band gap boundary wavelengths λ1 and λ2, for
the refractive index difference ∆n = 3.4, which is compatible with high index cylinders
of materials like Ge, MoSe2, MoS2, and others in air in the visible spectral range (when
neglecting absorption losses). The comparison will be then evaluated for other values of
∆n compatible with other materials like silicon (n = 4.09 at 550 nm) for the FPO pattern
in the following. It is worth mentioning that neglecting the absorption loss at this stage
does not affect the outcome from the comparison between the patterns, since simulations
are indeed made with the same materials as a function only of the spatial arrangement
of the cylinders. The specific choice of the real part of the refractive index is the same for
both patterns as well. As can be seen in Figure 2a, the best performance in terms of the
gap–midgap ratio for TM polarization takes place for r/a = 0.15, with ∆ω/ωc = 59.2%,
spanning a spectral range from λ1 = 476 nm to λ2 = 877 nm. At same time, a full-visible
spectrum for TM polarization occurs around r/a = 0.13.

Figure 2. Gap–midgap ratio (a) and band gap boundary wavelengths (b) as a function of the r/a
ratio for an HCP distribution of cylinders with a refractive index contrast of ∆n = 3.4 with respect to
the environment. The simulations have been performed for TM polarization.
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However, the spatial anisotropy associated with the order and symmetry of the structure
has some drawbacks. For finite structures, the unavailability of real isotropic PBGs in
periodic PhCs may be noticeable, hampering the possibility of fabricating waveguides
with an arbitrary bending angle [40]. The PBG completeness will be addressed later
for convenience.

FPO Pattern: TM case. The FPO pattern response can be seen in Figure 3, in which
the values of the gap–midgap ratio for TM polarization, for three values of refractive
index difference decreasing from ∆n = 3.4, are shown as a function of the r/a ratio,
together with the trends of the band gap boundary wavelengths λ1 and λ2. The best
performance is reached for ∆n = 3.4. In particular, when r/a = 0.12, a PBG characterized
by ∆ω/ωc = 55.4% and spanning from 384 to 678 nm takes place. This value overcomes
the performances of the other isotropic disordered or quasi-ordered photonic structures
introduced so far. Furthermore, for r/a = 0.13, the PBG spans all the visible spectrum
(406–706 nm), still being characterized by a noticeable value of ∆ω/ωc, which in this case
equals 54% (see Figure 4). It is worth mentioning that, while the gap-to-midgap ratio can
be scaled to any range of frequency, the right panels show the actual extreme wavelengths
obtained considering an average spacing a = 220 nm. This also means that the wavelength
to the desired range of interest, λ f , can be obtained by scaling the spacing according to
a′ = a× λ f /λi, where λi is the initial midgap wavelength shown in our specific calculation.
Let us consider Figure 3b right panel, case ∆n = 2.4, i.e.,

√
12−

√
1 = silicon refractive

index (NIR)—air refractive index, with r/a = 0.19, which shows a PBG ranging from
425 to 650 nm, with midgap wavelength λi = 540 nm. To move from λi = 540 nm of this
representative case to a final wavelength λ f = 1500 nm in the NIR (midgap wavelength), it
is only necessary to scale the spacing according to a′ = 220× 1500/540 = 610 nm.

Figure 3. Gap–midgap ratio (left column) and band gap boundary wavelengths (right column) for
an FPO distribution of cylinders in air as a function of the r/a ratio and for different refractive index
contrasts ∆n: 1 (a), 2.4 (b), 3.4 (c). The simulations have been performed for TM polarization.

FPO Pattern vs. HCP Pattern: TE case. It is well known [6], as we just verified above, that
a proper two-dimensional distribution of high refractive index cylinders in a low refractive
index environment leads to large TM PBGs. We can now analyze the complementary case
where low refractive index (e.g., air) inclusions are distributed in a high refractive index
medium, which favors the generation of wide TE PBGs.
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Figure 4. White band gap (WBG) for a blue-noise distribution of cylinders in air, obtained for
r/a = 0.13 and TM polarization.

We compare our BND structure of circular holes with that formed by an HCP pattern
of air inclusions in a high refractive index environment. In Figure 5, the gap–midgap ratios
and corresponding band gap boundary wavelengths λ1 and λ2 are represented for both
cases as a function of the r/a ratio and for a refractive index contrast of ∆n = 3.4. Here,
r stands for the radius of the holes while a represents the average minimum distance of
a hole with respect to its neighbors (or simply the lattice constant in the HCP case). For
FPO patterns, two white (all visible) PBGs take place, one for r/a = 0.31, spanning from
λ = 417 nm to λ = 770 nm (∆ω/ωc = 59.5%), and the second for r/a = 0.32, spanning all
the visible spectrum and including also a portion of the UVB spectral range (λ1 = 387 nm;
λ2 = 714 nm; ∆ω/ωc = 59.4%). On the other hand, the best performance, in terms of
the gap–midgap ratio and for HCP patterns, is obtained for r/a = 0.44, leading to a PBG
spanning a spectral range from 520 to 988 nm, with ∆ω/ωc = 62%, which is comparable
with the values obtained for a BND pattern. Furthermore, in this case, no WBG takes place:
at most, the widest portion of the visible spectrum covered by a PBG is the one obtained
for r/a = 0.47, with λ1 = 452 nm, λ2 = 788 nm, and ∆ω/ωc = 54.1%.

PBG completeness. Now we can investigate the possible presence of complete PBGs
in FPO patterns. As we stated above and as it is well known from literature [6], a two-
dimensional PhC obtained with an HCP pattern of high refractive index cylinders in a low
index environment (e.g., air) leads to large TM PBGs, which can be mainly explained by
hopping between individual Mie resonators [11]. On the other hand, TE PBGs are favored
in a connected lattice (e.g., HCP lattice of circular low index inclusions in a high index
material), mainly because of Bragg-like multiple scattering phenomena.

Thus, one possible way to obtain complete PBGs in two-dimensional HCP patterns is
to enlarge the radius of the low index inclusions in such a way that the spots between them
look like localized connected regions of a high refractive index [6].

We analyzed the performance of this kind of optical configuration as a function of r/a,
always in terms of ∆ω/ωc (for both TM and TE polarizations) for ∆n = 3.4. The obtained
results are shown in Table 1. We can see how, for a proper choice of r/a, complete PBGs take
place also for BND patterns. In particular, BND complete PBGs are generally larger than
their periodic HCP counterpart, even for experimental feasible filling fractions (r/a∼0.31)
(Figure 5). In more detail, the maximum value of the gap–midgap ratio for a complete PBG
supported by a BND arrangement of holes (∆ω/ωc = 32.7% for r/a = 0.34, with λ1 = 386 nm
and λ2 = 537 nm) is considerably higher than the maximum one obtainable by a HCP structure
(∆ω/ωc = 23.6% for r/a = 0.48, with λ1 = 498 nm and λ2 = 632 nm). Examples of patterns
supporting complete PGBs in the two different cases are reported in Figure 5.
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Figure 5. Gap–midgap ratio (left column) and band gap boundary wavelengths (center column)
as a function of the r/a ratio for an HCP lattice of air holes in a high refractive index medium
(∆n = 3.4) (a) and for FPO pattern of holes in the same medium (b), for TE polarization. On the right
column, examples of HCP and FPO hole patterns supporting complete band gaps, respectively, for
r/a = 0.45, with ∆ω/ωc = 12.7% and r/a = 0.31, with ∆ω/ωc = 17.1%, as reported in Table 1. Red
circles indicate the position of the considered patterns in the gap–midgap ratio curves.

Finally, it is worth noticing that the FPO complete PBGs are comparable with those of
recently introduced hyperuniform disordered photonic structures [18,28], and that the FPO-
based structure does not need tessellation (typically obtained by the proper interconnection
of cylinders with a network of walls) in order to support both TM and TE band gaps,
which represents an advantage when fabrication is involved for structures working in the
visible-range scale.

Table 1. Complete PBG gap–midgap ratio ∆ω/ωc for different values of r/a, in case of a distribution
of air cylinders in a high refractive index medium (∆n = 3.4).

HCP-Pattern FPO-Pattern

r/a ∆ω/ωc r/a ∆ω/ωc

0.45 12.7% 0.31 17.1%
0.46 16.3% 0.32 21.7%
0.47 19.9% 0.33 25.6%
0.48 23.6% 0.34 32.7%
0.49 19.3% 0.35 21.2%

2.3. Complex Waveguiding Pathways

As we mentioned above, isotropic PBGs allow one to design waveguides characterized
by arbitrary bending angles or free-form defect pathways [40]. In periodic PhCs, indeed, the
symmetry directions defined by the crystal itself impose well-defined bending angles [6],
making easy to design, e.g., bends of 60◦ or 90◦ but strongly limiting other directions due
to remarkable radiation losses. In Figure 6, the results of numerical simulations relative
to different waveguides obtained after proper removal of scatterers in a FPO pattern of
cylinders are shown.

The wavelengths of the propagating fields have been chosen as follows. After removal
of cylinders along a desired path, a Gaussian time pulse excitation was launched at the
inlet of the guide. The detection of the transmitted power by a monitor provided the peaks
corresponding to the resonant modes of the waveguide (defect mode frequencies). Finally,
the wavelength associated with the highest peak was used to launch a continuous wave



Optics 2023, 4 581

field in the guide. The quality factor of the resonance measured the radiation loss in the
waveguide. The quality factor was in the range 103 ÷ 105 for all simulations. As can be
seen from Figure 6, in addition to geometries easily obtainable also in periodic structures
(straight guide excited at λ = 445 nm, right-angle guide excited at λ = 621 nm), the use
of BND arrangements allows one to design circular waveguides (λ = 479 nm), the most
significant example of a free-form pathway that reflects the statistically intrinsic isotropic
nature of a blue-noise pattern.

Figure 6. Electric field distributions in a linear (a), right-angle (b) and circular (c) waveguide obtained
after proper removal of cylinders in the FPO pattern with r/a = 0.13. Excitation at λ = 445 nm (a),
λ = 621 nm (b), and λ = 479 nm (c), and field source launched with TM polarization.

3. Conclusions

In conclusion, we show how farthest-point optimization, introduced and developed
in the field of computer graphics in order to improve spatial dithering, represents an
efficient method also in the design of photonic structures characterized by blue noise.
The FPO-based disordered photonic structure studied here is able to support ultrawide,
isotropic PBGs capable of covering the whole visible spectrum, with gap–midgap ratios
overcoming those obtainable by quasi-periodic, aperiodic, and disordered structures intro-
duced so far. In particular, the performances of FPO structures in terms of gap–midgap
ratios are comparable to those obtainable by HCP patterns, and superior when referring to
complete PBGs. In addition, complete PBGs in the FPO pattern can be achieved without do-
main tessellation. FPO patterns can be successfully fabricated in photolithographic masks
or with electron beam lithography systems exploiting vector scan mode [41], as in all simu-
lations the minimal spatial feature was of the order of 80 nm, well above nanofabrication
potential limits. Of course, the intrinsic isotropy of the FPO PBGs enables rotational sym-
metries forbidden to periodic structures, making it possible to obtain free-form waveguides
with arbitrary bending, as in the case of hyperuniform disordered photonic structures [40].
Several realizations of the blue-noise distributions using FPO gave basically the same
results, and thus the system is stable against point pattern redistribution.The blue-noise
disordered system studied here differs from a hyperuniform disordered structure in that
only finite suppressed values of density fluctuations are achieved within a certain range of
wavevectors. We conclude that the fluctuations must be suppressed only to a reasonable
finite level of acceptance to induce the PBG opening, relaxing the stringent constraints
imposed by zero density fluctuations, useful in particular for real-world realizations of
such photonic structures.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/opt4040042/s1: Figure S1: Statistical analysis of the spatial fluctuations of
the FPO pattern.

https://www.mdpi.com/article/10.3390/opt4040042/s1
https://www.mdpi.com/article/10.3390/opt4040042/s1
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