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Abstract: The significance of intelligent sensor systems has grown across diverse sectors, including
healthcare, environmental surveillance, industrial automation, and security. Photoacoustic gas
sensors are a promising type of optical gas sensor due to their high sensitivity, enhanced frequency
selectivity, and fast response time. However, they have limitations such as dependence on a high-
power light source, a requirement for a high-quality acoustic signal detector, and sensitivity to
environmental factors, affecting their accuracy and reliability. Machine learning has great potential
in the analysis and interpretation of sensor data as it can identify complex patterns and make
accurate predictions based on the available data. We propose a novel approach that utilizes wavelet
analysis and neural networks with enhanced architectures to improve the accuracy and sensitivity
of photoacoustic gas sensors. Our proposed approach was experimentally tested for methane
concentration measurements, showcasing its potential to significantly advance the field of gas
detection and analysis, providing more accurate and reliable results.

Keywords: photoacoustic gas sensors; photoacoustic spectroscopy; mid-IR range; optical sensing; gas
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1. Introduction

Smart sensors and sensor systems have become increasingly important in a wide range
of industries due to their ability to gather, process, and provide data in real time. They are
critical in various applications, including environmental monitoring, medical diagnosis,
and industrial process control, where timely and accurate data are essential for decision
making. Among various types of sensors, optical sensors have shown significant potential
due to their high sensitivity, selectivity, and fast response time [1]. Photoacoustic gas
sensors (PAGSs) have emerged as a promising type of optical gas sensor due to their ability
to use light to generate sound waves to detect gas molecules [2,3]. These sensors have
several advantages, including high sensitivity and small size, which make them suitable
for a range of gas-detection applications. However, PAGSs also have some limitations,
such as their dependence on a high-power light source and sensitivity to environmental
factors, which can affect the accuracy and robustness of the measurements they perform [4].
Therefore, further comprehensive study of the features of PAGSs is crucial to ensuring their
effectiveness and reliability.

Improving the performance of PAGSs can be achieved either by enhancing the char-
acteristics of the equipment and underlying technologies or by developing effective algo-
rithms for interpreting the data produced by PAGSs, which are used to estimate the gas
concentration.
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Enhancing the acoustic reaction and sensitivity of PAD systems can be achieved by
employing more powerful radiation sources [5]. In the visible range, cost-effective and
powerful diode lasers can be used for a gas analysis. For example, Yin et al. showed
that by employing a diode laser with a wavelength of 447 nm and a power of 3.5 W, a
detection sensitivity of 54 pptv for nitrogen dioxide (NO2) was achieved within 1 s of
the integration time [6]. In the near-infrared (near-IR) range, diode lasers combined with
erbium-doped fiber amplifiers (EDFAs) [7,8] are commonly used as sources of radiation.
Nevertheless, visible and near-IR laser diodes are not suitable for detecting all gases. The
molecular transitions in the visible and near-IR ranges are at least ten times less intense
than the fundamental absorption lines in the mid-IR part of the spectrum [5]. In the mid-IR
range, CO and CO2 gas lasers [9], interband cascade lasers (ICLs) [10], along with quantum
cascade lasers (QCLs) [11,12] and sources such as optical parametric oscillators (OPOs) and
difference frequency generators (DFGs) [13,14] are commonly employed. To increase the
average power of mid-IR radiation sources, additional amplification stages are sometimes
also used [15,16]. Another method to enhance the sensitivity of gas analyzers involves
acoustic wave amplification. To amplify the acoustic wave, various detector resonator
configurations are used, such as resonant differential cells [12], Helmholtz cells [17], mul-
tipass cells [18], and others [5,18]. To enhance the sensitivity of gas analyzers, different
types of acoustic transducers are used, including electret microphones [12], quartz tuning
forks (QTF, QEPAS technology) [19], cantilevers (CEPAS technology) [20], and fiber-optic
microphones [21].

In recent years, machine learning (ML) has demonstrated great potential in the field
of sensor data analysis and interpretation [22,23]. ML algorithms can identify complex
patterns in data, learn from them, and use this knowledge to make predictions based on
the data. When combined with sensors, ML algorithms can create a powerful analytical
tool for accurate detection and analysis. There have been several examples of successful
ML applications for sensors reported in the literature, demonstrating the potential for this
approach in improving the performance and reliability of sensor systems.

The paper [24] explores the integration of artificial intelligence (AI) in photoacoustic
spectroscopy—a powerful and nondestructive technique with broad applications. The focus
lies in utilizing AI to achieve the precise and real-time determination of photoacoustic sig-
nal parameters, addressing the inverse photoacoustic problem. A feedforward multilayer
perceptron network is employed to enhance sensitivity and selectivity, enabling the si-
multaneous determination of crucial parameters, including the vibrational-to-translational
relaxation time and laser beam radius.

In the paper [25], a high-sensitivity gas-detection system for acetylene (C2H2) in the
ultra-low concentration range is introduced by using photoacoustic spectroscopy (PAS)
by Wang et al. This system employs a novel trapezoid compound ellipsoid resonant
photoacoustic cell (TCER-PAC) and a partial least square (PLS) regression algorithm. The
study concludes that the proposed PAS system, incorporating TCER-PAC and the PLS
algorithm, demonstrates improved detection sensitivity and a lower limit of detection
compared to PAS systems based on a trapezoid compound cylindrical resonator, providing
a novel solution for high sensitivity and ultra-low concentration detection.

The paper [26] addresses the challenge of selective detection in metal oxide chemire-
sistive gas sensors with inherent cross-sensitivity. Employing soft computing tools such
as Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT), the transient
response curves of the sensor are processed to extract distinctive features associated with
target volatile organic compounds (VOCs). Comparative analysis favors DWT for its supe-
rior focus on signal signatures. Extracted features are fed into machine learning algorithms
for the qualitative discrimination and quantitative estimation of VOC concentrations. The
study emphasizes efficient feature selection, enabling machine learning to achieve an out-
standing classification accuracy of 96.84% and precise quantification. The results signify a
significant advancement toward automated and real-time gas detection.
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The paper [27] reviews the challenges encountered by phase-sensitive optical time-
domain reflectometer (ϕ-OTDR) systems, commonly referred to as distributed acoustic
sensing, when monitoring vibrational signals across extensive distances. These systems,
operating in complex environments, often face intrusion events and noise interferences,
which can affect their overall efficiency. The paper explores several techniques proposed in
recent studies to mitigate these challenges, with a specific emphasis on system upgrades,
enhancements in data processing, and the integration of ML methods for event classification.

In this study, we propose a novel approach that utilizes a combination of wavelet
analysis and neural networks to improve the accuracy and sensitivity of photoacoustic gas
sensors. The wavelet analysis method allows for the better detection of gas signals in noisy
data, while the use of neural networks with enhanced architectures enables the system to
learn complex relationships between the data and the gas concentration. To evaluate the
performance of our approach, we conducted laboratory experiments aimed at detecting
methane across various concentrations. We then compared our results with those obtained
through the conventional Fourier-based method of concentration estimation. Our proposed
approach has the potential to provide more accurate and reliable results, resulting in a
more efficient gas-detection system. It has the potential to significantly advance the field of
gas detection and analysis. The novelty of this work lies in the use of wavelet analysis and
machine learning in combination with traditional methods of photoacoustic spectroscopy.

2. Experimental Setup
2.1. Principles of Photoacoustic Gas Sensor

A photoacoustic gas sensor is an optical instrument employed for the detection and
quantification of gas concentrations. It achieves this by assessing the magnitude of the
acoustic signal produced due to localized heating resulting from the absorption of light
by gas molecules. The amplitude of the acoustic signal is directly related to the intensity
of the absorbed light as it passes through the gas volume. This intensity is influenced
by the gas concentration, the absorption coefficient, and the length of the optical path in
an exponential manner. The PAGS comprises two key components: a radiation source
that emits light at a wavelength corresponding to the absorption line of the investigated
gas and the differential photoacoustic detector (PAD). The PAD has a cavity in which the
gas molecules interact with light, and the resonant amplification of the acoustic signal
registered by a microphone installed directly in the cavity takes place. The amplitude of
the acoustic signal increases significantly if the pulse repetition rate of the radiation source
propagating through the gas matches the resonant frequency of the gas cell, resulting in the
improved accuracy and sensitivity of the PAGS [2].

2.2. Setup Description

As mentioned above, an important component of PAGSs is the radiation source. As
in our previous work [4], a developed optical parametric oscillator (OPO) is used as a
radiation source, providing a continuous smooth wavelength tuning in the spectral region
of 2.5–4.5 µm, where many gas molecules have their fundamental absorption characteristics.
Such a widely tunable source can be utilized for multicomponent gas analysis [28,29].

The foundation of the developed OPO relies on the process of the frequency down-
conversion of the Nd:YLF laser in a fan-out MgO:PPLN structure with a domain period that
smoothly varies in the range of 27.5–32.5 µm. The experimental setup of the PAGS is sketched
in Figure 1. The pump laser has the following characteristics: wavelength—1.053 µm; pulse
duration—∼5.3 ns; pulse repetition rate—0.1–4 kHz; linewidth—227 pm; beam quality
factor M2—1.4. The nonlinear element was 50 mm long, with an aperture of 20 × 3 mm,
and was coated with single-layer antireflection to increase transmission on the signal
wave (centered at 1.5 µm), which also resulted in good transmission for the pump at
1.053 µm. The PPLN is maintained at a temperature of T = 40 ◦C (±0.1 ◦C) by means of a
thermostat based on a Peltier thermoelectric element. For wavelength-tuning purposes,
the thermostat is placed in a high-precision motorized linear stage with a 25 mm travel
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range and 1.25 µm resolutions in full step. A singly resonant OPO was set up with a
standard linear cavity consisting of two flat identical input (IC) and output (OC) couplers
in a single-pass configuration [30]. Both mirrors were dielectrically coated to reflect highly
for the signal wave (HR > 99%) and transparent for the pump and idler waves (T > 95%).
An additional dielectric mirror filter was used to minimize the contamination of the pump
and signal components of the idler wave (∼3.32 µm) used for the PAD.

Figure 1. The experimental setup of the developed PAGS system: FI—Faraday isolator, L1 and
L2—lenses, IC—input coupler, OC—output coupler, PPLN—fan-out periodically poled lithium
niobate crystal, Filter—dielectric mirror filter, Dump—beam dump, PRM—partial reflecting
mirror, Pyro—pyrodetector, PAD—photoacoustic detector, ADC—analog-to-digital converter,
PC—personal computer.

The transverse shifting of the PPLN structure relative to the pump laser beam provided
tuning of the OPO radiation wavelength in the spectral range of 2.5–4.5 µm with an accuracy
setting of ±0.1 nm. The emission linewidth demonstrated a noticeable decrease as the
wavelength increased, ranging from approximately 7.5 cm−1 at 2.5 µm to around 0.6 cm−1

at 4.5 µm. Additionally, at a wavelength of 3.32 µm, the measured emission linewidth was
approximately 5.6 ± 0.2 cm−1. The spectral characteristics of the OPO output radiation
were studied by employing an LSA IR laser spectrum analyzer and WS6 wavelength
meter (HighFinesse/Angstrom, Tübingen, Germany) with a spectral resolution of 90 pm
(12 GHz) and 7 pm (200 MHz), respectively. To carry out experiments to detect methane
impurities at various concentrations, the wavelength of OPO radiation was 3.32 µm, which
coincides with its maximum absorption peak. In this spectral region, the average output
radiation power was ∼35 mW at a pulse repetition rate of 1800 Hz. The average power
and pulse energy of the OPO were measured using an Ophir Vega PE-10C (Jerusalem,
Israel) power/energy meter positioned in front of the PAD. The spatial characteristics of
the idler wave were investigated using a Pirocam IV beam profiling camera (Spiricon,
Jerusalem, Israel). To minimize the impact of the power drift of the OPO radiation on the
PAD signal (ILP SB RAS, Novosibirsk, Russia), pyrodetector (Pyro MG-30, JSC “NZPP
Vostok”, Novosibirsk, Russia) was used. To perform this, a partial reflecting mirror (PRM,
R ≈ 1 % @ 3.32 µm) in the pyrodetector was placed in the optical path.

During the experiment, OPO radiation was injected into the PAD, where the laser
beam interacted with the molecules of the gas under study. The differential PAD is made
of a solid aluminum alloy and consists of two parallel acoustic channels (Ø9 × 90 mm).
These channels are separated by a thin partition that is 1 mm thick. Additionally, the PAD
includes two buffer cavities (Ø20 × 8 mm), which are enclosed by flanges. These flanges
are equipped with transparent uncoated Zinc Selenide Brewster windows and rubber
seals. Gas was transferred through hoses with an inner diameter of Ø2 mm that were
installed on the walls of the buffer cavities. The PAD was filled with a gas mixture to reach
atmospheric pressure, following which it was sealed. The PAD structure is very close to the
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cell described in detail in [31]. The detector is also equipped with two electret microphones,
one in the center of the acoustic channel. For the precise and accurate balancing of micro-
phone responses, they are connected to the differential amplifier separately per channel. To
measure the current lowest resonant frequency, a small-sized piezoelectric sound emitter
is housed in the center of one of the acoustic channels opposite of the microphone. The
conventional method for determining the resonant frequency of a PAD involves recording
a specific segment of the amplitude–frequency characteristics and analyzing the resonance,
which is time consuming and introduces measurement errors when the resonant frequency
changes. A faster method was used to determine the resonant frequency almost in real
time. This method involves applying a series of short voltage pulses to the sound emitter
at a repetition frequency close to the expected resonant frequency. The emitter functions
as a speaker, stimulating its own acoustic oscillations within the PAD. Subsequently, they
are recorded using microphones, and the Fourier transform components are computed
within a specified frequency range. The frequency is then determined using the refinement
algorithm proposed by E. Jacobsen and P. Kootsookos [32]. This approach enables the
measurement of the PAD’s lowest resonant frequency in nearly real time (approximately
0.1 s) with an error margin of around ±0.1 Hz. More detailed information on the mea-
surement technique can be found in [31]. Since the resonant frequency of the PAD is
directly related to the speed of sound in the gas mixture it contains, the resonant frequency
is significantly influenced by the temperature and composition of the mixture. Hence,
the resonant frequency is determined before each measurement. The recorded minimum
resonant frequency of the PAD is around 1750 Hz or 1780 Hz when it is filled with air or
nitrogen, respectively. The Q-factor of the used detector is Q ≈ 40. The ADC controller
receives the electrical signals from the PAD, which allows one to set the required pulse
repetition rate for OPO radiation. The alignment of the resonant frequency of the detector
with the pulse repetition rate of the radiation source enables a substantial enhancement of
the PAD signal [31].

3. Experimental Data and Concentration Estimation Algorithm
3.1. Dataset

The experiments were carried out for a background concentration of methane in
the air (about 1.9 ppm) and for two reference gas mixtures based on nitrogen with an
admixture of methane (N2 + 9.7 and 954 ppm CH4) (1.25, 6.4, and 625.8 mg/m3, respec-
tively). Throughout the experiment, we measured the power of the acoustic signal Umicro
using a differential PAD and the power of the laser radiation Ulaser using a photodetector
MG-30 with a sampling frequency of 48 kHz. Each measurement lasted for 1 s, and we
performed 200 measurements for each concentration. In total, we obtained 600 one-second
measurements comprising 48,000 samples for the three concentrations. The algorithms
for recovering the concentration of CH4 described below utilize these measured values as
the input data. Figure 2 illustrates an example of the recorded power for the acoustic and
optical signals for the three CH4 concentrations.

3.2. Algorithm for Concentration Estimation Based on Fourier Transform

The basic method for deriving gas concentration values from recorded data relies on
the implementation of the Fast Fourier Transform (FFT) algorithm. We begin by applying
the FFT to the signals Umicro and Ulaser to transform them into frequency domain represen-
tations. Subsequently, we extract the amplitude values F[Umicro]( fr) and F[Ulaser]( fr) at
the resonance frequency fr. Algorithmically, these values are identified as the maximum
amplitudes within the entire frequency range. Figure 2 illustrates the FFT outcomes for the
three CH4 concentrations. The figure displays the alignment of the resonance frequency
of the acoustic signal from the microphone and the frequency of the optical signal pulses,
consistent with the theory of forced oscillations. The signal ratio F[Umicro]( fr)/F[Ulaser]( fr)
adheres to the CH4 concentration following the Beer–Lambert law. By leveraging several
calibration points with known concentrations, it becomes possible to approximate the



Optics 2024, 5 212

relationship between the signal ratio and concentration, utilizing this curve for the retrieval
of arbitrary concentrations. In this method, the signal Ulaser serves to compensate for the
impact of the wavelength and power drift of the OPO on the PAD signal.

Figure 2. Recorded power for the acoustic and optical signals for a 954 ppm (top), 9.7 ppm (center),
and 1.9 ppm (bottom) CH4 concentration in time domain (left) and frequency domain (right).

4. Problem Formulation and Proposed Solution

The data-processing algorithm, outlined in Section 3, proves effective and applicable
when the power of the acoustic signal at the resonant frequency significantly exceeds
that at other frequencies. This is typically observed in two scenarios: (i) with relatively
high gas concentrations and (ii) when utilizing high-quality sensor components like a
microphone or radiation source that avoids introducing significant signal distortions.
Furthermore, stable environmental conditions are essential to prevent any influence on the
measurement process.

However, in scenarios involving low gas concentrations or the use of inexpensive,
low-quality sensor components, the power of the acoustic signal may be comparable
to the power of the background noise. In such cases, standard algorithms may lack
effectiveness, necessitating advanced approaches. These data interpretation approaches
hold the potential to enhance the sensitivity threshold of PAGS, reduce costs through the
use of more affordable components, and alleviate sensitivity to environmental factors.

To develop and assess the performance of such approaches, we proposed the following
methodology based on collected experimental data. We used the experimental data ob-
tained in the laboratory for all concentrations, which were processed by the basic algorithm,
as target values. Subsequently, we generated new datasets for further investigation by
introducing additive white Gaussian noise to the experimental signal from the microphone
for each of the three concentrations. The noise was uniformly added to the data for each
concentration, simulating the degradation of the microphone’s performance. To quantify
the amount of added noise, we employed the peak signal-to-noise ratio (PSNR), defined as
the ratio of the power of the acoustic signal at the resonant frequency to the average power
of the background noise at other frequencies. The obtained noisy signal, denoted as Unoise

micro,
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and the signal Ulaser were utilized as input signals for both the basic and proposed algo-
rithms. To evaluate the performance of both algorithms, we computed metrics (the mean
squared error and mean absolute percentage error) between the output of the algorithms
on noisy data and the target value F[Umicro]( fr)/F[Ulaser]( fr).

In the approach proposed in this study, we suggest performing a wavelet transform of
the received signals instead of a Fourier transform. The resulting wavelet representation of
signals is then used as input data for neural networks with advanced architectures.

4.1. Wavelet Transform

A wavelet analysis is a powerful method for studying the structure of heterogeneous
processes. Currently, wavelets are widely used in pattern recognition, signal processing,
and the synthesis of various signals such as speech signals and image analysis, as well
as for compressing large amounts of information in many other fields [33]. The one-
dimensional wavelet transform involves decomposing a signal into a basis formed by a
soliton-like function called a wavelet. Each function in this basis describes the signal in
spatial or temporal frequency and its localization in physical space (time) [34]. Unlike
the conventional Fourier transform, the one-dimensional wavelet transform yields a two-
dimensional representation of the signal in the time–frequency domain. Wavelet transforms
can be either discrete or continuous.

4.1.1. Continuous Wavelet Transform

The mathematical expression for the continuous wavelet transform (CWT) involves
the convolution of the wavelet function ψ(t) with the signal f (t), defined as:

[
Wψ f

]
(a, b) = |a|−1/2

∫ ∞

−∞
f (t)ψ∗

(
t − b

a

)
dt, (1)

where a is the scale coefficient, responsible for wavelet scaling, and b is the shift parameter,
responsible for wavelet translation. The choice of the mother wavelet ψ(t) is typically
guided by the specific task and the information intended to be extracted from the signal.

In our case, working with signals from an optoacoustic gas analyzer, we studied more
than twenty wavelet functions and selected the complex Morlet wavelet:

ψ(t) =
1√
πB

e−t2/B · ej2πCt, (2)

where B represents the bandwidth and C denotes the central frequency. For our task, we
selected a bandwidth of one and a central frequency of 1780 Hz. We applied continuous
wavelet transform to the recorded time series of the acoustic signal from the microphone
and the optical signal from the receiver. Then, we computed the real part of the obtained
wavelet coefficients. As a result, we obtained two images of size 50 × 48,000 pixels,
corresponding to the signals Umicro and Ulaser. Figure 3 illustrates the characteristic pattern
of wavelet coefficients for a gas concentration of 954 ppm.

Figure 3. The wavelet coefficient maps for the microphone signal (left) and the laser signal (right)
at a CH4 concentration of 954 ppm. The color in the image indicates the magnitude of the wavelet
coefficients.
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4.1.2. Wavelet Packet Transform

Wavelet packet transform (WPT) is a variation of the Discrete Wavelet Transform
widely employed in digital signal processing for analysis and compression. In the WPT
process, the signal is divided into a set of sub-bands using low-pass and high-pass filters.
Each sub-band can be further subdivided into two sub-bands. This process continues
iteratively until the desired level of decomposition is achieved. Each sub-band contains
information about different frequency components of the signal. For instance, low-pass
filters capture low-frequency features of the signal, while high-pass filters emphasize
high-frequency details. The sub-band corresponding to low frequencies is termed the
approximation sub-band (A), while the one obtained using the high-pass filter is called the
detail sub-band (D). Figure 4 illustrates the WPT process with a decomposition level of
three. Each subsequent sub-band reduces the number of coefficients by approximately half
compared to the previous one. The exact reduction depends on the choice of the wavelet
function and the method of signal extrapolation at the boundaries.

Figure 4. Wavelet packet decomposition of a signal with a decomposition level of 3. S represents
the original signal, A corresponds to the approximation sub-band, and D corresponds to the detail
sub-band.

For decomposing the microphone and laser signals from the optoacoustic gas analyzer,
we employed a partial enumeration method and selected a wavelet from the Daubechies
family, specifically the fifth order (db5). To improve the decomposition results at the signal
boundaries, we applied periodic extrapolation, considering the periodic structure of the
original signal. We selected a decomposition level of eight. As a result, from each temporal
series with 48,000 measurements, we obtained 256 sub-bands of decomposition. Each
sub-band consisted of 196 values. These 256 sub-bands were then organized into a two-
dimensional image of size 256 × 196 pixels, accounting for the frequency characteristics of
each sub-band. In total, we have two 256 × 196 images, corresponding to the signals Umicro
and Ulaser. The preprocessed data result is depicted in Figure 5.

Figure 5. Wavelet packet transform for the microphone signal at CH4 concentration of 954 ppm.

In our investigation, we observed that employing wavelet packet transform instead of
continuous wavelet transform leads to a substantial reduction in video card memory re-
quirements, exceeding 40 times. This substantial decrease enhances the speed of prediction
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calculations and accelerates neural network training. It opens possibilities for exploring
deeper convolutional neural network architectures, ultimately improving the accuracy
of predictions.

4.2. Neural Networks

Our initial concept was based on employing the outcomes of continuous wavelet
transform applied to both acoustic and optical signals. To achieve this, we augmented the
initial dataset of 600 measurements to 1200 by duplicating all values twice and then added
random additive white Gaussian noise of fixed amplitude to the microphone signal. As
a result, we obtained a noisy signal with a parameter PSNR of 5.47, 12.79, and 54.38 dB
for concentrations of 1.9, 9.7, and 954 ppm, respectively. The result of the CWT from
these signals was used as inputs for a convolution neural network (CNN) with designed
architecture, as shown in Figure 6. Thus, the CNN received two wavelet coefficients
images, each sized 50 × 48,000 pixels, as the input. Then, a two-dimensional convolution
was applied to each image using a shared kernel of size 5 × 5. The absolute values of
the resulting images were then calculated, followed by a max pooling subsampling layer
with a size of 8 × 8. Then, temporal averaging was performed, resulting in seven values
remaining for each image. Following this, a linear combination of these values with
trainable weights was computed. The output of the convolutional neural network was the
ratio of the value corresponding to the acoustic signal to the value corresponding to the
optical signal. The target output signal value was the ratio of the amplitudes of signals
F[Umicro]( fr)/F[Ulaser]( fr) for the noiseless dataset.

Figure 6. The architecture of the convolutional neural network for continuous wavelet transform as
input data.

To train the neural network, the dataset was divided into training and testing sets,
with 840 measurements in the training set and 360 measurements in the testing set. The
mean squared error (MSE) was chosen as the loss function. For optimization, we employed
the Adam optimization algorithm, adjusting the learning rate dynamically as it reached a
plateau. The convolutional neural network was implemented using the PyTorch library
2.1.0 and trained on an Nvidia GTX 1080 Ti graphics card with 11 GB of video memory.
The model’s performance evaluation was carried out using the mean absolute percentage
error (MAPE) on the predicted values. In the case of the approach employing a continuous
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wavelet transform in the convolutional neural network, the MAPE error for a concentration
of 1.9 ppm was 93%, whereas the Fourier-based approach resulted in an error of 122.3%.
The outcomes of the CWT and other approaches are summarized in the Section 5 (Table 3).

While we observed a slight improvement in prediction outcomes, we noted a constraint
when training deep neural networks with input images of substantial dimensions derived
from a continuous wavelet transform. Moreover, the training and prediction processes
using this wavelet transform approach proved to be time consuming. Consequently, we
made a decision to shift from a continuous wavelet transform to a wavelet packet transform.

4.2.1. VGG-Net Architecture

One of the most widely adopted configurations of deep convolutional neural networks
is known as the VGG architecture. Originating in 2014 at the University of Oxford, its key
innovation lies in employing a 3 × 3 convolutional kernel with a stride of one [35,36]. The
application of two consecutive 3 × 3 convolutional layers creates a receptive field of size
5 × 5, requiring only 18 trainable weights. In contrast, using a single 5 × 5 convolutional
layer would demand 25 weights. This design choice enables the neural network to achieve
greater depth with the same number of trainable weights. The ability to create deeper
VGG network models allows for capturing a higher degree of nonlinearity, facilitated by
the additional rectified linear unit (ReLU) nonlinearity between layers [37]. We introduce
modifications to adapt this architecture for regression tasks, particularly in the structure
of the neural network’s output layer and fully connected layers. Additionally, due to
limitations in the data volume, we decide to reduce the number of layers and channels in
each layer.

Like in the convolutional neural network designed for continuous wavelet transform
(Figure 6), two images of noisy signals were employed as the input. These images repre-
sented wavelet packet transform maps with dimensions of 256 × 196 pixels. Each image
underwent processing by a neural network with uniform weights, generating one output
value for the microphone signal and another for the laser signal. Subsequently, the ratio
between these outputs was computed. Here, the target value was the noiseless result of
the baseline Fourier approach. The training dataset, validation dataset, and test dataset
include 9000, 2400, and 600 measurements, respectively. In total, our dataset consisted of
12,000 measurements obtained from 600 noiseless measurements using 20 random noise
realizations. The validation set was employed for optimizing model hyperparameters,
ensuring that the test set was never used for training.

We employed the open-source library Optuna to tune the hyperparameters and find
the optimal architecture for the VGG-type convolutional neural network [38]. The Adam
optimization algorithm was chosen as the learning algorithm, and the initial learning rate
was optimized in the range from 10−5 to 10−2. A learning rate reduction algorithm was
applied when the validation metric MSE reached a plateau. The hyperparameter “factor”,
responsible for reducing the learning rate when reaching a plateau, was selected in the
range of 0.1 to 0.9. Additionally, the number of epochs for patience, after which the learning
rate was decreased if there was no improvement in accuracy on the validation dataset, was
optimized in the range of 2 to 7. The batch size was adjusted within the range of 2 to 64,
and the number of epochs was set to 60. The number of channels in each convolutional
layer was adjusted from 1 to 32, and the number of neurons in the hidden fully connected
layer was chosen within the range of 2 to 16. The optimal architecture of the VGG-type
convolutional neural network is presented in Table 1. The applied layers of the neural
network are shown in the table in the order in which the image passes through the neural
network. A ReLU layer was used as an activation function after each convolutional and
fully connected layer.
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Table 1. The optimal VGG-type architecture for methane concentration estimation.

Layer Kernel Number of Stride Output Number of
Type Size Channels Kernel Size Weights

Input - - - 256 × 196 -

Convolutional 3 × 3 16 1 × 1 256 × 196 160
Convolutional 3 × 3 16 1 × 1 256 × 196 2320
Max pooling 3 × 3 - 3 × 3 86 × 66 -

Convolutional 3 × 3 16 1 × 1 86 × 66 2320
Convolutional 3 × 3 16 1 × 1 86 × 66 2320
Max pooling 3 × 3 - 3 × 3 29 × 22 -

Convolutional 3 × 3 16 1 × 1 29 × 22 2320
Convolutional 3 × 3 16 1 × 1 29 × 22 2320
Max pooling 29 × 22 - - 1 × 1 -

Flatten Layer

Layer Type Number of Neurons Nonlinearity Number of Weights

Fully connected 7 relu 119

Output 1 - 8

An efficient optimization algorithm called TPE was used to search for optimal hy-
perparameters. This algorithm is a variation of the Bayesian optimization method [39].
It operates iteratively, using information about previously evaluated hyperparameters to
create a probabilistic model, which is then used to propose the next set of hyperparam-
eters. Additionally, the Hyperband algorithm was employed to early stop unpromising
models during the early stages of training. This modern algorithm makes decisions about
discarding unsuccessful models based on multiple concurrently computed results. This
approach helps avoid discarding models that converge slowly at the beginning but achieve
good results in the end [40]. A total of 60 models were analyzed during the optimization
process. The optimization was conducted using Tesla V100 GPUs. It took one week of
computational time using two GPUs simultaneously to fine tune the hyperparameters.

4.2.2. ResNet Architecture

The next architecture selected for deep convolutional neural networks was ResNet. In
practice, an accuracy degradation is observed when increasing the depth of neural networks.
This decline impacts both the training and test datasets. Importantly, this challenge is not
associated with overfitting but rather stems from the inherent difficulties in training deep
neural networks [37]. To address the problem of training degradation, the research team at
Microsoft Research proposed the concept of deep residual learning, which forms the basis
for the ResNet architecture. The residual block serves as the fundamental building block of
the residual neural network. The architecture of a single residual block (ResBlock) used
for methane concentration restoration from noisy data is shown in Figure 7. One notable
feature of this block is the absence of batch normalization. This is because the information
is encoded in the signal amplitude. Adding this layer to the investigated architectures
resulted in a significant deterioration in the MSE metric.

For the ResNet neural network architecture, similar to the VGG convolutional neural
network, the input comprised two wavelet packet transform images of size 256× 196 pixels
derived from a noisy signal. The training, validation, and test dataset comprise 9000, 2400,
and 600 measurements, respectively. The Adam algorithm was used for training, with
a reduction in the learning rate when the validation MSE metric reached a plateau. The
learning rate hyperparameters were tuned in the same range as for VGG. The batch size
was optimized in the range of 2 to 64. The number of epochs was set to 60. The number of
channels in each residual block was adjusted in the range of 1 to 64. The number of neurons
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in the hidden fully connected layer was selected in the range of 2 to 32. The optimal ResNet
neural network architecture is presented in Table 2. The neural network layers used are
shown in the table in the order in which the image passes through the neural network. The
ReLU layer was used as an activation function after each convolutional and fully connected
layer and also inside the residual blocks. The architecture of residual blocks is shown in
Figure 7.

Figure 7. The architecture of a residual block (ResBlock). The shift magnitude s of the first convolu-
tional layer can vary. x(k) is the input vector and y(k) is the output of the residual block.

Table 2. The optimal ResNet-type architecture for methane concentration estimation.

Layer Kernel Number of Stride Output Number of
Type Size Channels Kernel Size Weights

Input - - - 256 × 196 -

Convolutional 7 × 7 32 2 × 2 128 × 98 1600
Max pooling 3 × 3 - 2 × 2 64 × 49 -

ResBlock 3 × 3 32 1 × 1 64 × 49 18,496
ResBlock 3 × 3 32 1 × 1 64 × 49 18,496

ResBlock 3 × 3 16 2 × 2 32 × 25 9776
ResBlock 3 × 3 16 1 × 1 32 × 25 4640

ResBlock 3 × 3 2 2 × 2 16 × 13 614
ResBlock 3 × 3 2 1 × 1 16 × 13 76

Avg pooling 16 ∗ 13 - - 1 ∗ 1 -

Flatten Layer

Layer Type Number of Neurons Nonlinearity Number of Weights

Fully connected 7 relu 21

Output 1 - 8

The search for optimal hyperparameters was conducted using the TPE optimization
algorithm and the early stopping method Hyperband. A total of 60 models were ana-
lyzed. The optimization was conducted using Tesla V100 GPUs. It took two weeks of
computational time using two GPUs simultaneously to fine tune the hyperparameters.

5. Results and Discussion

To train the VGG convolutional neural network architecture, as outlined in Table 1, we
generated five independent datasets, each containing 12,000 samples, corresponding to five
levels of noise applied to the microphone signal (PSNR = −14.75, −6.73, 5.47, 20.16, 33.74 dB
for a concentration of 1.9 ppm). Independent training processes were carried out for each
noise level, concurrently addressing three investigated concentrations with the same noise
amplitude applied to the microphone signal. Consequently, a separate neural network
was trained for each noise amplitude level. The results of the test dataset, which was not
employed during the training process, are illustrated in Figure 8. This figure presents a
comparison between the VGG architecture approach using WPT and the baseline Fourier
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approach for methane concentrations of 9.7 ppm and 1.9 ppm. The vertical axis denotes the
MSE metric in ppm2, while the horizontal axis represents the PSNR parameter.

Figure 8. Comparison between the VGG architecture approach using WPT (colored dots) and the
baseline Fourier approach (black line). The left graph displays the results for a methane concentration
of 9.7 ppm, while the right graph exhibits the results for 1.9 ppm.

From Figure 8, we observed that when the peak signal-to-noise ratio of the microphone
signal for a concentration of 1.9 ppm is below 20 dB (indicated by the orange dot), a notable
reduction in the MSE deviation is observed for the VGG architecture compared to the base-
line Fourier-based approach. For these noise levels, the Fourier-based approach struggles
to accurately determine the CH4 concentration, rendering it ineffective. Conversely, convo-
lutional neural network architectures like VGG, utilizing wavelet packet decomposition,
maintain the accurate recovery of the methane concentration even at high noise levels
(purple and blue dots), showcasing a significantly lower MSE on the test dataset. It should
be noted that for the low noise level (red dot), the Fourier-based approach outperforms
the VGG accuracy, as the PSNR is still high even for the lowest concentration 1.9 ppm, and
the signal does not degrade substantially. Additionally, for VGG, we observed a sharp
increase in the MSE for a PSNR less than 0 dB for all concentrations. However, VGG neural
networks still demonstrate superior performance compared to the standard Fourier-based
approach.

To compare the approaches based on the VGG and ResNet architectures, two neural
networks were trained at a noise level of PSNR = 5.47 dB for a methane concentration of
1.9 ppm. This noise level corresponds to the results presented in Figure 8 (green dot). The
input data consisted of images obtained using wavelet-packet transform. After predicting
the concentration in the test dataset, two graphs were plotted for the metrics MSE and
MAPE as a function of the analyzed concentration, as shown in Figure 9.

Figure 9. Comparison of the VGG architecture approach (purple line) and ResNet architecture
approach (red line) using WPT. The black line represents the baseline Fourier approach, and the green
line represents the VGG architecture with STFT.
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It can be seen from Figure 9 that the ResNet architecture also demonstrates strong
results in predicting concentration and slightly outperforms the results of the VGG archi-
tecture for both metrics. Furthermore, we trained a neural network with the same VGG
architecture detailed in Table 1. However, for the input images, we utilized images obtained
through the Short-Time Fourier Transform (STFT). The target value was also the output
of the baseline Fourier approach without noise. The STFT transform was computed using
a Hann window. The results are depicted in Figure 9 by the green line. As seen from
the figure, this approach performs better than the baseline Fourier-based method but lags
behind methods employing wavelet packet transform. The summarized results for the
investigated models estimating methane concentration are presented in Table 3.

Table 3. Comparison of different convolutional neural network architectures for methane concentra-
tion estimation with a PSNR of 5.47 dB for a concentration of 1.9 ppm.

Model Concentration 1.9 ppm Concentration 9.7 ppm

Architecture Processing Method MSE, ppm2 MAPE, % MSE, ppm2 MAPE, %

- FFT 6.401 122.3 6.253 20.3
CNN CWT 3.589 93.0 6.538 20.6
VGG STFT 0.031 8.8 0.232 3.8
VGG WPT 0.013 5.5 0.137 3.0

ResNet WPT 0.011 5.4 0.098 2.6

6. Conclusions

In this study, we introduced a novel methodology that combines wavelet analysis
and advanced neural network architectures to enhance the accuracy and sensitivity of
photoacoustic gas sensors. The integration of the wavelet analysis proves instrumental
in separating gas signals from noisy data, while the utilization of neural networks with
advanced architectures enables the system to identify intricate relationships between data
patterns and gas concentrations. The experimental validation of our proposed approach
focused on methane concentration measurements, presenting a compelling comparison
with the conventional Fourier-based concentration-estimation method. We examined
widely accepted convolutional neural network architectures such as VGG and ResNet. The
results demonstrate the superior performance of our approach, emphasizing its potential
to deliver more precise and reliable outcomes in gas detection. According to these results
(Table 3), the ResNet architecture with the wavelet packet transform as the input exhibits
an almost three-orders-of-magnitude improvement in the MSE for methane concentration
estimation at 1.9 ppm compared to the baseline Fourier approach. Significant improvements
are also observed in concentration estimation at 9.7 ppm. It is noteworthy that each of the
convolutional neural network architectures show enhanced accuracy in estimating low
concentrations under high noise conditions.
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PAGS Photoacoustic gas sensor
PAD Photoacoustic detector
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PPLN Fan-out periodically poled lithium niobate crystal
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ADC Analog-to-digital converter
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FFT Fast Fourier Transform
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