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Abstract: Due to its prevalence in nature and its particular properties, silicon is one of the most
popular materials in various industries. Currently, metallurgical silicon is obtained by carbothermal
reduction of quartz, which is then subjected to hydrochlorination and multiple chlorination in order
to obtain solar silicon. This mini-review provides a brief analysis of alternative methods for obtaining
silicon by electrolysis of molten salts. The review covers factors determining the choice of composition
of molten salts, typical silicon precipitates obtained by electrolysis of molten salts, assessment of
the possibility of using electrolytic silicon in microelectronics, representative test results for the
use of electrolytic silicon in the composition of lithium-ion current sources, and representative test
results for the use of electrolytic silicon for solar energy conversion. This paper concludes by noting
the tasks that need to be solved for the practical implementation of methods for the electrolytic
production of silicon, for the development of new devices and materials for energy distribution and
microelectronic application.
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1. Introduction

In the context of a global increase in energy consumption and a depletion in energy
resources, increasing attention is being paid to the development of new materials and
devices to increase the share of renewable energy use [1–3]. In turn, the tasks facing
microelectronics include the development of new multilayer and hybrid semiconductor
structures, as well as the reduction of costs for the synthesis of semiconductor materials.

Silicon-based materials are especially in demand for the creation of microelectronics
and distributed energy devices. In particular, the possibility of using silicon and silicon-
based materials in solar energy conversion devices and energy-storage devices is being
actively studied [4,5]. Silicon-based materials remain the basis of photoconverters, and the
replacement of graphite anodes with silicon can increase the capacity of lithium-ion current
sources by an order of magnitude (theoretically, from 372 to 4200 mAh g−1 [4,6]). The
efficiency of such devices can be ensured by using high-purity micro-sized silicon films with
a controlled content of micro-impurities (photoelements) or nano-sized and submicron sili-
con particles (lithium-ion current sources). Nano-sized clusters of high-purity silicon with
a controlled content of micro-impurities are in demand in microelectronics [7,8]. Silicon
is also widely used in metallurgy (steel deoxidation, synthesis of alloys) and organosil-
icon chemistry (oils, silicones, etc.), for the manufacture of laser devices, and for the
production of hydrogen (ferrosilicon) [9]. Silicides of various metals can also play an
important role [10].

Currently, metallurgical silicon is obtained by carbothermal reduction of quartz at a
temperature of about 1800 ◦C [11], while the production of high-purity silicon is based on
the Siemens process [12]. The Siemens process is characterized by its multistage nature,
relatively high energy and material costs, and relative complexity of execution. However,
there are no alternative technologies yet available for industrial pilot implementation.
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Since the 1970s, methods have been actively developed to obtain high-purity sil-
icon, including the electrodeposition of silicon from molten salts. These methods are
relatively simple and cheap, since they make it possible to obtain silicon in one to three
stages [13–16]. Furthermore, silicon can be obtained directly from quartz. Moreover, the
purity and morphology of obtained silicon allows its use in photoconverters (thin films)
and metal-ion current sources (nano- and micro-sized fibers, needles, tubes) without its ad-
ditional recrystallization [17]. The need for additional purification of electrolytic silicon by
recrystallization methods in order to achieve semiconductor purity remains questionable.
Recently, methods have been proposed for obtaining silicon and silicon-based materials
by electrodeposition from ionic liquids and organic electrolytes [18,19]. These methods
are of interest, although their industrial implementation will require large volumes of
expensive reagents.

It should also be noted that silicon can be obtained by electrolysis of electrolytes
without hydrogen. Furthermore, silica films and inorganic silicon-containing clusters can
be obtained by electrolysis of aqueous solutions [20,21]. Electrolysis with a milder potential
allows “electro-click” hybrid films [22], and electropolymerization allows developers to
obtain organic films [23].

Figure 1 shows schematic diagrams of the implementation of methods for obtaining
silicon via the Siemens process and by electrodeposition from molten salts. In both cases,
silicon can be obtained from quartz, while the Siemens process includes several energy-
and material-intensive operations. From the illustrated scheme, it can be seen that the
electrolytic production of silicon can be carried out in one to three stages, and the application
range of silicon is broad, including thin films, ultra-sized fibers, and nuclei, which, after
separation of electrolyte residues, can be used in electrochemical devices. In the Siemens
process, relatively large micro-sized dendrites of polycrystalline silicon are obtained, which
cannot be directly used in energy conversion or storage devices.
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Both methods (Siemens process and electrolysis) provide polycrystalline silicon, which
can be recrystallized into a monocrystalline phase. Meanwhile, epitaxial deposits on
different substrates can be obtained by electrolysis. Obtaining monocrystalline silicon is
characterized by higher cost and a large volume of recycled silicon, but this silicon is slightly
superior to polycrystalline silicon in terms of the efficiency of solar energy conversation.
Polycrystalline silicon is cheaper, and the imperfection of its macrostructure does not
prevent it from being utilized to convert solar energy. There are currently many works
aimed at sensibilization of the silicon surface [24].

In the present review, a brief comparative analysis of modern methods of silicon
electrodeposition is presented, and the results and prospects for the use of electrodeposited
silicon in semiconductor devices, energy conversion, and storage devices are analyzed. As
can be seen from the diagram in Figure 2 [25], the most popular applications of silicon
remain solar energy and semiconductor materials, while the development of lithium-ion
current sources with Si-based anodes has only recently gained popularity.
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Figure 2. Analysis of sources of scientific information on different areas of silicon use [25].

2. Molten Salts for Silicon Electrodeposition
2.1. Choice of the Molten Salt

The efficiency of silicon production by electrolysis of molten salts can be achieved
with an optimal combination of electrolyte composition and electrolysis parameters. In
the general case, the production of silicon by electrolysis of molten salts involves several
operations, including purification of the initial reagents from impurities, electrodeposition,
and separation of the silicon deposits from salt residues. The parameters of these operations
affect the composition and morphology of silicon deposits, as well as the efficiency of the
process as a whole. In this regard, the following factors should be taken into account when
choosing molten salt and electrolysis parameters:

- purity and low chemical activity of salts in relation to the materials of the electrolyzer,
and the possibility of their purification;

- stability of the concentration and composition of silicon-containing electroactive ions,
which can be ensured by the high complexing ability of silicon ions;

- stability of elemental silicon in melts with Si4+ ions;
- rate of silicon electrodeposition, provided by a consistently high concentration of

electroactive silicon ions, in consideration of the laws of their electroreduction;
- high solubility of salts in aqueous solutions or high vapor pressure of salts during

high-temperature distillation.

Simultaneous observance of all these factors is practically impossible, and as a result
the effectiveness of the use of certain compositions of molten salts must be
tested empirically.
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2.2. Basics of the Silicon Electrodeposition

In the available works, attention was mainly focused only on the study of the kinetics
of the electroreduction of silicon-containing electroactive ions, as well as on determining
the parameters of silicon electrodeposition with an expected morphology. Silicon elec-
trodeposition includes the electroreduction of silicon-containing ions at the cathode in one
or more electrode steps, depending on the melt composition and electrolysis parameters
according to the overall reaction (1):

Si4+ + 4e = Si0 (1)

The presence of a side reaction of disproportionation in melts has been reported (2):

Si0 + Si4+ = 2Si2+ (2)

Reaction (2) leads to a decrease in the cathodic current efficiency and a change in
the kinetic parameters of silicon electrodeposition. To date, the regularities of silicon
electrodeposition have been well studied, and the fundamental possibility of production
of silicon with controlled morphology has been reported by varying such parameters
as current density, cathode potential, melt composition, and electrolysis mode (pulse,
reverse, etc.). Despite the positive results, that work has not been brought to practical
implementation. Comparatively neglected issues include the cathodic current efficiency of
silicon, the influence of the semiconductor nature of silicon, silicon purity, and methods of
post-treatment.

2.3. Results of the Silicon Electrodeposition

To date, the greatest attention has been paid to the targeted production of silicon
for energy conversion and storage devices, mainly from molten CaCl2–(NaCl)–CaO–SiO2
(CaSiO3) [26–28] and KF–KCl–K2SiF6 [29–31] with operating temperatures of 800–860
and 700–750 ◦C, respectively (see Table 1). The disadvantages of chloride–oxide melt are
its relatively high temperature, low rates of silicon electrodeposition, and the presence
of oxides in the melt. The oxides are inevitably included in the pores of the deposit,
and probably degrade the performance characteristics of silicon when used in semicon-
ductor devices, energy conversion, or storage devices. In turn, the disadvantage of the
fluoride–chloride system is its relatively high chemical activity, which leads to corrosion
of the structural materials of the reactor and complicates the production of high-purity
silicon. Despite disadvantages, researchers [26–31] have reported silicon deposits obtained
by electrolysis of CaCl2–CaO and KF–KCl-based melts in the form of fibers (from 30 to
500 nm), dendrites, thin films, and other morphologies. The declared purity of elec-
trolytically obtained silicon reaches 99.99 wt% or more if the impurities of the electrolyte
components are not taken into account [28].

We carried out a series of experiments on silicon electrodeposition from low-fluoride
systems based on mixtures of KCl, CsCl, and LiCl with additions of K2SiF6 and SiO2 in
the temperature range 350 to 790 ◦C [32–36]. Due to the possibility of deep purification of
chlorides by zone recrystallization [37], the proposed systems are suitable for use to obtain
high-purity silicon. The disadvantage of low-fluoride systems is the lower complexing
capacity of silicon, which can be improved by increasing the proportion of CsCl in the melt.
As a result, we also obtained silicon deposits in the form of thin (1–5 µm) films, as well as
submicron (50 to 300 nm diameter) fibers, filaments, and tubes.
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Table 1. Parameters and results of silicon electrodeposition from molten salts.

Electrolyte
[Refs]

Si
Source

T (◦C),
Current
Density

(A cm−2)

Results Images

Mixtures of
KF, NaF, LiF,
BaF2, CaF2

[13–15]

Si,
K2SiF6,
SiO2

550–1500,
0.05–1

Compact deposits
up to 1 mm,
micro-sized
dendrites,

fibers
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The continuous appearance of new works devoted to the development of meth-
ods for producing silicon and silicon-based materials indicates the presence of shortcom-
ings in the existing methods and the relevance of searching for new energy-efficient and
resource-saving methods for producing silicon. In particular, these concerns relate to works
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aimed at the synthesis of silicon from iodide melts [38,39], organic electrolytes, and ionic
liquids [16,17,40].

Table 1 shows the parameters and typical results of silicon electrodeposition from
molten salts. As noted in Figure 1, ultrafine silicon fibers are of interest for the development
of lithium-ion current sources, while thin silicon films are required for solar energy conver-
sion and for current sources. The most representative results of the use of electrodeposited
silicon from these melts are summarized in the following sections. Table 1 shows only
the results of studying the obtained silicon by SEM (sizes, morphology), although XRD
(lattice parameters) and ICP MS (elemental composition) methods can also be used for this
purpose. Less commonly used methods are TEM (sizes), XPS (energy characteristics of
Si-Si bonds), Raman spectroscopy (characteristics of Si-Si bonds), nuclear microanalysis
(micro-impurities, isotopes), etc.

3. Electrolytic Silicon for Microelectronics

The first proposals for obtaining silicon by electrolytic methods were presented in
terms of its use in semiconductor materials and microelectronics. However, at present there
are no targeted works describing a full cycle of research on the production of silicon and its
application in semiconductor materials, although a number of works have made statements
about the possibility of electrodeposition of silicon of the n-, p-, or mixed p-n-type [26]. In
the current author’s opinion, the absence of such works is caused by the complexity of
the experimental choice for the operation to attain additional purification of silicon from
impurities and electrolyte residues.

4. Electrolytic Silicon for Lithium-Ion Current Sources

The operability of a lithium-ion current source with silicon-based anodes can be
ensured by using silicon with a developed surface, as well as by thin silicon films [41].

During electrolysis of a CaCl2–CaO–SiO2 melt, nanosized fibers, particles, wires, and
tubes were obtained on a nickel cathode, depending on the electrolysis potential, at a
cathode current density of 80–100 mA cm−2 [4]. The obtained silicon tubes had the highest
specific surface area (99.9 m2 g−1) and the best lithiation–delithiation characteristics (specific
capacity after 1000 cycles: 3044 mAh g−1 at a current of 0.2 A g−1, and 1033 mAh g−1 at
1 A g−1). Other studies have also reported the production of nanosized silicon deposits
with discharge capacity from 500 to 3500 mAh g−1, depending on their morphology
and purity.

The results of tests involving a lithium-ion current source of silicon electrodeposited
from KF–KCl–K2SiF6-based melts are extremely limited. In particular, nanosized silicon
particles (25–50 nm) and fibers (diameter 150–250 nm, length 1–4 µm) with a specific surface
area of 14–15 m2 g−1 were obtained [31] at a temperature of 700◦C and a cathode current
density of 10–20 mA cm−2. The principal possibility of lithiation or delithiation of the
obtained silicon was demonstrated.

As a result of the electrolysis of KCl–K2SiF6, KCl–K2SiF6–SiO2, KCl–CsCl–K2SiF6, and
LiCl–KCl–CsCl–K2SiF6 melts, we obtained silicon deposits of various morphologies by
varying the electrolysis parameters [32–36]. In particular, at a cathode current density of
20 to 150 mA cm−2, silicon fibers (diameter 100–700 nm), tubes, and needles (diameter
100–400 nm) were obtained, the specific capacity of which after 15 cycles varied from 200 to
850 mAh g−1.

Along with pure silicon, Si/C mixtures and composites [42,43], which can also be
obtained by electrolysis of molten salts, are considered promising anode materials for
lithium-ion current sources.

In general, a significant improvement in the energy characteristics of lithium-ion
current sources can be obtained by replacing graphite anodes with silicon-basic ones.
However, certain important technical issues remain unresolved, and it is necessary to
address these in order for such anodes to have practical implementation.
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5. Electrolytic Silicon in Solar Cells

The most demanded photoconverters are continuous silicon films with a thickness of
10–20 µm and a given content of donor micro-impurities.

In [5], the effects were studied of substrate material (Ag, Mo, C), electrodeposition
potential, and particle size distribution of SiO2 on the morphology of silicon deposits
obtained by electrolysis of a CaCl2–CaO–SiO2 melt at a temperature of 855 ◦C. A con-
tinuous photosensitive silicon film 180 µm thick was obtained on graphite at the lowest
cathodic overvoltage. The authors noted the need for periodic purification of the melt from
unwanted impurities, by purification electrolysis.

In [44], under conditions of potentiostatic electrolysis of a CaCl2–CaO–SiO2 melt at
850 ◦C, silicon films 20–25 µm thick were obtained with p-, n-, and mixed p-n-conductivity.
The photosensitivity of the obtained silicon films was demonstrated as being 3.1% more
effective than commercial analogues. The same authors obtained silicon films from 10 to
60 µm thick, with n-conductivity, by electrolysis of a KCl–KF–K2SiF6 melt on graphite
at a temperature of 650 ◦C. To increase the number of electrocrystallization centers,
0.020–0.035 wt% tin was added to the melt [45]. In the opinion of the authors, the presence
of up to 0.35 wt% tin in the obtained silicon films should not affect their photosensitivity,
which was up to 55% of commercial samples.

In [46], the effects of cathode current density, substrate material, source (K2SiF6,
SiCl4), and silicon ion concentration in the KF–KCl melt on the morphology of electrolytic
silicon deposits were studied for a temperature of 750 ◦C. The optimal conditions for
obtaining smoothed silicon films with a thickness of 20 to 60 µm were determined and their
photosensitivity were demonstrated.

Several works have noted the possibility of obtaining continuous silicon films with
purity of 99.9–99.99 wt%, doped with impurities such as B, Al, etc. We also carried out
preliminary studies that showed the possibility of electrodeposition of photosensitive silicon
films with a thickness of 1 µm, during electrolysis of LiCl–KCl–CsCl–K2SiF6 melts [36].

6. Conclusions

It follows from the above analysis that silicon electrodeposition is primarily of interest
for the creation of new energy-conversion and storage devices with improved performance.
Less attention has been paid to the electrodeposition of silicon to meet the requirements
of microelectronics.

The most actively studied methods of silicon electrodeposition include the electrolysis
of CaCl2–(NaCl)–CaO–SiO2 (CaSiO3) and KF–KCl–K2SiF6 melts with operating tempera-
tures of 800–860 and 700–750 ◦C. Silicon deposits of various sizes and morphologies have
been obtained, the possibility of doping silicon with micro impurities for use in energy
conversion and storage devices has been shown. Alongside this, an active search is under-
way for new methods for the electrodeposition of silicon and silicon-based materials from
molten salts, ionic liquids, and organic electrolytes.

For the practical implementation of the developed methods of silicon electrodepo-
sition, as well as for the creation of new materials and devices for energy distribution
and microelectronics, it is necessary to address more actively the issues related to the
purification of electrodeposited silicon from electrolyte residues, and directly to consider
the design of silicon-based materials and devices.
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