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Abstract: Plants have a remarkable position among renewable materials because of their abundance,
and nearly thousands of tons are consumed worldwide every day. Most unexploited plants and
agricultural waste can be a real potential resource system. With increasing environmental awareness
and the growing importance of friendly agricultural waste, crops and fruit waste can be used for
efficient conversion into bio-fertilizers, biocarbons, bio-polymers, biosensors and bio-fibers. Global
challenges based on limited natural resources and fossil energy reserves simulated keen interest
in the development of various electrochemical systems inspired by food and plant scraps, which
aid in curbing pollution. The successful adoption of a renewable energy roadmap is dependent on
the availability of a cheaper means of storage. In order to cut down the cost of storage units, an
improvement on energy storage devices having better stability, power, and energy density with low
post-maintenance cost is the vital key. Although food and plant scraps have a huge need for energy
storage, it has been extended to various sensing platform fabrications, which are eco-friendly and
comparable to organic molecule-based sensors. Current research proclivity has witnessed a huge
surge in the development of phyto-chemical-based sensors. The state-of-the-art progresses on the
subsequent use of plant-waste systems as nano-engineered electrochemical platforms for numerous
environmental science and renewable energy applications. Moreover, the relevant rationale behind
the use of waste in a well-developed, sustainable future device is also presented in this review.

Keywords: food waste; nano-engineered electrochemical platform; sustainable future; plant scrap
inspired; pollution cure

1. Introduction

Waste is an unwanted substance generated after the utilization of a valuable part
of the matter or the rejected substance, which is considered invaluable, imperfect, and
decayed with no possible usage. Often, due to insufficient processing technology or
storage units, enormous quantities of agri-produce, especially fruits and vegetables, become
wasted [1]. The agricultural waste consists of high carbohydrate content amongst additional
multifunctional groups and organic components. Food waste is quite a budding area of
research, especially for the generation of highly valuable products, including nano-sized
substances. Environmentally friendly nano-systems manufactured from waste obtained
from farm waste can serve as an alternative media for clean manufacturing technology in
the near future.

Another important research arena is the environmental remediation in extension to
the waste systems. Our valuable surroundings are being depleted due to over-exploitation
of the environment by human invasions. Environmental contamination is an apprehensive
decrease in resources, living species extinction, and ozone layer depletion, and these are
some of the most important reasons that led to increased attention on green chemistry. In
general, the most crucial principle of green chemistry is the use of renewable resources for
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any chemical reaction. The precise use of renewable energy is one of the most effective
methods that lead to a significant reduction in environmental pollution. Various production
methods of renewable strategies can guarantee the increasing human need for energy in
the future. Hence, in this review, we will be agglomerating the major research topics
for a sustainable future, i.e., the food waste for sustainable environmental growth and
technological advancement (energy, healthcare, sensors, and materials) with the least effect
on the environment. Figure 1 is illustrated in this respect, wherein food waste has been
extended for various applications such as environmental conservation, energy avenues,
nanoparticle formation, and biochemical sensing of human fluids using non-hazardous
and simple techniques as a sustainable approach.
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Figure 1. Illustration of the plant-generated waste employed for the electrochemical setup opening
opportunities for various applications.

Fruits and vegetables are an important constituent of our diets. They help to keep
the diseases away. Plants or fruits can be subdivided into edible and non-edible compo-
nents, where the non-edible ones are generally termed as waste. These wastes are very
intriguing materials due to unconventional and unique attributes, which are unveiled in
the following review. This can be credited to the presence of antioxidant activity or the
free radical scavenging properties of these beneficial dietaries that help reduce the risk of
various diseases. They protect us from oxidative stress caused by unfavorable external
environments such as drought, injury/accident, virus/micro-organism attack, harmful ra-
diation, etc. This waste consists of important nutrients which could be recycled into useful
materials that could be further reused for different purposes. This recycling of biowaste
could be a potent bio-stimulant fertilizer, consisting of peels, leaves, pseudo stems, and
stalks, for various foods and non-food applications. They can be explored as an alternative
source for macro or micronutrients, livestock feed, natural fibers, and sources of natural
bioactive compounds. Various renewable plant and vegetable waste-generated bio-waste
or biomasses can be employed in the production of bio-carbons that exhibit exceptional
properties. These wastes include coffee waste, vegetable peels (potato [2], mango [3], gar-
lic [4], corn stover, grapefruit [5], banana [6], onion [7], etc.), leaf litter [8], almond shells [9],
willow catkin [10], chitosan, rice straw [11], etc. This waste, apart from being just a waste or
environmental pollutant, can be a remarkable aspect for unprecedented use as an abundant
resource with high saccharide content and also be a bio-based porous carbon [12]. These
eco-friendly carbon-based materials/compounds have exceptional attributes owing to their
superior electrochemical properties of high surface area, and have the potential for use in
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high-performance dye-sensitized solar cells (DssC) and supercapacitors. Their application
can enhance high power conversion efficiency, controllable morphology (honeycomb [12],
graphitic [13], crystalline [4], powdered, and porous carbon foams [14]), and remarkable
cycling stability. Even a paucity of employing these biocarbon-based materials as counter
electrodes can be applied to DssCs. Various reports account for the presence of antioxidant
activity in fruits that are generally more concentrated in peels than in the flesh, representing
a major fruit protection barrier [15,16]. The most promising example is the apple, wherein
the concentration of ascorbate or vitamin C is six times more concentrated in the peel
compared to pulp. In addition, the antioxidant concentration in the peel is very high, a
quantitative indicator of the status of the antioxidant-based defense system of the fruit.

The antioxidant capacity of fruits is usually determined by synthetic radical capture
and spectroscopic monitoring (UV-Vis). A number of high-pressure liquid chromatographic
technique (HPLC) methods have been developed for flavonoid and ascorbic acid determi-
nation in fruit peels. But, these methods are time-consuming and costly to operate. Hence,
electrochemical detection has widespread utilization with minimal sample input and high
selectivity for electroactive species [5]. These techniques are categorized by unfriendly
reagents to the environment, pre-treatment sampling, and long reaction times, paving the
way for the electrochemical index (EI) concept. The EI is based on anodic and cathodic
peak current independently, wherein the current intensity is directly proportional (α) to the
electron transfer rate, which is directly proportional (α) to the electroactive species present.

The presence of various flavonoids, quercetin, natural antioxidants, and polyphenolics
is a huge part of fruit peels. The accumulation of potential health benefits has been discov-
ered in anti-inflammatory, anti-carcinogenic, anti-diabetic, and anti-allergic properties. The
waste generated from the juice industry is a resource that causes environmental pollution.
Moreover, this peel, when added to the soil, helps in the better germination of crops and
enhances soil quality [17]. In this review, we took a holistic approach that compiles the use
of herbivore product function and various applications of these moieties in biomaterial
engineering research, biofuel, and artificial biosensors for a facile, rapid and generic biosen-
sor platform. Meanwhile, their usage in corrosion inhibition, oxidation-reduction reactions,
and preparation of nanoparticles are usually not given many credentials.

2. Different Varieties of Food and Plant Generation Waste and Their Significance

Different plant wastes such as aloe skin [12], mangosteen, orange scrap [18], sapota
waste [19], and papaya peels [20] are available in nature. These plant-generated waste
materials are an important source of soluble and insoluble fibers [21] to fight cholesterol [22],
fight antioxidants [23], and protect the eyesight [24]; other uses include their viability as
a meat tenderizer [25], as a teeth whitener [26], as a polishing agent [27], in skin and
beauty regimes [23] and even for healing psoriasis [28], and as a garden booster to deter
crawling pests [29]. These uses can be attributed to the presence of different metal ions
such as manganese, sodium, calcium, zinc, phosphorous, magnesium, potassium, and folic
acid [21,30]. These are essential for promoting general plant vigor, build-up, and resistance
to pests and diseases, which are necessary to help fruit grow and are involved in regulating
their defense mechanism. Some important routine facts that involve the use of banana
skin for the production of bioethanol using the yeast Saccharomyces cerevisiae were reported
by Gebregers et al. in 2016 [31]. Similarly, in 2020, Bouziz et al. reported on bioethanol
production using date seed cellulosic fraction [32]. Even this has significant effects on
various biological aspects of plants, such as seed germination, growth promoters, etc.

3. Waste-Inspired Electrochemical Applications

Plant waste, vegetable scrap, and fruit skin are a source of environmentally friendly
as well as cost-effective sorbent systems for the removal of many heavy metals like Cu2+,
Pb2+, and methylene blue from aqueous systems [33]. The elimination of contaminants
present in the water bodies due to anthropogenic activities is one global issue [34]. The
Environmental Protection Agency statistics of 2012 demonstrated that ~38 million liters of
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acid sulfate copper were spilled into the Sorona and Bacanuchi Rivers, thus affecting the
water supplied to about 25 thousand residents. Hence, necessary alternatives for the reme-
diation of metal ions in polluted or wastewater cleaning are required. To solve this problem,
functionalized carbon generated using vegetable and fruit waste can be a double benefit,
i.e., it can be advantageous as a cheap bio-sorbent material for the removal of fluoride ions
and copper ions from groundwater. It is a well-established de-fluorinating adsorbent and
almond shell-based electrochemical platform [9,35]. Further, they have been extended as
anti-counterfeiting sensors and ion probes [36–39] for various applications. A non-invasive
electrochemical antioxidant activity measurement technique has been reported to use soft
carbon microelectrodes for apple skin [40], which helps in counterbalancing oxidative stress
when using the scanning electrochemical microscopic technique. In comparison, tradi-
tional techniques such as reflectance [41] and chlorophyll fluorescence spectroscopy [42,43]
affect the concentration as they are UV-sensitive and invasive protocols. Therefore, the
development of simple, unique, and non-destructive sensors to rapidly analyze with high
spatial resolution at a low cost with an onsite antioxidant defense system is attractive for
cultivators and farmers.

4. Bio-Generated Carbon Template/Systems for Energy Storage

Carbons generated after waste combustion/oxidation/pyrolysis, i.e., the black residue
left after biowaste, are thermochemically converted. Thus, carbon sequestration through
biochar can be a very good base for soil, acting as fertilizer, and sequestering carbon has a
mean residence time of about 2000 years [44–47].

Few research organizations have produced biofuels and carbon chemicals (such as
CH4, ethanol, hydrogen-rich syngas, and benzene family derivatives). A recent account
involves the open and closed burning of rice husks, giving different properties of the
synthesis process. Thus, the processing and synthesis method decides the customized
nature of the carbon type. These products can be very suitable based on distinct properties
obtained under various circumstances. The use of rice husks can lead to carbon nano-
materials like biochar, graphene, graphene oxide, carbon nanotubes, and so on. Nanaji
et al. involved jute sticks in the synthesis of a graphene-like nanoporous carbon [48] and
studied its electrochemical properties. Another report accounts for the plasma synthesis of
graphene from mango peels [45].

The reliance of energy utilization on fossil fuels is predicted mainly through variables
like world economics and ecology, i.e., depleting resources and escalating environmental
concerns. In this respect, nanomaterials play a key role, especially in porous carbon-
based systems. These systems have been a major hotspot in the research arena due to
their potential applications (variant characteristics like abundant availability, high surface-
to-volume ratio, porous structure, active sites, economic and long cycle life, etc.). The
involvement of plant/agricultural waste in the production of energy storage or conversion
devices with high-power applications is a novel concept. A hybrid power source comprising
a supercapacitor in parallel configuration with a battery is proposed for short-duration
pulse devices with a high specific power. The superior power density is rooted in their
charge storage mechanism. The primary type of supercapacitor accounts for the electrical
double-layer capacitance, where charges are stored owing to their ions getting adsorbed
at the electrode/electrolyte interface. The second type is pseudo-capacitance reactions,
wherein surface redox reactions account for fast ion insertion and extrusion, triggering
no transition in their phases. But, the major drawback of these graphene-based carbon
nanotubes is in their bulk production and practical implications, which are affected due to
the lack of a simple synthesis process or cost-effective raw material.

On the contrary, biomass waste is the best precursor due to its low cost, high abundance
in waste disposal, and carbon content. A few examples of such systems are cherry stones,
bamboo, candlenut shells, pecan shells, vine shoots, lotus stalks, toddy palms, chicken
feathers, etc. Extensive studies have worked on electrochemical energy storage in the last
few years. Generally, researchers have been working on the incorporation of superior



Electrochem 2023, 4 415

features. Herein, the review article talks about energy systems developed using plant
product skin-inspired carbon systems. The involvement of renewable sources replacing
chemicals not only stops environmental contamination but also helps to decrease the
production cost. Nearly one billion metric tons of fruit scraps are annually produced,
indicating their relevance in human lives. This zero-cost scrap can be employed as a
substitute for hazardous chemicals, as tabulated in Table 1. The use of paste waste has
been studied as a corresponding material for solar cell fabrication. The various attributes of
solar cell comparative analysis based on their open-circuit potential and power conversion
efficiency (i.e., input vs. output) have been tabulated accordingly.

Table 1. Tabulation comparison of various bio-source-derived carbon as a counter electrode for
dye-sensitized solar cells (DssCs). (VOC—open circuit potential; JSC—short circuit current; FF—fill
factor; and PCE %—power conversion efficiency).

S. No. Counter Electrode Derived from BioSource JSC VOC FF PCE % Ref

1. Aloe Peel 14.15 720 0.68 6.92 [12]
2. Coffee Waste 15.09 760 0.72 8.32 [49]
3. Pine Cone Flowers 13.51 710 0.51 4.98 [50]
4. Pumpkin Stem 3.84 611 0.47 2.79 [51]
5. Sunflower Stalk 15.20 670 0.64 6.56 [52]

Highly porous activated carbon can be prepared for the development of symmetric
supercapacitor devices. Various supercapacitor anodes include coffee waste [53] and
rice husk [54], which consist of a high degree of electrochemical stability, robustness of
electrode material, and reversibility. While citrus fruit-derived carbon shows well-defined
electrochemical energy storage reported by various reviewers [55].

The carbonization of coffee waste with various composites is used for electrochemical
energy storage, i.e., nitrogen-doped carbon coffee waste–ZnCl2 [49] via an economically
viable method. At the same time, these systems exhibit high yields with more active sites
and channels for migration and adsorption of electrolyte ions, resulting in superior specific
capacitance values and high energy density features. Figure 2 accounts for the involvement
of easily available waste like papaya fruit peels, cow dung, and jackfruit peels for the
generation of various carbon types. Taer et al. reported seven different types of activated
carbon electrodes using peel waste for various supercapacitors having promising features
of high surface area, and the cost to gain the material is zero [56]. Other distinct varieties of
electrodes for supercapacitor-based devices were made using various plant-scrap waste, for
example, ‘corncob [57], coconut shell fibers [58], sugar cane bagasse [59], oil palm empty
fruit bunches [60], cassava scrap [61]’, exhibiting monolithic systems without adding any
adhesive material. The electrochemical properties of carbon peel wastes are found using
the cyclic voltammetric technique, wherein the voltage and current density relationship
for the samples with various carbonization conditions are measured. The shape of the
I-V curve portraying a square shows almost an ideal shape with higher current density at
relatively low voltage. These data exhibit the process of ion distribution into the meso and
micropores. Lv et al. reported a self-template synthesis of a hierarchical porous carbon
foam-inspired supercapacitor electrode that could accommodate zinc ions via adsorption,
leading to zinc complexes [14].

The scope of nitrogen-doped carbon nanosheets has been shown using easily available
garlic peels as a precursor for the synthesis of a graphene analog synthesized via a cost-
effective/economic method, as shown in Figure 2C’s reprint from [13]. The functionalized
systems exhibited excellent electrochemical properties, i.e., electrochemical performance in
Na/Li cell types. The interesting property of the pores reduces the ion diffusion pathway
and helps in easy electrolyte access, thereby increasing the ion uptake. The as-prepared
systems had a defined capacity retention comparable to the reported anode energy storage
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materials with a high energy density and long cycle life [13]. Such analogous systems are
accounted for in Table 2.

Table 2. Accounts for various renewable plant-based energy devices with their characteristics.

S. No. Name of Waste Specific Surface Area Capacitance Retention Current Density Reference

1. Aloe Peel 1286 m2 g−1 91% 30 A g−1 [12]
2. Banana Peel 1362 m2 g−1 100% 5 A g−1 [6]
3. Cassava Peel 398 m2 g−1 66% - [61]
4. Coconut Husk 1000 m2 g−1 - 0.05 A g−1 [58]
5. Garlic Peel 1710 m2 g−1 95% 1 A g−1 [13]
6. Melo Fruit Peel 721 m2 g−1 91% 1 A g−1 [62]
7. Pomelo Peel 807 m2 g−1 100% 5 A g−1 [63]
8. Rice Husk 1768 m2 g−1 95% 0.05 A g−1 [54]
9. Shaddok Peel 2475 m2 g−1 - 0.5 A g−1 [64]

10. Willow Catkin 645 92% 0.1 A g−1 [10]
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5. Mapping of Biomass Generation

The procedure for these systems includes a one-step pyrolysis and hydrothermal
carbonization or two-step chemical activation carbonization. The one-step carbonization
procedure leads to high decomposition rates but low carbon yields and heterogeneous car-
bon pores. On the contrary, hydrothermal carbonization leads to increased yield, although
some constraints for the low specific surface area have been reported by Liu et al. and Hu
et al. [66,67]. The as-prepared carbon functionalized system was prepared by employing a
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straightforward hydrothermal carbonization combining alkali activation methods in order
to increase the yield of carbon with rich porosity attributes. This is based on dehydration
and decarboxylation for the hydrothermal carbonization stage, followed by the reaction of
alkali activator and carbon that occurs in the pyrolytic activation stage. Biochar is widely
recognized as a multifunctional material that can develop high-performance carbon mate-
rials for both energy and environmental applications, which remains a challenge. These
methods are displayed in Figure 3, reprinted from [57,58]. Figure 3 involves the fabrication
of a supercapacitor using a coconut husk and corn cob, which can be a new approach
towards the use of biodegradable waste systems as an alternative to synthetic organic
molecules that require expertise with sophisticated instrumentation and chemical systems.
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Aloe peel-derived 3D honeycomb-like porous carbon was developed using hydrother-
mal carbonization in an interesting report. These carbon-based systems exhibit a large sur-
face area that helps in building superior properties for dye-sensitized solar cells (DssCs) [12].
Furthermore, the electrochemical–catalytic performance is based on the two characteristics
of increase in current density ip and peak-to-peak separation ∆Ep, which corresponds to
the charge transfer process at the electrolyte–CE interface and Nernst ion diffusion in the
electrolyte solution followed by an I3

- reduction comparison.
After the basic preparation of carbon-based systems, their activation is important,

which is procured by various physical and chemical activation processes. The physical
activation process involves the removal of a large quantity of internal carbon mass with
well-built carbon. At the same time, the chemical activation involves methods such as
dehydrating agents that affect the pyrolytic decomposition, resulting in the materialization
of tar with increased carbon yield [68–70]. Table 3 is a comparative table for a Pomelo-
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based carbon system used for supercapacitor application, showing different properties and
characteristics due to the method of preparation.

Table 3. Accounts for various Pomelo fruit peel-generated carbon systems, their constraints such
as potential window of operation, specific surface area, current density, and cycle stability, and its
deficiency and specific capacitance.

Fruit
Peel

Specific
Surface Area

(m2 g−1)

Potential
Window

Specific
Capacitance

(F g−1)

Current Density
(A g−1)

Stability
Cycles

(number)

Cycle
Deficiency% Ref

Pomelo

999 −1 V to 0 V 338 1 5000 4 [71]
38.44 −1 V to 0 V 222.6 0.5 5000 3 [72]
2167 0 V to 3 V 1115 0.2 2000 9 [73]
830 −1 V to 0 V 321.7 1 6000 6.6 [64]

1265 −0.1 V to 0.9 V 550 0.2 10000 6.3 [74]

Furthermore, the pores cause an increase in surface area and better volume of the acti-
vated biomass carbon. These pores enhance the contact between the electrode–electrolyte
interface and shorten the ion diffusion pathways, delivering the minimum diffusive resis-
tance. Qian et al. explained the importance of temperature for the development of pores,
as higher heating temperature leads to the collapse of pores. Thus, higher surface area and
narrower pore size distribution are advantageous for charge transfer, as reported by Qian
et al. in 2014 [75]. The activation process was carried out using phosphoric acid treatment
followed by either calcination or roasting.

6. Phyto-Nutrient-Based Sensing Platform

The detection of biologically active molecules is of critical importance from a biomed-
ical, environmental, and security point of view. Such detection can be carried out by
bioanalytical protocols. Sensors consist of two major parts, namely, the receptor and the
transducer element. The receptor is generally an organic or inorganic material having
specific interaction with one analyte or a group of analytes. In the case of a biosensor, the
receptor/recognition element is a biomolecule. In comparison, the transducer element is
the one that converts the chemical information to a measurable signal.

Biosensing is of paramount importance for improving the quality of human life. Biosen-
sors are of great help in detecting a wide range of compounds sensitively and selectively,
with applications in security, healthcare for point-of-care prototypes, and environmental
safety [76–78]. Figure 4 shows a grapefruit-based electrochemical biosensor for copper
detection, as reported by Romero et al. [79].

The use of a bio-template-based carbon electrode system is quite efficient and econom-
ical and has vivid environmental applications such as capturing carbon dioxide, sensing
platforms, and a lot more [80]. The use of agro-industrial waste helps in obtaining a synergy
for the development of sensing signals/response output. An interesting mobile device
was reported by Romero-Caro and co-workers for the detection of copper ions using a
carbon paste electrode prepared using grapefruit peels as a bio-template platform involv-
ing a differential pulse voltammetric approach. This electro-analytical platform offers the
advantages of high sensitivity and easy operation, with portability options. To gauge the
improvement in performance, the as-prepared platform of the assay was validated.
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7. Advantages of These Eco-Friendly Alternatives

Agricultural waste and byproducts present problems for disposal and the degrading
odd odor disliked by all. These wastes do not have much utility at present and have been
classified as pollutants to the environment. Decreasing the amount of waste pollution from
the surrounding is the major advantage of these systems.

The skin, peel, or scraps can be a potent eco-friendly catalyst system for biodiesel
synthesis, as reported by Etim et al. in 2018 [82]. These systems have also increased the
durability of a new generation for the evolution of electronic essentials.

The prominent use of renewable and facile materials in various chemical industries is
not just due to decreased cost, but because it also leads to a decrease in environmental pollu-
tion and the waste becoming harmless. Thus, the scope for applications in material science
for removing heavy metals and organic compounds from aqueous solutions and oxygen
reduction reaction catalysts for reduction reactions is widened, as they are a sustainable,
facile, and economical source with which to fabricate appropriate resources.

Waste-generated carbon-based systems have been explored in distinct domains and
have shown a well-defined usage in the arenas of sensor and memory device fabrica-
tion [36].

8. Downside of Using These Systems

The presence of metal impurities in different peels is not always conductive enough,
hence leading to the formation of disordered pore structures; therefore, endogenous min-
erals which could have an inhibitory effect should be kept in mind before initiating any
applications and carbonization processes [64].

Usually, many metal oxides and salts consisting of ions such as K, Na, Ca, Mg, etc.,
exist inside the biomass and contribute to the impact on biomass pyrolysis. Hence, they
help in the formation of coke and gas products, which are a pollutant, while it reduces the
stability of the carbon skeleton [82].

The presence of metal ions in biomass-derived carbon can interfere with its application
and can sometimes limit its potential functions, as in the study by Han and colleagues in
2021, where the garlic peel was demineralized [4].

Another constraint is the choice of carbonization temperature, as carbon is prone to
collapse at higher temperatures and cannot form subsequent pores, resulting in a rapid
decrease in the specific surface area of pores [67].

The most challenging part lies in the designing of specific and economical materials
involving electrodes that help to improve accuracy and precision and ensure selectivity.

9. Conclusions and Future Prospects

The peel waste-inspired electrochemical platforms are abundant, renewable, inexpen-
sive, and environmentally benign in comparison with artificial templates and precursors.
The results of the review article provide a new path and blueprint for designing much more
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stable electrochemical capacitors using an environmental synthesis route and less toxic
electrode and electrolyte media. In addition, peels and scraps are low-cost and environmen-
tally friendly, and appropriate electrochemical applications are crucial and economically
justified. Few of the other eco-friendly green methods for the synthesis of mesoporous
carbon having good electrical conductivity, mechanical stability, and larger surface area,
economic output, and density can be carried out using precursors such as petroleum, coke
peanut shells, juglone, indanthrone blue dye, etc.

Nevertheless, in order to consider this practice as a green and sustainable process,
some significant points should be kept into consideration about the reuse of waste prod-
ucts, recycling of exhausted systems, and use of non-synthetic and environmental substi-
tutes. Furthermore, the suitability and feasibility of utilizing these byproducts are future
prospects, and directing them as sources of natural bioactive compounds is quite a chal-
lenging task. Moreover, the byproducts obtained from the agriculture and food processing
industries can be explored in the near future as promising platforms. This is of pivotal
importance in maintaining environmental harmony.
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