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Abstract: At present, direct carbon fuel cells constitute an emerging energy technology that electro-
chemically converts solid carbon to electricity with high efficiency. The recent trend of DCFCs fueled
with biochar from biomass carbonization as green fuel has reinforced the environmental benefits
of DCFCs as a clean and sustainable technology. However, there remain new challenges related
to some complex unknown kinetic parameters, X = (αa,αc,σg, i0,a, i0,c, ilO2

, ilCO2,c , ilCO2,a , ilCO ), of the
electrochemical conversion of biochar in DCFCs and there is a need for intelligent techniques for
prediction and optimization, refering to the available experimental data. The differential evolution
(DE) algorithm, which ranked as one of the top performers in optimization competitions with com-
petitive accuracy and convergence speed, was used here for providing the optimized values of these
parameters by minimizing the root mean squared errors (RMSE). The proposed technique was then
applied to DCFCs fueled by activated pure carbon (APC) using CO2 and CO/CO2 electrochemical
models with RMSE around 10−2 and 10−3, respectively. Then, the CO/CO2 model was applied to a
DCFC fueled with almond shell biochar (ASB), which displayed a slight increase in RMSE (of the
order of 10−2) due to the complex porous structure of ASB and the content of additional chemical
elements that affect the electrochemistry of the DCFC and are not considered in the model.

Keywords: direct carbon fuel cell (DCFC); biochar; electrochemical parameters; artificial intelligence;
differential evolution (DE) algorithm; prediction; optimization; experimental validation

1. Introduction

Across the world, extensive research and substantial investments in renewable energies
have been undertaken aiming to secure sustainable sources of energy, effectively tackle
the pressing issues of global warming and uphold a high-quality environment for future
generations [1]. In this context, biomass stands out as the most prevalent and abundant
renewable energy source. Unlike fossil fuels, biomass does not contribute to the greenhouse
effect due to its reliance on the natural carbon cycle. This makes it a promising alternative
to mitigate climate change impacts. Thanks to its carbon-rich nature [2], biomass and
biochar produced from biomass carbonization have been extensively researched for their
potential use in direct carbon fuel cells (DCFCs) to produce sustainable electricity [3–6].
Indeed, these cells directly convert the chemical energy of carbonous fuel into green
electricity with high efficiency [7–9]. DCFCs can be categorized on the basis of their
electrolyte type, such as molten hydroxide, molten carbonate and oxygen/carbon dioxide
ions conducting ceramic. Additionally, various sub-categories of DCFCs exist, offering
versatility through different anode materials, anode chamber designs and fuel delivery
methods [7]. The implementation of DCFCs provides several advantages over conventional
fuel cells and power generation technologies. These benefits include high net efficiency
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approaching 70%, the potential for almost sequestration-ready CO2 emissions without
significant additional costs or energy losses for capture and the utilization of low-cost
fuel sources [9]. Elleuch et al. [10] conducted comprehensive research on DCFCs focused
on CO2 and CO/CO2 production. These authors successfully developed and validated
an analytical model for CO2-producing fuel cells at 923 K. Additionally, they explored
CO/CO2 DCFC behavior characteristics under different operating temperatures (923 K
and 1023 K). The investigation also encompassed the evaluation of the CO2/O2 ratio and
cathode pressure’s influence on the system’s performance. Their findings indicated that
higher temperatures contributed to enhancing the system performance. Furthermore, in
separate studies, Elleuch et al. [5,6] explored the use of biochar as fuel for DCFCs across
various temperature settings. They particularly examined the production of CO and CO2
from almond shell biochar at the anode side and evaluated the cell’s power and voltage
performance under different operating conditions, such as temperature variations and
the utilization of activated biochar. The available experimental data showed good DCFC
performance with ASB as fuel but it is difficult to analyze DCFCs’ real-time behavior
due to their complex and hybrid material composition, non-linear features, substantial
hysteresis behavior and insufficient datasets, making it hard to optimize and control its
several unknown electrochemical parameters, particularly when fueled with ASB.

Indeed, there are several gaps in the knowledge regarding electrochemical conversion
mechanisms of biochar and the transfer phenomena in the complex microstructure of the
different DCFC zones, knowing that realistic implementation remains a challenge.

This challenge can be overcome by using AI algorithms for the resolution of such
multivariable complex nonlinear problems, allowing for the prediction and optimization of
these key operating parameters of DCFCs using the available experimental data [5,6,10].

Indeed, nowadays, AI algorithms are increasingly used in fuel cell applications as
predictive models, as they are reliable and efficient tools for the optimization of fuel
cell design and operating parameters. Artificial neural networks (ANN), support vector
machines (SVM) and random forests (RF) have been elaborated on and applied in fuel
cells performance prediction and optimization. The review of Su et al. [11] showed that
machine learning (ML) algorithms can be successfully used to predict the performance,
fault diagnosis and service life of fuel cells. ML can also be used with high accuracy in
solving nonlinear problems. They combined optimization algorithms with ML models and
carried out the optimal design and operating conditions of proton exchange membranes
(PEMFCs) and solid oxide (SOFC) fuel cells to achieve multi-optimization objectives with
good accuracy.

Abdollahfard et al. [12] used microbial fuel cell (MFC) datasets to make models using
three key parameters (DS, Pt and Aeration) as inputs and power density and/or chemical
oxygen demand (COD) removal as outputs. Random forest regression (RG) and gradient
boost regression tree (GBRT) algorithms were used to build the MFC machine learning
model for the prediction of power density and COD removal. They found the optimal input
parameters that maximize power density or COD removal with high accuracy through
models using particle swarm optimization.

Kishore et al. [13] have shown great promise for AI algorithms in providing accurate
diagnoses of fuel cells through rapid data collection. These authors focused on the following
common software models: random forest (RF), genetic algorithm (GA), artificial neural
network (ANN), particle swarm optimization (PSO), extreme learning machine (ELM) and
support vector machine (SVM), in order to conduct a proper and dynamic analysis of fuel
cells. According to these authors, these methods are not only popular and useful tools
for simulating the nature of fuel cells system, but they are also suitable for optimizing the
operational parameters needed for an ideal fuel cell device.

The recent literature [14–20] has shown that using metaheuristic-based techniques
can be so useful for solving such complex nonlinear problems. Indeed, metaheuristics
are computational intelligence paradigms used especially for the sophisticated solving of
optimization problems. They are powerful problem-solving approaches that offer effective
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and flexible solutions to complex optimization problems. Metaheuristics are unlike exact
algorithms that struggle with large-scale, real-world challenges; metaheuristics excel in
finding near-optimal solutions within reasonable time frames. Their strength lies in their
ability to explore vast solution spaces and escape local optima, making them highly adapt-
able and applicable to a wide range of problems. With minimal problem-specific knowledge
required, metaheuristics are easy to implement and can be tailored to various domains.
Different metaheuristics were used in the field of renewable energy such as PSO [14], artifi-
cial bee colony (ABC) [15], whale optimization algorithms (WOA) [16], genetic algorithm
(GA) [17] and ant colony optimization (ACO) [18]. Azar et al. [19] used the Battle Royale
Optimization Algorithm (DBRA) to effectively identify the undetermined parameters in
solid oxide fuel cell models. Additionally, they validated the model’s accuracy by compar-
ing it with experimental data for voltage and power under various pressure conditions.
Mahdinia et al. [20] applyed the CCAB algorithm to optimize the proposed parameters
while investigating the system’s total cost as a function of temperature, pressure, current
density and efficiency. By utilizing this advanced algorithm, the study effectively harnessed
the interplay between these crucial variables, offering valuable insights into enhancing the
overall system’s performance and minimizing costs.

Thanks to its robustness, the DE algorithm demonstrated remarkable resilience in tack-
ling various problem types, which can be multimodal, noisy, or encompassing a multitude
of dimensions [21,22]. This adaptability is vital when navigating the intricate behavior of
polarization losses estimation in DCFCs. Furthermore, DE’s simplicity is a notable asset,
characterized by its minimal control parameters, primarily the population size, mutation
and crossover scaling factors. This streamlined setup eases the algorithm selection process
and reduces the need for extensive parameter fine-tuning, thus streamlining the param-
eter estimation process [23–25]. In cases where objective functions are noisy or subject
to uncertainty, such as those influenced by experimental errors, DE’s robustness proves
indispensable by aiding in the identification of optimal solutions amidst the noise. Addi-
tionally, DE is particularly efficient in the optimization of high-dimensional spaces, making
it suitable for tasks involving a multitude of variables like the estimation of polarizations
in DCFCs within a large-dimensional parameter space, as is the case in our study [26,27].

In this work, we propose the use of Differential Evolution (DE) algorithm for the
prediction and optimization of the following kinetic electrochemical key parameters of
DCFCs: the anodic and cathodic charge transfer coefficients (αa,αc), the global DCFC
conductivity σg; the anodic and cathodic exchange current densities (i0,a, i0,c); and the
limit current densities of gas spices through the electrodes (ilO2

, ilCO2,c , ilCO2,a , ilCO), with
reference to APC experimental and analytical available data for both the CO2 and CO/CO2
models. Subsequently, we apply the proposed model to analyze the electrochemical
behavior of DCFCs fueled with ASB, ensuring a comprehensive evaluation of its I-V and
I-P characteristics and performance.

2. Materials and Methods
2.1. DCFC Fueled by Activated Pure Carbon (APC) and Almond Shell Biochar (ASB)

As described in Figure 1, the DCFC is based on a ceria-carbonate composite electrolyte
(2:1 mol ratio Li2CO3/Na2CO3 eutectic mixture). The anode consists of a mixture of
APC/Carbonate or ASB/carbonate in a mass ratio of 1:9. The composite cathode consists
of 30/70 wt% composite electrolyte and Lithiated NiO (LiNiO2) powders, respectively [5].

Despite their different compositions and electrochemical behaviors, APC and ASB
have porous structures with relatively high specific area and share adsorption capabili-
ties, particularly when activated. Indeed, APC and ASB differ in composition and source.
While APC consists solely of carbon atoms, and can be naturally occurring or synthetically
produced, ASB is produced from the carbonization of almond shell (a lignocellulosic agri-
cultural by-product) and composed of 71.8% C, 23.8% O, 3.9% H, 0.45% N and 0.04% S [6].
As carbon and oxygen together constitute 95.6% of the total mass of the biochar, our model
will consider only these two elements. Previous results [6] have shown that the perfor-
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mance of the electrochemical conversion of the ASB in DCFCs was highly dependent on
its chemical composition, surface area, mineral matter content and its oxygen-functional
groups at the surface, on the edges and within the graphitic structure of the carbon crystal
of the ASB, where the degree of coverage of reactive sites is higher. Due to their com-
plex material composition, DCFCs exhibit significant nonlinear electrochemical behavior,
especially when fueled with ASB, making the optimization and control of their power
generation very difficult.
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2.2. CO2 and CO/CO2 DCFC Models

CO2 and CO/CO2 producing DCFCs with molten carbonate electrolytes are advanced
fuel cell technologies operating at high temperatures. They efficiently convert solid carbon-
based fuels into electricity through oxidation at the anode, resulting in CO2 production.
Additionally, some designs can electrochemically reduce CO2 at the anode, generating
CO [10,28–33]. In particular, when ASB is used as fuel in DCFCs, CO is the dominant gas
at the anode [5].

The CO2 model can be described using the following electrochemical electrode reactions:

Anode reaction : C + 2CO2−
3 → 3CO2 + 4e− (1)

Cathode reaction : O2 + 2CO2 + 4e− → 2CO2−
3 (2)

Overall reaction : C + O2 → CO2 (3)

The CO/CO2 model can be described using the following electrochemical electrode
reactions:

Anode reaction : C + CO2−
3 → CO + CO2 + 2e− (4)

Cathode reaction :
1
2

O2 + CO2 + 2e− → CO2−
3 (5)

Overall reaction : C +
1
2

O2 → CO (6)

The Nernst equation determines the ideal potential of a CO2 and a CO/CO2 producing
DCFC and depends on the partial pressure of the present gaseous species. For the CO2
model, it is expressed as follows [28,34,35]:

ET = E0
T +

RT
4F

× ln

(
PO2P2

CO2,c

P3
CO2,a

)
(7)
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For the CO/CO2 model, it is expressed as follows [30,36–38]:

ET = E0
T

RT
neF

(
ncln

(
Pc

Panode

)
+ nO2 ln

( PO2
Pcathode

)
+ nCO2,cln

( PCO2,c
Pcathode

)
+ ncln

(PCO2,a
Panode

)
− nCO2,cln

(PCO2,a
Panode

))
−2nO2 ln

(PCO2,a
Panode

)
− 2ncln

(
PCO

Panode

)
+ 2nO2 ln

(
PCO

Panode

)
)

(8)

At low current densities in a CO2 producing DCFC, activation polarization plays a
significant role. This polarization arises from the electrochemical reaction at the carbon–
molten carbonate electrolyte interfaces, where the reactants need to overcome an energy
barrier known as the activation energy in order to facilitate electron transfer. The activation
polarization is accurately described by the Butler–Volmer equation:

i = i0,a exp
(
αaηact,aneF

RT

)
− i0,a exp

(−(1 − αa)ηact,aneF
RT

)
(9)

i = i0,c exp
(
αcηact,cneF

RT

)
− i0,c exp

(−(1 − αc)ηact,cneF
RT

)
(10)

Therefore, the activation losses are given by the following:

Anode activation : ηact,a =
RT

αaneF
ln
(

i
i0,a

+ 1
)

(11)

Cathode activation : ηact,c =
RT

αcneF
ln
(

i
i0,c

+ 1
)

(12)

where αa and αc are, respectively, the charge transfer coefficients in the anode and cathode
serve as dimensionless parameters that elucidate the symmetry of electrochemical reactions
related to electron transfer. The determination of these coefficients often involves experi-
mental methods such as electrochemical impedance spectroscopy for the anodic coefficient
or cyclic voltammetry and chronoamperometry for the cathodic coefficient. Additionally,
fitting experimental data to the Butler–Volmer equation is a common approach to ascertain
these crucial parameters, giving arbitrary values between 0 and 1 (depending on the sym-
metry of the transition state in the electrochemical reactions). In this work, we propose the
prediction of the optimal near-real values of these coefficients using new AI tools.

According to Arrhenius law, the exchange current density (i0,a) at which the rate of
the forward reaction (oxidation) equals the rate of the reverse reaction (reduction) at the
anode under equilibrium conditions is as follows:

i0,a = KB exp
(
−EB

T

)
(13)

The pre-exponential factor of the backward reaction is KB = 5.8 × 109 A·m−2 and the
activation energy of the backward reaction is EB = 22.175 K−1 [36].

The anodic exchange current density is influenced by several operating factors such as
the temperature, the anode material and the specific electrochemical reaction taking place
on the anode side.

The cathodic exchange current density (i0,c) is the rate at which the backward reaction
(reduction) equals the rate of the forward reaction (oxidation) at the cathode side under
equilibrium conditions. As far as the anodic exchange current density, the cathodic ex-
change current density is also affected by the operating factors like the temperature, the
cathode material and the specific electrochemical reaction occurring at the cathode. As
multi-parameters and nonlinear electrochemical variables, i0,a and i0,c cannot be predicted
accurately using classical numerical methods. An advanced identification AI algorithm
and modern computational approaches may be used to anticipate the properties of the
complex materials as well as the optimization of the DCFC process.
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Ohmic polarization emerges as a result of resistance encountered by ions and electrons
within the single domain cell, impeding their flow. This polarization follows Ohm’s law
and is mathematically expressed by the Equation (14) [32–37]:

ηohmic = Rohmic × i (14)

Where: Rohmic =
δg

σg
(15)

where δg = 10−3 m and σg (S·m−1) are, respectively, the thickness and the global conductiv-
ity of the cell.

The global electrical conductivity of a cell (σg) in the context of ohmic polarization
refers to the overall ability of the cell to conduct electrical current and ions in electrodes and
electrolytes, respectively. It depends on the materials of the electrodes and electrolytes and
the operating temperature. Ohmic polarization occurs when the dominant factor limiting
the flow of the current in an electrochemical cell is the resistance of the electrolyte.

Concentration polarization in a CO2 producing DCFC can arise from the slow diffusion
of gas species (i.e., CO2, O2) from the cathode inlet to the reaction zone, from the motion
of un-reacted O2 and CO2 from the cathode and from the diffusion of reactants and
products through the electrolyte to and from the electrochemical reaction sites. Although
concentration polarization is typically formulated based on thermodynamic principles,
Basio et al. [38] demonstrated a more consistent kinetic expression. The concentration
polarization in the CO2 producing DCFC is defined using Fick’s law as follows:

ηconc =
RT
νeF ∑νi ln

(
CS

i

CB
i

)
(16)

Therefore, using (1) and (2):

ηconc =
RT
F

×
(

1
4

ln

(
1 − i

ilO2

)
+

1
2

ln

(
1 − i

ilCO2,c

)
− 3

4
ln

(
1 − i

ilCO2,a

))
(17)

The CO/CO2 producing DCFC follows the same principle as the CO2 system, with one
key difference being that it involves an additional anodic reaction producing a mixture of
CO and CO2. Regarding modeling, the CO/CO2 producing DCFC employs the same acti-
vation and ohmic losses formulation discussed in the previous section. The only difference
is the number of electrons involved, which reduces from four to two due to the concurrent
formation of CO and CO2 on the anode side. Hence, the concentration polarization and
ideal potential of the CO/CO2 producing DCFC are determined while considering the
simultaneous formation of both CO and CO2 on the anode side. The ideal potential of the
CO/CO2 producing DCFC is given by Equation (8) and the concentration polarization is
given by Equation (18) according to the electrochemical reaction Equations (4) and (5):

ηconc =
RT
F

×
(

1
4

ln

(
1 − i

ilO2

)
+

1
4

ln

(
1 − i

ilCO2,c

)
− 1

2
ln

(
1 − i

ilCO2,a

)
− 1

2
ln
(

1 − i
ilCO

))
(18)

The limit current densities (ilO2
, ilCO2,c , ilCO2,a and il,co) of the gas spices in the cathode

and anode refer to the maximum current densities that can be sustained at an electrode
interface when mass transport limitations become the dominant factor. As the current
density increases beyond the limit, the concentration of reactants or products near the
electrode surface deviates significantly from the bulk concentration, leading to a drop in
the current efficiency and other undesirable effects.

Typically, at low current density, the main source of voltage loss in a fuel cell is
activation polarization. However, as the current density rises, ohmic polarization takes over
as the primary cause of voltage drop. Eventually, at high current densities, concentration
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polarization becomes the dominant factor contributing to the voltage loss. It is worth noting
that the theoretical output voltage of the fuel cell is as follows:

Vcell = ET − ηT (19)

Vcell = ET −
(
ηact,a + ηact,c + ηconc,a + ηconc,c + ηohmic

)
(20)

It can be seen that the nonlinear Equation (20) contains several unknown parameters
affecting the electrochemical conversion mechanism of the DCFC. Hence, appropriate AI
optimization strategies should be used for the effective and accurate prediction of these
parameters. Accordingly, the differential evolution (DE) algorithm is proposed here to
determine the following seven unknown parameters: the anode charge transfer coefficient
(αa), the cathode charge transfer coefficient (αc), the global electrical conductivity of the
single-domain DCFC (σg), the cathode exchange current density (i0,c) and the limit current
densities of oxygen (ilO2

), the carbon dioxide on the cathode side (ilCO2,c) and the carbon
dioxide on the anode side (ilCO2,a). Taking into account that these seven parameters will
considerably affect the DCFC electrochemical behavior, they must thus be accurately
estimated to fulfill the actual I–V and I-P characteristics of the DCFC.

2.3. Differential Evolution (DE) Algorithm

DE, belonging to the evolutionary algorithm family, generates new solutions by recom-
bining existing ones, making it robust and governed by few algorithm-specific parameters.
DE outperforms other optimization methods in tackling challenging problems with non-
linear, multimodal, and non-separable features. It was consistently ranked as one of the
top performers in optimization competitions, demonstrating its potential for real-world
applications with competitive accuracy and convergence speed. Notably, DE’s lower space
complexity grants it superior scalability, particularly for handling large-scale and compu-
tationally intensive optimization problems. These advantages make DE a favored choice
among researchers and practitioners for solving diverse sets of real-world optimization
challenges effectively and efficiently [21–27]. Figure 2 illustrates the scheme of DE calcu-
lation used in this paper. The DE algorithm consists of four phases which are as follows:
initialization; mutation; crossover and evaluation; and population update. In the version
used in this paper, we added a boundary refinement phase.

• Population initialization: This is the first process step of DE-generating random
individuals within the specified boundaries, which are vectors in a D-dimensional
space. Each ith individual solution of DE can be represented as a D-dimensional vector
as follows [23]:

Xt
i = (Xi,1, Xi,2, . . . , Xi,D) (21)

The specified boundaries are given by the following Equations [25]:

Xmin = (Xmin,1, Xmin,2, . . . , Xmin,D) (22)

Xmax = (Xmax,1, Xmax,2, . . . , Xmax,D) (23)

For each ith DE solution, the jth dimensional component can be initialized by randomly
generating as follows [23]:

X(0)
i,j = Xmin,j + randi,j [0, 1]

(
Xmax,j − Xmin,j

)
(24)

• Mutation: For each individual in the population, the algorithm selects three distinct
individuals (candidates), Xi,1

t,Xi,2
t and Xi,3

t, randomly from the population (excluding
the current individual) to calculate the mutant vector:
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Xt
m = Xt

i + SF ×
(
Xt

i,1 − Xt
i,2
)

(25)

where SF is the scaling factor and Xi
t ̸= Xi,1

t ̸= Xi,2
t ̸= Xi,3

t.

• Crossover: A trial vector is created by combining the mutant vector and the current
individual. Each element of the trial vector is determined by a crossover operation.

The crossover operation is performed with a probability of a crossover rate [23]:

Zt
i =


Xt

m,j if randi,j[0, 1] ≤ CR

Xt
i,j Otherwise

(26)

• Boundary refinement: This prevents solutions from going beyond specified limits,
avoiding infeasible or unrealistic outcomes:

Zt
i,j =

max
(

Zt
i,j, Xmin,j

)
min

(
Zt

i,j, Xmax,j

) (27)

• Evaluation and population update: The fitness of the trial vector is evaluated using
the objective function. If the fitness of the trial vector is better (lower) than the fitness
of the current individual, the current individual is replaced by the trial vector [23,27]:

Xt+1
i =


Zt

i if f
(
Zt

i
)
≤ f
(
Xt

i
)

Xt
i Otherwise

(28)
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In this study, the population size was set to 100, CR = 0.8, SF = 0.2 and the maximum
number of iterations was set to 100.

In our DCFC case, the process consisted of finding the values of the vector of the seven
predefined unknown parameters X = (αa,αc,σg, i0,c, ilO2

, ilCO2,c , ilCO2,a) that minimize the
root mean square error (RMSE) between the model’s predictions and the experimental data
in order to fulfill the actual I-V and I-P characteristics:

RMSE(X) =

√
∑N

n=1

(Vexp − Vmod)
2

N
(29)

Indeed, the DE algorithm is an evolutionary optimization algorithm that iteratively
explores the parameter space by generating new candidate solutions and evaluating their
fitness based on RMSEs by minimizing the errors between the experimental and the
estimated voltage values. The algorithm gradually refines the parameter values until a
satisfactory convergence is achieved, yielding the best-fitted model to the experimental
data. This optimization approach allows for robust and efficient parameter estimation,
leading to a more accurate representation of the underlying relationship between the model
and the experimental data.

3. Results and Discussion

DE’s swiftness stems from its ability to efficiently search for global optima, achieved
through the evolution of a candidate solution population via mutation, crossover and
selection operations, making it a valuable resource for promptly addressing intricate
optimization challenges. Hence, the DE algorithm was used here to predict the optimized
unknown electrochemical kinetic parameters of a DCFC fueled with APC using a CO2
model operating at 923 K: X1 = (αa,αc,σg, i0,a, i0,c, ilO2

, ilCO2,c , ilCO2,a) and using a CO/CO2

model at two different temperatures T = 923 K: X2 = (αa,αc,σg, i0,a, i0,c, ilO2
, ilCO2,c , ilCO2,a)

and T = 1023 K: X3 = (αa,αc,σg, i0,a, i0,c, ilO2
, ilCO2,c , ilCO2,a , ilCO) for comparison. The DE

algorithm was also applied to a DCFC fueled with ASB to determine the optimal values of
the unknown electrochemical kinetic parameters: X = (αa,αc,σg, i0,c, ilO2

, ilCO2,c , ilCO2,a) for
three operating temperatures: 873 K, 923 K and 973 K.

As stated in the previous section, we configured the parameters of the DE algorithm as
follows: Population size (Pop) = 100, Crossover Rate (CR) = 0.8, Scale Factor (SF) = 0.2 and
a maximum of 100 iterations (max_iter). The simulations were performed within a Jupyter
Notebook using Python 3 software in an Anaconda Navigator employing the Differential
Evolution (DE) algorithm to swiftly tackle optimization tasks; they were programmed on a
Core(TM) i7-10750H CPU @ 2.60 GHz processor with 16 GB of RAM.

3.1. Parameters Optimization of CO2 and CO/CO2 DCFC Models Fueled with APC

The design and the operating data of the DCFC system can be found in references [10,32].
The cell voltages calculated using DE are compared with the experimental data reported by
Chen et al. [32] for the CO2 model and with the analytical data of Elleuch et al. [10] for the
CO/CO2 model. Table 1 outlines the scope of the optimization searches for the unknown
kinetic parameters in the CO2 producing model at 923 K.

Table 1. Setting boundaries for CO2 model at 923 K.

Parameter αa αc ioc (A·m−2) σg (S·m−1) ilO2 (A·m−2) ilCO2,c (A·m−2) ilCO2,a (A·m−2)

Lower bound 0 0 102 10 4 × 103 4 × 103 4 × 103

Upper bound 1 1 103 102 104 104 104

Elleuch et al. [10] achieved an average absolute deviation of approximately 4%, at-
tributing the uncertainty to a charge transfer coefficient value of 0.5, which they set. To
improve their results, they adopted this coefficient as a fitting parameter in their study.
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Knowing that the charge transfer coefficients αa and αc differ between the anode
and cathode, we treated them as variables, leading to a satisfactory RMSE value of
2.4157 × 10−3, as presented in Table 2.

Table 2. Optimized parameters calculated using DE algorithm for CO2 model using experimental
data from [32].

Parameter αa αc ioc (A·m−2) σg (S·m−1) ilO2 (A·m−2) ilCO2,c (A·m−2) ilCO2,a (A·m−2) RMSE

Value 0.9157 0.2814 198.2247 18.9668 6087.3704 4 × 103 5064.0225 2.4157 × 10−3

The αa and αc coefficients essentially quantify the degree to which electron transfer
influences the electrochemical reactions at the anode and the cathode of a DCFC. The
obtained values, shown in Table 2, reflect the asymmetry of the transition state of the
anodic or cathodic electrochemical reactions in terms of electron transfer. Indeed, a value of
0.5 signifies a symmetrical reaction, while deviations from this value indicate asymmetry.
According to Table 2, electron transfer seems to be more activated on the anode side than
on the cathode side.

The optimal DE results from the CO2 producing DCFC model were then compared
with the experimental data [32]. Figure 3 shows the I-V and I-P characteristic curves,
demonstrating a notable consistency between the experimental and calculated results.

The DE algorithm results were also validated with analytical data by using both the
CO2 and CO/CO2 models at a fixed temperature of 923 K [10]. It can be observed in Table 3
that the experimental data for the CO2 model differed from the analytical values given
in Table 4.

The same boundaries were fixed for both cases, which explains the close RMSE values
(of the order of 10−3) presented in Tables 2 and 5.

The values of αa and αc obtained from DE algorithm calculation, as shown in Table 5,
also reflect the asymmetry of the transition state of the anodic and cathodic electrochemical
reactions in terms of electron transfer.

The boundaries used for the CO/CO2 model are detailed in Table 6, and the optimized
parameter values are provided in Table 7. However, due to the increased complexity of the
CO/CO2 model compared to the simple CO2 model, we noted a rise in the RMSE value to
1.7 × 10−2.

As stated by Elleuch et al. [10], the mechanisms taking place on the anode side [36],
driven by the presence of CO, play a significant role in enhancing the performance of
the DCFC. This enhancement is evident in Figure 4, where an increase in power density
is illustrated. Furthermore, at low current densities, the voltage obtained from the DE
calculation are notably higher, as indicated in Table 8.

In order to show the effect of operating temperature on DCFC performance—a com-
monly studied factor—the CO/CO2 model was executed for two temperatures: 923 K and
1023 K. The predefined boundaries for both temperatures were the same (Table 6).

Table 9 shows the optimized parameters for the CO/CO2 model at 1023 K. The RMSE
values for this temperature are close to that of 923 K (around the order of 10−2). Notably,
Table 9 reflects an increase in the charge transfer coefficients, aligning well with findings
from the existing literature [39–41]. In many electrochemical systems, the charge transfer
coefficient tends to rise with temperature due to the increased thermal energy, promoting
molecular motion and collisions between reacting species and the electrode surface, and
thus enhancing the charge transfer process. The obtained values of transfer coefficients
reflect the high asymmetry of the transition state of the anodic and cathodic electrochemical
reactions in terms of electron transfer.

Moreover, the electrolyte conductivity decreased after raising the temperature from
923 K to 1023 K. This decrease can be attributed to the intensified thermal decomposition of
carbonate ions, leading to the generation of more CO2 and oxygen ions. Consequently, the
availability of carbonate ions for ionic conduction diminished, resulting in reduced ionic



Electrochem 2024, 5 39

conductivity in the electrolyte. Additionally, Figure 5 reveals that the calculated voltage
and power values at 1023 K were higher than those at 923 K, confirming the improved cell
performance with temperature increase.
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Figure 3. Validation of the DE algorithm results using the CO2 model with experimental data at
923 K [32].

Table 3. DE voltage results for CO2 model compared with experimental data of [32] at 923 K.

i (A·m−2) Experimental Voltage (V) [32] DE Results (V)

0 0.8225 0.8225

507.1869 0.7047 0.7036

844.4271 0.6509 0.6563

1496.2882 0.5811 0.5832

2005.2647 0.5360 0.5334

2336.9177 0.5011 0.5025

3000.2965 0.4415 0.4420

3497.8281 0.3964 0.3955

3880.9128 0.3600 0.3572

Table 4. DE voltage results for CO2 model compared with analytical data from [10] at 923 K.

i (A·m−2) Analytical Voltage (V) [10] DE Results (V)

0 0.8223 0.8123

439.3939 0.6715 0.6829

878.7879 0.6254 0.6243

1318.1818 0.5885 0.5804

1757.5758 0.5515 0.5422

2196.9697 0.5146 0.5062

2628.7879 0.4731 0.4704

3507.5758 0.4292 0.4304

3068.1818 0.3692 0.3794

3946.9697 0.2862 0.2750
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Table 5. Optimized parameters calculated using DE algorithm for CO2 model using analytical data
from [10].

Parameter αa αc ioc (A·m−2) σg (S·m−1) ilO2 (A·m−2) ilCO2,c (A·m−2) ilCO2,a (A·m−2) RMSE

Value 0.3392 0.2756 114.8181 36.6461 4 × 103 8581.8031 4074.0127 7.6834 × 10−3

Table 6. Setting boundaries for CO/ CO2 model at 923 K.

Parameter αa αc ioa (A·m−2) ioc (A·m−2) σg (S·m−1) ilCO2 ,a (A·m−2) ilCO (A·m−2) ilO2 (A·m−2) ilCO2 ,c (A·m−2)

Lower bound 0 0 15 15 10 4 × 103 4 × 103 4 × 103 4 × 103

Upper bound 1 1 200 200 102 104 104 104 104

Table 7. Optimized parameters calculated using DE algorithm for CO/ CO2 model using analytical
data from [10] at 923 K.

Parameter αa αc
ioa

(A·m−2)
ioc

(A·m−2)
σg

(S·m−1)
ilCO2,a

(A·m−2)
ilCO

(A·m−2)
ilO2

(A·m−2)
ilCO2,c

(A·m−2) RMSE

Value 0.9762 0.6961 15 15 65 4368.6 4644.6 5849.9 7303.3 1.7 × 10−2
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Figure 4. Validation of the DE algorithm results using the CO2 and CO/CO2 models with analytical
data at 923 K [10].

Table 8. DE voltage results for CO/ CO2 model compared with analytical data from [10] at 923 K.

i (A·m−2) Analytical Voltage (V) [10] DE Results (V)

0 1.0962 1.0962

219.6970 0.7612 0.8210

439.3939 0.7223 0.7502

659.0909 0.6877 0.7053

893.9394 0.6646 0.6691

1113.6363 0.6461 0.6411

1325.7576 0.6231 0.6174

1553.0303 0.6000 0.5945

1780.3030 0.5815 0.5733

2219.6970 0.5470 0.5350
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Table 8. Cont.

i (A·m−2) Analytical Voltage (V) [10] DE Results (V)

2446.9700 0.5238 0.5159

2666.6667 0.5077 0.4974

2878.7879 0.4892 0.4792

3098.4849 0.4662 0.4595

3325.7576 0.4454 0.4378

3553.0303 0.4177 0.4136

3765.1515 0.3923 0.3872

3984.8485 0.3600 0.3524

4219.6970 0.3023 0.2922

Table 9. Optimized parameters calculated using DE algorithm for CO/CO2 model using analytical
data from [10] at 1023 K.

Parameter αa αc
ioa

(A·m−2)
ioc

(A·m−2)
σg

(S·m−1)
ilCO2,a

(A·m−2)
ilCO

(A·m−2)
ilO2

(A·m−2)
ilCO2,c

(A·m−2) RMSE

Value 1 0.9747 15 27.965 41.485 4000 6396.861 4000 7116 1.087 × 10−2
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923 K and 1023 K [10].

3.2. Parameter Optimization of CO/CO2 DCFC Models Fueled with ASB

After the successful application of the CO/CO2 model on a APC-fueled DCFC, our
focus shifted to applying it on a DCFC fueled with almond shell biochar (ASB). The design
and the operating data of the DCFC system can be found in references [5,6]. The model
validation for ASB was conducted with predefined boundaries, as shown in Table 10.
Table 11 shows the high asymmetry of the transition state of electrode electrochemical
reactions in terms of electron transfer at 823 K and 923 K with a relative symmetry at
973 K. The increase in (ilCO,a) and the decrease (ilCO2,a ) at the anode side, with almost stable
(ilCO2,c) and (ilO2

) at the cathode side when the DCFC temperature increases, shows that
the CO/CO2 model well describes the electrochemical mechanism in the case of DCFCs
fueled with ASB.
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Table 10. Setting boundaries for DCFCs fueled with almond shell using CO/CO2 model (3500 is
taken as lower bound for the characteristic currents at 923 K).

Parameter αa αc ioa (A·m−2) ioc (A·m−2) σg (S·m−1) ilCO2 ,a (A·m−2) ilCO (A·m−2) ilO2 (A·m−2) ilCO2 ,c (A·m−2)

Lower bound 0 0 1 1 1 4 × 103 4 × 103 4 × 103 4 × 103

Upper bound 1 1 103 103 103 104 104 104 104

Table 11. Optimized parameters calculated using DE algorithm for CO/CO2 model using experimen-
tal data from [6].

Parameter αa αc
ioa

(A·m−2)
ioc

(A·m−2)
σg

(S·m−1)
ilCO2,a

(A·m−2)
ilCO

(A·m−2)
ilO2

(A·m−2)
ilCO2,c

(A·m−2) RMSE

Value
(823 K) 0.6255 0.0328 495.2078 1000 695.4676 9345.5575 7895.6720 6524.9075 5360.3827 3.14 × 10−2

Value
(923 K) 0.7536 0.9241 356.6782 476.6354 2.6200 7593.2842 7581.9700 4371.4425 8439.4424 4.77 × 10−2

Value
(973 K) 0.4073 0.5671 787.6188 1000 8.3190 4000 8961.5211 6972.4070 9341.9678 8.10 × 10−2

It is noteworthy that the RMSE values increased compared to those obtained in the
APC-fueled DCFC, but they remained of the order of 10−2. As shown in Figure 6, the fuel
cell’s performance was, once again, enhanced with an increase in temperature [39–41].
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4. Conclusions

The Differential Evolution (DE) algorithm allowed for the prediction and the optimiza-
tion of key kinetic parameters of DCFCs using CO2 and CO/CO2 electrochemical models.
The DE was firstly used to analyze a DCFC powered by APC and subsequently applied
to an ASB-fueled DCFC, showing the asymmetry of the transition state of the anodic and
cathodic electrochemical reactions in terms of electron transfer in both cases.

The computational outcomes closely aligned with the experimental data, particularly
for the APC-powered DCFC in both model scenarios. The validation results for the ASB-
fueled DCFC were also promising, with a slight increase in the Root Mean Square Error
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(RMSE). This discrepancy can be attributed to the ASB’s complex structure and chemical
composition, which is not accounted for in the CO/CO2 model, as well as the concentration
polarization limitations. This study delved into the intricate electrochemical mechanisms
within DCFCs fueled with non-conventional fuel; the DE algorithm was successfully used
and achieved satisfying accuracy in solving such a nonlinear problem, showing good
agreement with the analytical models and experimental data.
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