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Abstract: Determining the oxidation potential (OP) of lithium-ion battery (LIB) electrolytes using
theoretical methods will significantly speed up and simplify the process of creating a new generation
high-voltage battery. The algorithm for calculating OP should be not only accurate but also fast.
Our work proposes theoretical principles for evaluating the OP of LIB electrolytes by considering
LiDFOB solutions with different salt concentrations in EC/DMC solvent mixtures. The advantage of
the new algorithm compared to previous versions of the theoretical determination of the oxidation
potential of electrolyte solutions used in lithium-ion batteries for calculations of statistically significant
complexes, the structure of which was determined by the molecular dynamics method. This approach
significantly reduces the number of atomic–molecular systems whose geometric parameters need
to be optimized using quantum chemical methods. Due to this, it is possible to increase the speed
of calculations and reduce the power requirements of the computer performing the calculations.
The theoretical calculations included a set of approaches based on the methods of classical molecular
mechanics and quantum chemistry. To select statistically significant complexes that can make a
significant contribution to the stability of the electrochemical system, a thorough analysis of molecular
dynamics simulation trajectories was performed. Their geometric parameters (including oxidized
forms) were optimized by QM methods. As a result, oxidation potentials were assessed, and their
dependence on salt concentration was described. Here, we once again emphasize that it is difficult
to obtain, by calculation methods, the absolute OP values that would be equal (or close) to the OP
values estimated by experimental methods. Nevertheless, a trend can be identified. The results of
theoretical calculations are in full agreement with the experimental ones.

Keywords: liquid electrolytes; lithium-ion batteries; cationic complexes; anionic complexes; molecular
dynamics simulation; quantum chemical calculations; oxidative stability of complexes

1. Introduction

Lithium-ion batteries (LIB) are currently the most common electrochemical power
supply widely used in portable electronics, electric vehicles, energy storage systems, etc.
In recent years, many attempts have been made to further increase the energy density of
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LIB. At the end of the 1990s, cathode materials operating above 4.5 V (vs. Li/Li+) were
developed. These materials include layered cathode materials with high nickel, lithium
and manganese content [1–6], LiCoPO4 [7–10] LiCoPO4F [11,12], LiF-MO nanocomposites
(M = Mn, Fe, Co) [3,13], LiNiO2 [14,15] and others.

The electrolytes used in the production of LIB are 1–1.5 M solutions of LiPF6 in base
mixtures of linear and cyclic carbonates, additionally containing functional additives [16–18].
However, commercial electrolytes are electrochemically stable up to 4.3 V and cannot provide
operability for high-voltage cathode materials [19]. Thus, the development of electrolyte
compositions resistant to oxidation at potentials higher than 5 V is underway around the
world [20].

In recent years, lithium difluoro(oxalato)borate LiBF2(C2O4) (abbreviated as LiDFOB)
has been recognized by high-voltage lithium-ion batteries due to its excellent perfor-
mance [21,22]. Unlike LiPF6, the decomposition of LiDFOB does not produce HF [23].
LiDFOB is also involved in the formation of SEI films on anodes and suppresses the re-
activity of lithiated graphite toward electrolytes [24,25]. More importantly, LiDFOB can
passivate the aluminum current collector of the positive electrode [26] and promote the for-
mation of cathode electrolyte interfacial passivation layers (CEI) at high potentials [27,28].

The properties of an electrochemical system depend on the structure of complexes of
different types formed as a result of salt dissolution. The involvement of computational
chemistry methods to investigate the physicochemical properties and structural features
of various complexes formed in LiDFOB solutions in different solvents was previously
described. In their article [29], the structure and oxidizing ability of anionic complexes
of the {DFOB−}(EC1) type were examined depending on the different coordination of
the anion and the solvent molecule with respect to each other. The evaluation of redox
potentials for the ionic species {Li+DFOB−} and {Li+(DFOB−)2

− by quantum chemistry
methods was presented in [30]. In [31], systems based on LiDFOB in a mixture of three
solvents (EMC, EC, ADN and EMC, SL, ADN) were investigated. However, the authors
here limited themselves to studying the structural features of cationic complexes in a 1 to 1
solvent-to-lithium cation ratio, estimating the HOMO-LUMO gap and the dipole moment
for the solvents. In addition, the authors evaluated the affinity of lithium cation to different
solvents and showed that among solvents such as SL, EC, ES, DMC, DMC and ADN,
lithium cation shows the highest affinity to SL.

The estimation of HOMO LUMO by QC methods was used in the paper [32]. The au-
thors concluded that LiDFOB can decompose at the cathode prior to the decomposition
of EC, EMC and DEC solvents and is most likely to reduce at the anode prior to their
reduction. This is due to high HOMO energy and low LUMO energy.

Molecular dynamics methods were used in [33] to estimate the radial distribution
function and describe the surroundings of lithium cation in 1 M LiDFOB DME solution.

In all cases, attention is drawn to the fact that the authors of the above-mentioned
works investigated the structural features of individual complexes, usually in a 1-to-1
ratio (ion pair and one molecule of solvent), both in the case of cationic complexes and in
the case of solvated ion pairs. In this case, the coordination number value of the lithium
cation is determined. Depending on the environment, this can be from four to eight [34].
Meanwhile, using 1 M LiBF4 in EC/DMC and SL/DMC solvent mixtures as an example,
we [35] showed that the formation of various complexes, namely cationic, anionic and
solvated ion pairs, is possible in the systems. The structural features of all systems must be
considered in order to evaluate the redox potential. The environment of lithium cation can
be studied by molecular dynamics methods. The analysis of the results suggests the most
probable structure of possible complexes.

Here, the optimization of geometric parameters by the QM method is necessary
for many atomic–molecular systems. For example, we need to evaluate the oxidation
potential (OP) of 1 m LiBF4 salt in a solvent mixture (EC/DMC). We have to optimize the
geometrical parameters of all possible solvated anion complexes and solvated contact ion
pairs, including their oxidized forms. This is about 40–50 structures. And the optimization
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procedure should be completed successfully. There should be no imaginary units in the
matrix of the second derivatives of the wave function. Moreover, we use the Born–Haber
cycle for OP calculation. This means we must further optimize the complexes, considering
the presence of solvent. Then, the total number of calculated structures increases to 80–90.
In addition, methodological shortcomings in QM methods can cause difficulties in the
convergence of the wave function.

Our new algorithm includes a thorough analysis of particle trajectory after molecular–
dynamic simulation. This makes it possible to estimate the composition and environment
of each lithium cation and identify statistically significant complexes, the contribution
of which to electrochemical stability may be greatest. In the results of this analysis, the
atom–molecular systems for the next QM optimization are significantly reduced. This work
investigated LiDFOB-based systems with different salt concentrations using baseline sol-
vent mixtures EC/DMC. In our case, we optimized only 12 structures (including the
oxidized form in the gas phase and with a polarizable continuum model (PCM)) for one
type of salt concentration. This approach significantly reduces calculation time. The results
of theoretical calculations are in full agreement with the experimental ones.

2. Materials and Methods
2.1. Theoretical Parts

LiDFOB solution in a mixed solvent EC/DMC (1:1, wt.) was considered as a model system
in this work. The following salt concentrations were regarded: 0.5, 0.75 and 1 mol/kg.

2.1.1. Molecular Dynamic Simulations

Virtual cubic models containing a certain number of lithium cations, DFOB anions
and solvent molecules were constructed for molecular–dynamic simulations (Figure 1).
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Figure 1. Structural parameters of components of studied systems.

The numerical composition of the particles corresponded to the specified experimental
values of salt concentration of 1.0, 0.75 and 0.5 mol/kg (Table S1). The molecules were
placed in the cube in random order. An example of visualization of the model systems is
presented in SM (Figure S1). The protocol for preparing the system for modeling included
preliminary minimization (conjugate gradient method) and the balancing of components
in the NVT ensemble for 0.1 ns at 10 K, 0.1 ns at 298 K, 0.2 ns at 700 K sequentially.

The systems were balanced in the NPT (P − 1 atm.) for 10 ns at 298 K. The period of
the recorded simulation was 50 ns in the NVT ensemble at 298 K. To maintain a constant
temperature of the systems, a Nose–Hoover thermostat was used [36]. To calculate the
density of the system, an MD simulation was performed in the NPT ensemble for 100 ns
at 1 atm and 293.15 K. Density is expressed in g/cm3 and is computed for each frame
over the course of the trajectory. Inspection of the convergence of density gives important
feedback on the degree of system convergence. With the OPLS force fields, the fully
equilibrated density can be computed to within 3% of experimental values. Molecular
dynamic simulations were performed using Desmond-v7.2 MD simulation software [37]
and OPLS4 [38].

The structural features of substances, in particular to describe the composition and
structure of complexes, were assessed through the radial distribution function (RDF) and
its integral component N (R). MD trajectory analysis and visualization were performed
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using the VMD program [39]. A statistical analysis of all variants of the interaction of
lithium cations with other components of the electrolyte was carried out in order to assess
the composition of the complexes in the mixture.

2.1.2. Quantum Chemistry Calculations

Optimization of the geometric parameters of atomic–molecular systems with subse-
quent solution of the vibrational problem was carried out at the DFT level using the M052X
functional [40] with the TZVP basis set [41]. The absence of an imaginary unit in the matrix
of second derivatives of the wave function was considered evidence of the establishment
of a stationary point on the potential energy surface. Thermodynamic parameters were
calculated in the gas phase approximation at 298 K and atmospheric pressure, as well
as taking into account implicit solvation [42]. As a solvent, PCM models used acetone
with ε = 20.5, which is close to the permittivity value of most electrolyte mixtures [43].
All calculations were performed using GAUSSIAN 09 rev C software.

In order to assess the thermodynamic stability of the complexes studied, incremental
(step by step) values of the energies of formation (∆fG◦

inc) were considered as the Gibbs
energy of the reaction of successive addition of a solvent molecule to the complexes [34]
based on the second consequence of the Hess law.

The adiabatic oxidation potential Ead for the complexes was estimated according to
the Born–Haber cycle [44], as described in the previous work [35].

2.2. Experimental Part

Ethylene carbonate (battery grade, Sigma Aldrich, St. Louis, MO, USA), dimethyl
carbonate (anhydrous, ≥99%, Sigma Aldrich) and LiDFOB (≥98%, Sigma Aldrich) were
used to prepare electrolytes. The solvent mixture was incubated over Molecular Sieve 3Å for
1 week in order to remove traces of water from ethylene carbonate and dimethyl carbonate.
The concentrations of the solutions studied were 0.5, 0.75 and 1 m. The electrolytes were
prepared and stored in a dry argon box.

The electrochemical stability window of the electrolyte was measured and determined
by the linear sweep potential technique method. Two-electrode electrochemical cells were
used for measurements. Glass-carbon was used as the working electrode, and metallic
lithium was used as the counter electrode. In order to determine the oxidation potential,
the experiment was carried out in the range from 2.5 V (open circuit voltage) to 5.99 V
vs. Li0/Li+. The potentiostat P-20 × 8 (Elins LLC, Chernogolovka, Russia) was used for
measurements. Sweep rate was 0.02 mV·s−1.

The density of the electrolyte solution was determined using pycnometers with a
nominal volume of 5 mL, pre-calibrated at 25 ◦C. Measurements were performed in three
parallels at 20 ◦C.

The compositions of predominant ionic species were confirmed by high-resolution
NMR. The spectra on the cores 1H, 7Li, 11B, 13C, 17O, 19F were captured on the Bruker
Avance III 500 MHz NMR spectrometer. The spectra were recorded at room temperature
(24 ◦C), at frequencies of 500, 194, 160, 126, 68, 471 MHz for 1H, 7Li, 11B, 13C, 17O, 19F,
respectively. Liquid samples were placed in standard 5 mm ampoules without the addition
of deuteron solvent. To calibrate the chemical shift scale, an additional magnetic field was
set from the DMSO-d6 signal as an external standard (2.50 ppm for 1H).

3. Results
3.1. Molecular–Dynamic Results

The main goal of molecular dynamic simulations is to assess the environment of
the lithium cation and describe the composition of the complexes that dominate in the
electrolyte solution based on this assessment. In the first stage, we estimated the density
values of model systems and compared the data with the experiment. The results assessed
based on QC calculations correlate with the experimental data (Figure 2). This result
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suggests that the computational model is adequate and the molecular dynamics simulation
protocol is suitable for studying such systems.
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Figure 2. Correlation of density values obtained as a result of experiment and theoretical calculation.

The analysis of particle behavior during molecular dynamic simulations enables us
to estimate the qualitative and quantitative composition of the coordination sphere of the
lithium cation depending on the salt concentration. Our previous work [33] showed that the
lithium cation preferentially coordinates with the carbonyl oxygen atom of EC and DMC.
The Li+ cation can coordinate with the asymmetric DFOB− anion in two ways (Figure 3):
through an oxalic acid residue forming a five-membered ring (II, III) or through fluorine
atoms (I, IV). In both cases, both the monodentate (I, II) and bidentate (III, IV) coordination
of Li+ relative to the anion are possible. In addition to the expected coordination of
Li+ with highly polar carbonyl groups of the oxalic acid residue, coordination with the
ether oxygen of the ring or some intermediate coordination with ether and carbonyl
oxygens simultaneously cannot be excluded (V). In [45], the analysis of molecular dynamic
simulations shows the coordination of the lithium cation relative to the DFOB- anion
between the carbonyl oxygen atom and the ring oxygen. The salt concentration is likely to
be an important factor influencing the location of the cation relative to the anion.
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We estimated the number of contacts registered between lithium cations and anion
atoms in a 1 m salt solution in the solvent mixture being studied (Figure 4a). The contacts
are registered at a distance of 3.3 Å or more between the cation and a particular atom. If the
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atom is located from the cation at a distance greater than 3.3 Å, then the number of such
contacts will correspond to the coordination number 0. Value 3.3 Å was chosen with a
margin based on calculations that were published in article [35]. Analyzing the structural
parameters of complexes formed in electrochemical systems shows that the solvent atoms
are located within a radius of 2 to 3 Å relative to the lithium cation. During the analysis of
molecular dynamics data, we used a radius of 3.3 Å relative to the lithium cation. This value
is taken with a margin to ensure that all molecules fall within this radius. The analysis of
the histograms enables us to draw the following conclusions: one or two anions are most
often located around the lithium cation. The ion pair may dissociate, and then the anion
“floats away” from the cation at a distance exceeding 3.3 Å. In general, Li+ is located relative
to atoms B and F at distances greater than 3.3 Å. Contacts at smaller distances are registered
between cations and oxygen atoms. Both monodentate and bidentate coordination are
probably possible.
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(a)—estimation of the number of contacts between lithium cations and anion atoms at distance of
3.3 Å («Any atom» is the sum of B, F and O atoms); (b)—radial distribution function and structural factor.

The analysis of the radial distribution function (RDF) and its structure factor (N(r))
suggest that lithium cations preferentially contact specifically carbonyl oxygen at distances
between 1.8 and 2.7 Å. This is evidenced by the height of the peak (Figure 4b, bright red
curve). The first step of the N(r) curve corresponds to 1.5 units, which also suggests two
likely coordinations of the cation relative to the carbonyl oxygen of the anion, as indicated
in Figure 4.

Histograms characterizing contacts of lithium cations with oxygen atoms of the anion
and solvent molecules are presented in Figure 5a–c. Contacts between cations and oxygen
atoms are registered at distances up to 3.3 Å. If the oxygen atom under consideration
is located from the cation at a distance greater than 3.3 Å, the number of such contacts
will correspond to the coordination number 0. Radial distribution functions describing
the surrounding of cations by particles present in solution are also given (Figure 5d–f).
The coordination number of Li+ tends to be 6 in all cases.

At concentrations of 0.5 and 0.75 m, the lithium cation preferentially interacts with
one oxygen anion, corresponding to monodentate coordination (Figure 5a,b). At the same
time, we do not exclude bidentate coordination or the possibility of contact of a cation with
two anions. The height of the columns corresponding to coordination number 1 is slightly
higher than the column corresponding to coordination number 2. At a concentration of
1 m (Figure 5c), the column heights are equalized. The number of registered contacts
between cations and oxygen atoms of the anion corresponding to coordination numbers
1 and 2 is equally probable. According to the analysis of the radial distribution function,
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lithium cations are more often in contact with the carbonyl oxygen of the anion than with
the carbonyl oxygen of solvent molecules. This is evidenced by the height of the peak in
Figure 5d–f (yellow curve).
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Figure 5. Analysis of molecular dynamic simulations: (a)—estimation of the number of contacts
between lithium cations and oxygen atoms of solvent molecules and anions at distance of 3.3 Å of
0.5 m LiDFOB EC/DMC (1:1, wt.); (b)—estimation of the number of contacts between lithium cations
and oxygen atoms of solvent molecules and anions at distance 3.3 Å of 0.75 m LiDFOB EC/DMC
(1:1, wt.); (c)—estimation of the number of contacts between lithium cations and oxygen atoms of
solvent molecules and anions at distance 3.3 Å of 1.0 m LiDFOB EC/DMC (1:1, wt.); (d)—radial
distribution functions 0.5 m LiDFOB EC/DMC (1:1, wt.); (e)—radial distribution functions 0.75 m
LiDFOB EC/DMC (1:1, wt.); (f)—radial distribution functions 1.0 m LiDFOB EC/DMC (1:1, wt.).
(«All» means the sum of all molecules).
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The frequency of Li+ contacts with EC oxygen atoms is practically independent of the
salt concentration. By analyzing the histograms in Figure 5a–c, we can assume that the first
coordination sphere of the cation will preferentially include no more than one EC molecule.
This conclusion is in agreement with the analysis of radial distribution function curves
(Figure 5d–f). The height of the columns characterizing the frequency of contacts of DMC
oxygen atoms with the cation varies with concentration. At a minimum concentration
of 0.5 m, Li+ preferentially contacts with four oxygen atoms of DMC. With increasing
concentration, the height of the column corresponding to coordination number 4 slightly
decreases, while the height of the column corresponding to c.n. 3 increases.

Thus, a statistical analysis of molecular dynamic simulations enables us to estimate
the composition and structure of probable complexes formed in the studied systems with
different salt concentrations. According to the statistical analysis, the c.n. of the cation
corresponds to six units. Using Maxwell–Boltzmann statistics, we numerically evaluated
the composition and statistical significance of complexes in the LiDFOB-EC/DMC system
as a function of concentration (Table 1).

Table 1. Statistical significance of complexes recorded during molecular dynamic simulations.

[LiDFOB],
mol/kg

EC/DMC

Ratio Probable Composition of the Complexes N, %(DFOB)− DMC EC

0.5
1 1 1 {Li+DFOB−}(DMC)1(EC)1 69

2 1 2 {Li+DFOB−} *(DMC)1(EC)2
{Li+(DFOB−)2

−}(DMC)1(EC)2
19

1 2 1 {Li+DFOB−}(DMC)2(EC)1 12

0.75
1 1 1 {Li+DFOB−}(DMC)1(EC)1 63
1 2 2 {Li+DFOB−}(DMC)2(EC)2 24
1 1 2 {Li+DFOB−}(DMC)1(EC)2 13

1.0
1 1 1 {Li+DFOB−}(DMC)1(EC)1 24
1 1 2 {Li+DFOB−}(DMC)1(EC)2 76

* bidentate coordination.

Statistically significant complexes were analyzed by a trajectory analysis of molecular
dynamic simulations. The structural analysis of molecular dynamics simulation trajectories
analyzes every frame registered within 50 ns and the environment of every lithium atom.
Then, all these frames were summed up, and we obtained those complexes that appear
most often. These complexes are called statistically significant.

This statistical analysis takes into account the dynamic contacts between lithium cations
and oxygen atoms of solvent molecules and anions. It should be noted here that, according to
the RDF analysis, the lithium cation preferentially contacts carbonyl oxygen atoms. This fact
was taken into account when creating complexes for the following QC calculations.

Then, at concentrations of 0.5 and 0.75, the dominant complex is {Li+DFOB−}(DMC)1(EC)1.
In this case, the statistical frequency of such a complex decreases as a function of concentra-
tion, and at 1 m, the probability of its detection is 24%, while the complex of composition
{Li+DFOB−}(DMC)1(EC)2 is registered in 76% of cases. Changing the salt concentration affects
the composition of the first coordination sphere of the lithium cation, and as a consequence,
the structure of the solvated complexes differs.

The geometrical parameters of the most frequently occurring complexes listed in
Table 1 were downloaded for the estimation of their thermostability and oxidizing potential
by quantum chemistry methods. The possibility of monodentate and bidentate coordination
of the cation relative to the carboxyl oxygen atom was taken into account in the calculation.
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3.2. QC Calculations Results
3.2.1. Structures of Complexes and Thermodynamic Parameters

Complexes {Li+DFOB−}(DMC)n(EC)m (n, m = 1, 2)

The geometrical parameters of statistically significant complexes (Table 1) of the
solvated ion pair, of the form {Li+DFOB−}(DMC)n(EC)m, where n, m = 1, 2, were optimized
by quantum chemistry methods. Gibbs free energy of formation values were estimated
(Figure 6). The incremental Gibbs free energy values are presented in Table A1.
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(a)—{Li+DFOB−}(DMC)1(EC)1; (b)—{Li+DFOB−}(DMC)2(EC)1; (c)—{Li+DFOB−}(DMC)1(EC)2;
(d)—{Li+DFOB−}(DMC)2(EC)2.

The lithium cation is surrounded by bulk solvent molecules. Thus, the lithium
cation can form sufficiently strong coordination bonds with four (maximum five) oxy-
gen atoms of the surrounding particles (solvent molecules and anions). The most sym-
metrical (Li-O bond lengths have approximately equal values) resembles the complex
{Li+DFOB−}(DMC)1(EC)1. From a thermodynamic point of view, this complex is more sta-
ble than the others (Figure 6a). The lithium cation and the surrounding three oxygen atoms
are arranged in the same plane. The complexes of composition {Li+DFOB−}(DMC)2(EC)1
(Figure 6b) and {Li+DFOB−}(DMC)1(EC)2 (Figure 6c) have a pyramidal structure. The dis-
tances between the lithium cation and the surrounding oxygen are longer than in the
complex of composition {Li+DFOB−}(DMC)1(EC)1. In both cases, one of the EC molecules
is coordinated to the anion: the minimum distance between the hydrogen and fluorine
atoms barely exceeds 2.3 Å, suggesting the presence of a bonding point. Gibbs free energy
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formation of {Li+DFOB−}(DMC)2(EC)1 complex is 0.03 eV lower than the formation energy
of {Li+DFOB−}(DMC)1(EC)2.

The analysis of incremental values of Gibbs energies (Table A1) also indicates that the
coordination of the DMC molecule relative to the lithium cation is thermodynamically more
favorable than contact of the cation with the EC. These observations are consistent with the
RDF analysis (Figure S2). In the complex of composition {Li+DFOB−}(DMC)2(EC)2, one of
the EC molecules is more than 3.7 Å away from the lithium cation by the distance between
Li+ and the EC oxygen. Thermodynamically, this complex (Figure 6d) is less stable than
the others.

In the above complexes, the lithium cation is coordinated to only one carbonyl oxygen
atom of the anion. At the same time, according to statistical analysis at a concentration of
0.5 mol/kg, we also considered the probability of forming a complex {Li+DFOB−}*(DMC)1(EC)2
(Table 1), bidentate coordination.

However, the optimization of the geometrical parameters of such a complex was not
successful. During calculation, the coordination of particles relative to the cation leads to
the formation of a complex {Li+DFOB−}(DMC)1(EC)2 (Figure 6c). It is probable that such
an arrangement of anion relative to cation is thermodynamically more stable.

Complexes {Li+(DFOB−)2}(DMC)n(EC)m (n, m = 1, 2)

The statistical analysis of molecular dynamic simulations showed that negatively charged
ionic triplets may be present in the studied systems (triple ions)—complexes in which two anions,
in addition to solvent molecules, are coordinated relative to the lithium cation. Using methods
of quantum chemistry, the geometrical parameters of complexes {Li+(DFOB−)2

−}(DMC)1(EC)1
(Figure 7a) and {Li+(DFOB−)2

−}(DMC)1(EC)2 (Figure 7b) were optimized. The Gibbs formation
energy of the latter complex is positive, i.e., it is unstable.
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Figure 7. Structural parameters and Gibbs formation free energy of complexes (M052X/TZVP, PCM,
acetone) (a)—{Li+(DFOB−)2

−}(DMC)1(EC)1; (b)—{Li+(DFOB−)2
−}(DMC)1(EC)2.

In the {Li+(DFOB−)2
−}(DMC)1(EC)1 complex, four oxygen atoms are “stacked” in a

pseudo-pyramid with the cation in the center. In the {Li+(DFOB−)2
−}(DMC)1(EC)2 complex,

all the particles are arranged relatively evenly with the cation. The furthest away is one of
the anions.

NMR Study

The molecular structure of the complexes as a function of salt concentration was
studied using NMR. Chemical shifts in NMR spectra at the nuclei 1H, 7Li, 11B, 13C, 17O,
19F were obtained. The values of chemical shifts are presented in SM (Tables S2–S4).
The chemical shifts of statistically significant complexes were calculated by quantum
chemistry methods. The correlation index of calculated and experimental values of chemical
shifts does not exceed 0.98 units in both systems (Figure 8). Here, we can observe that the
proposed structures of the complexes are correct. Thus, the composition and structure of
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the complexes proposed on the basis of theoretical calculations are in full agreement with
the analysis of NMR spectra. It should be noted that chemical shifts in NMR spectra are
practically independent of salt concentration. This indicates that the environment of the
nuclei does not change, and no exchange processes occur in the studied systems.
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3.2.2. Oxidation Potential

The oxidation process is accompanied by a change in the geometrical parameters
of the complexes. Figure 9 shows the oxidation reactions of complexes characterized
by minimum adiabatic OD values (Eox) (Table A1). In the system with the lowest salt
concentration of 0.5 m, oxidation probably starts from the negatively charged ionic triplet
{Li+(DFOB−)2

−}(DMC)1(EC)2, which seems logical. As a result of oxidation, the particles
are observed to regroup in relation to the cation. The distance r1 between the oxygen
atom of the anion and Li+ increases by more than 1.2 Å; the other particles (anion, two
EC molecules and one DMC) conversely approach the cation. The distance between
the carbons in one of the anions increases to 1.9 Å as a result of the breaking of the
five-membered cycle (Figure 9a). In systems with higher salt concentrations of 0.75 m
and 1 m, ionic triplets were not detected by statistical analysis; they are dominated by
electrically neutral ion pairs (see Table 1). At a concentration of 0.75 m, the complex
{Li+DFOB−}(DMC)2(EC)2 starts to oxidize first. Here, a slight change in the coordination
of the particles relative to the cation is observed. The geometrical parameters of the anion
change noticeably. The distance between the oxygen atom and Li+ increases, as well as the
distance between carbons, which is again associated with the rupture of the five-membered
cycle (Figure 9b). The statistically significant complex {Li+DFOB−}(DMC)1(EC)2 in 1 m of
salt solution rearranges upon oxidation. The anion moves away from the cation by a greater
distance. The distance between the carbon atoms in DFOB− increases as a consequence of
cycle breaking. The oxygen atoms of two EC molecules and one DMC molecule are located
in the same plane with Li+ (Figure 9c).
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Taking into account the statistical significance of the complexes obtained from molec-
ular dynamics simulation analysis, we calculated the additive value of OP (Eox

add). In
addition, using the Maxwell–Boltzmann distribution of Gibbs formation free energy val-
ues (∆fG◦) and incremental energy component values (∆fG◦

inc calculated by quantum
chemistry methods, additive OP values were also estimated: Eox

add(form)—based on ∆fG◦

and Eox
add(inc)—based on ∆fG◦

inc. The additive values of oxidation potentials calculated
by the three methods are shown in Figure 10a, depending on the salt concentration in
the model system. The numerical values are summarized in Table S5 (see. SM). As can
be seen from the figure and table, all three methods of Eox

add calculation give very close
numerical results (the maximum discrepancy between the obtained values is 0.12 V) and
reflect the same tendency. With increasing salt concentration, Eox

add grows and reaches
a plateau (Figure 10a). In addition to the additive values of the oxidation potentials, Fig-
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ure 10a shows the Eox values for the least stable complexes in each solution as dots. For
a solution with a concentration of 0.50 m, these are the negatively charged ionic triplets
{Li+(DFOB−)2

−}(DMC)1(EC)2, with the lowest electrochemical stability among all ionic
particles considered above (Eox = 5.81 V). Such complexes are absent in the model systems
at higher salt concentrations. This is most significant for the increase in the values of
Eox

add. In the system with a concentration of 0.75 m, the neutral complex is least stable
{Li+(DFOB−)−}(DMC)2(EC)2 (Eox = 6.31 V), whereas at 1.00 m, the neutral complex is
the least stable {Li+(DFOB−)−}(DMC)1(EC)2 (Eox = 6.39 V). A decrease in the number of
molecules in the solvate shell seems to make the neutral ion pair more resistant to oxidation.
It is important to take into account the Eox values of the least stable complexes when
predicting the electrochemical stability of an electrolyte solution, along with the analysis of
Eox

add values.
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The curves obtained by the linear sweep potential method for LiDFOB solutions in
EC/DMC mixed solvent (1:1) with salt concentrations of 0.50, 0.75 and 1.00 m are shown
in Figure 10b. As can be seen from the figure, the current growth in the solution with a
concentration of 0.50 m begins at E ≈ 4.55 V. The increase in salt concentration up to 0.75
and 1.00 m leads to a shift in the beginning of oxidation processes towards higher values
of potential, and both these solutions give very close curves, in full accordance with the
prediction (Figure 10a).

4. Discussion

The thermodynamic stability of the complexes under consideration can be evaluated
on the basis of the energy component of each particle included in the complex, for example,
from the perspective of the free energy of Gibbs formation (∆fG◦). The processes of
the sequential addition of solvent molecules to an ion pair can also be considered, i.e.,
thermodynamic stability can be evaluated from the perspective of incremental Gibbs energy
(∆fG◦

inc). The results of our calculations indicate that the additive value of the OP can be
estimated based on the Maxwell–Boltzmann distribution of both the formation energy and
the incremental energy. In both cases, we observed an insignificant difference in the OP
values. On the other hand, the use of the incremental component requires the optimization
of the geometric parameters of intermediate complexes, which can increase the calculation
time. Therefore, we recommend estimating additive OP values based on the Gibbs energy
of complex formation (∆fG◦) in order to simplify the prediction procedure.

The analysis of additive OP values (Figure 10a), estimated by quantum chemistry
methods, enables us to note that the oxidation of the electrolyte in the model system with
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the lowest salt concentration (0.50 m) occurs at lower OP values. As the salt concentration
increases, the additive OP values increase, and the values corresponding to salt concentra-
tions of 0.75 and 1.00 m differ by no more than 0.04 V (Table S5). In other words, the 0.50 m
LiDFOB system in DMC/EC can be considered the least stable. At high concentrations,
the oxidative stability of solutions is practically independent of concentration. This is
completely consistent with the experimental results (Figure 10b). Here, we once again
emphasize that it is difficult to obtain, by calculation methods, the absolute OP values that
would be equal (or close) to the OP values estimated by experimental methods. Neverthe-
less, a trend can be identified. Confirmation of the adequacy of the model is the presence of
a corresponding trend. The cumulative analysis of the results indicates the adequacy of the
theoretical algorithm used.

5. Conclusions

The main goal of this work was to develop a theoretical algorithm to enable the fast
evaluation of trends dependent upon the oxidation potential of an electrolyte solution on
its composition. Our new algorithm allows for reducing the time for oxidation potential
estimation by theoretical methods. This is achieved through a careful analysis of the
trajectory of molecular dynamic simulations, the correct selection of statistically significant
complexes and the optimization of the geometric parameters of a smaller number of
systems using QM methods. At the same time, the accuracy of the calculations is sufficient
to predict the composition of the electrolyte. LiDFOB solutions with different concentrations
in baseline mixed solvent EC/DMC (1:1, wt) were used as an example.

Our algorithm involves the following stages of the OP assessment procedure:

(1) Creation of a model system based on experimental data.
(2) Molecular dynamic simulations for each model system for at least 50 ns, including

system equilibration. The adequacy of the models used can be assessed by calculating
the system density.

(3) A thorough analysis of molecular dynamic simulations to evaluate the environment
of each lithium cation throughout the simulation time.

(4) Selection of statistically significant complexes, optimization of their geometric param-
eters and calculation of energy parameters using quantum chemistry methods.

(5) Assessment of the additive value of the oxidative potential, taking into account the
proportion of complexes of each type.

Testing such an algorithm for assessing the oxidation potential using the selected
model system LiDFOB in EC/DMC (1:1, wt) produced encouraging results. The composi-
tion and structure of the complexes assumed in theoretical calculations are consistent with
the data of NMR spectra for electrolyte solutions with the same concentration. The calcu-
lated OP values are in satisfactory agreement with the experimentally observed values.
They quite correctly reflect the trend of changes in Eox with increasing salt concentration.
For this reason, we believe that the calculation algorithm proposed herein can be applied
to assess the OP of other electrochemical systems.
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Appendix A

Table A1. Thermodynamic and oxidative parameters of solvent molecules and various complexes
existing in the system LiDFOB DMC/EC: ∆fG0

inc—incremental (stepped) Gibbs energy of formation
(eV); ∆Eox—adiabatic oxidation potential estimated in this work (M052X/TZVP); IP—ionization
potential, eV.

Complex ∆fGo
inc , eV IP, eV ∆Eox, V

Nonsolvent ionic pair {Li+DFOB−} −0.64 10.50 6.95

{Li+DFOB−}(DMC)1 −0.20 9.99 6.91

{Li+DFOB−}(EC)1 −0.23 9.74 7.52

{Li+DFOB−}(DMC)2
{Li+DFOB−}(DMC)1 + DMC ⇄ {Li+DFOB−}(DMC)2

−0.28 9.55 6.78

{Li+DFOB−}(DMC)1(EC)1
{Li+DFOB−}(EC)1 + DMC ⇄ {Li+DFOB−}(EC)1(DMC)1

0.05
9.25 6.50

{Li+DFOB−}(DMC)1 + EC ⇄ {Li+DFOB−}(DMC)1(EC)1 0.03

{Li+DFOB−}(DMC)2(EC)1
{Li+DFOB−}(DMC)1(EC)1 + DMC ⇄ {Li+DFOB−}(DMC)2(EC)1

0.09 9.05 6.32

{Li+DFOB−}(DMC)1(EC)2
{Li+DFOB−}(DMC)1(EC)1 + EC ⇄ {Li+DFOB−}(DMC)1(EC)2

0.11 8.95 6.39

{Li+DFOB−}(DMC)2(EC)2
{Li+DFOB−}(DMC)1(EC)2 + DMC ⇄ {Li+DFOB−}(DMC)2(EC)2

0.31
8.83 6.31

{Li+DFOB−}(DMC)2(EC)1 + EC ⇄ {Li+DFOB−}(DMC)2(EC)2 0.33

{Li+(DFOB−)2
−}(DMC)1(EC)1

{Li+(DFOB−)2
−} (DMC)1 + EC ⇄ {Li+(DFOB−)2

−}(DMC)1(EC)1
0.10

5.94 6.14{Li+DFOB−} (DMC)1(EC)1 + DFOB− ⇄ {Li+(DFOB−)2
−}(DMC)1(EC)1 0.31

{Li+(DFOB−)2
−} (EC)1 + DMC ⇄ {Li+(DFOB−)2

−}(DMC)1(EC)1 0.20

{Li+(DFOB−)2
−}(DMC)1(EC)2

{Li+DFOB−} (DMC)1(EC)2 + DFOB− ⇄ {Li+(DFOB−)2
−}(DMC)1(EC)1

0.61
5.94 5.81

{Li+(DFOB−)2
−} (DMC)1(EC)1 + EC ⇄ {Li+(DFOB−)2

−}(DMC)1(EC)2 0.41
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