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Abstract: This paper aimed to justify the performance of a non-oscillatory TPA-based model proposed
by the authors for capturing transient mix flow in sewer systems consisting of a variety of pipe
shapes. The model utilizes a first-order Godunov Finite volume numerical scheme in which a Harten–
Lax–van Leer (HLL) Riemann solver was used for calculating the fluxes at the cells’ boundaries.
The spurious numerical solution associated with the transient mix flow analysis is suppressed by
enhancing the numerical viscosity of the scheme when the pipe pressurization is imminent. Due
to the lack of experimental data for systems with pipe shapes other than circular and rectangular,
a hypothetical pipe system for which analytical solutions exist was employed to verify the model
performance. The results reveal that for all pipe shapes considered, the model provides oscillation-
free solutions even at a high acoustic speed of 1400 m/s. It is also observed that the numerical results
are in perfect agreement with the analytical solution. The obtained results conclude that the proposed
model can be utilized to capture transient responses of sewer systems with any pipe shape.

Keywords: transient mix flows; sewer systems; numerical modeling; water hammer

1. Introduction

Sewer pipe systems rarely run under steady-state flow conditions as the inflows into
such systems change with time. In dry weather conditions, the flow gradually changes
with time inside the conduits, and quasi-steady open-channel flow is established across the
system. However, when a severe storm occurs, complex transient flows may be onset and
the system undergoes flow regime transition from open channel to pressurized flow. The
induced pressurization front serves as a moving piston and makes the air expelled out of
the system through different components including, drop shafts, manholes, and outfalls.
Fortunately, during pressurization, the available storage in the partially filled conduit can
accommodate the transient flow energy and does not allow the energy to be stored in the
pipe and liquid as strain and compression energy [1]. In such conditions, the elastic feature
of the flow does not play an important role even if the pace of the transient is high, and the
inertia and mass oscillation mainly govern the transient flow.

However, there are some situations in which the elastic feature of the flow becomes
important. Two pressurization hydraulic bores moving in the opposite direction can easily
trap a large air pocket in the conduit. As the entrapped air becomes pressurized, it may
absorb a good portion of the transient energy and can significantly affect the hydraulics of
the system. If the energized air pocket finds its way to the drop shafts or manholes, it can
violently leave the system and produce geysering [2,3]. However, the presence of an air
vent centered at the right position causes the air pocket to leave the system and remove
the risk of geysering. On the other hand, when the last air escapes from the system, the
two adjacent hydraulic bores collide, and depending on the velocities of the adjacent water
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columns, significant water hammer pressures can occur [4]. The generated water hammer
pressure spike will propagate and affect the rest of the pipe located between two adjacent
drop shafts reflecting the pressure spike. The reflected wave may produce intense negative
pressures, followed by column separation in the system.

Available off-the-shelf software such as SWMM [5], InfoWorks [6], etc. can calculate
the most dominant transient flow governed by the flow inertia and mass oscillation in the
system, but they are crippled in capturing those transient flow phenomena governed by
the elastic feature of the flow. To fill this gap, though partially, some in-house computer
programs have been emerged for performing surge analysis in sewer pipe systems [7].
These programs use either shock-fitting or shock-capturing numerical strategies to solve
the one-dimensional momentum and continuity equations governing the transient flow in
sewer systems.

In the shock-fitting strategy, the pressurization front(s) that separate open channel,
and pressurized flow is traced with time through applying the discrete form of continuity,
momentum, and/or energy on either side of the pressurization front [8–10]. Having
calculated the location of the front, the open channel and pressurized flow on either
side of the interface are calculated using their own set of governing equations. Song
et al. [11] employed the shock-fitting method along with the method of characteristic for
analyzing transient mixed flow in sewer systems. Although the method of characteristics
can replicate the pressurized flow quite accurately, it fails to reasonably capture hydraulic
bores in the open-channel flow sections. Abbott and Minns [12] showed that the method of
characteristics cannot conserve mass when applied along a hydraulic bore. Leon et al. [9]
address this issue by solving the conservative form of the governing equations using a finite
volume numerical method. Although the proposed method succeeded in replicating both
open channel and pressurized flow accurately, it suffers from the common disadvantage
of shock-fitting methods, which is the difficultly in handling several interfaces in the
system, as well as in treating the interaction of the interfaces with each other and with the
boundaries of the system. This has made the shock-capturing method the center of interest
among the researchers.

In the shock-capturing method, both open channel and pressurized flow are treated
using the same set of equations utilized for calculating transient open-channel flows.
The most popular method of this type is well-known as the Preissmann slot method
(PSM) [13–15], named after its inventor engineer Preissmann [16]. By a virtual narrow
slot on the crown of the pipe, the flow is assumed to always remain in open-channel flow
condition. The width of the slot is calculated in a way that open channel waves move as fast
as their counterpart elastic waves in pressurized flows; the height of the water in the slot
represents the pressure head of the flow. However, this approach cannot replicate negative
pressures, and as soon as negative pressures tend to occur, the flow switches to open-
channel flow. Kerger et al. [13] resolved this problem by improving the PSM using a virtual
negative slot and showed that their method can accurately replicate negative pressures. By
splitting the pressure term in the momentum equation, Vasconcelos et al. [17] proposed a
novel approach, the two-component pressure approach (TPA), which can capture negative
pressures during transient mixed-flow analysis.

Both PSM and TPA, however, generate spurious numerical oscillation when the flow
regime changes from open channel to pressurized flow. The numerical oscillation intensifies
as the acoustic wave speed considered in the calculation increases, and therefore, beyond a
certain level, it makes the solution unstable and worthless. One approach to control the
numerical oscillation is to artificially reduce the wave speed, but this approach is acceptable
as long as the physics of the problem is not distorted. In a flow condition that is governed
by inertia and mass oscillation, transient flow is independent of the wave speed, and this
approach works well, though due to a considered wider slot, some artificial storage is
added to the system, resulting in extra non-physical pressure attenuation [18]. However,
when the elastic feature of the transient flow becomes of significant importance, reducing
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the wave speed compromises the results by distorting the magnitude and distribution of
the resulting pressures.

Vasconcelos et al. [19] proposed numerical filtering and hybrid flux approaches to sup-
press the spurious numerical oscillations and showed that these approaches can reasonably
control the numerical oscillations if the acoustic wave is below a certain level (100 m/s).
Malekpour and Karney [14] proposed an approximate HLL solver that can remove the
numerical oscillation in the PSM even when the acoustic speed exceeds 1000 m/s; the
validity of his method has been independently confirmed by others [20].

Objective and Organization of the Paper

Recently, Khani et al. [21] employed the approximate HLL solver proposed by Malekpour
and Karney [14] in conjunction with TPA and showed that the solver can effectively remove
the numerical oscillations for as high acoustic wave speed as 1000 m/s, though the validity
of the model was tested for pipes with circular sections and rectangular cross sections.
However, in real sewer pipe systems, a variety of pipe shapes can be used, and therefore,
further investigation is required to find out if this model can be utilized in practice. To
fill this gap, this paper aimed to verify whether the performance of the model is retained
when applied to other pipe cross sections.

The paper’s organization is as follows: Theoretical background including governing
equations, TPA, and the numerical solution is first described, and the hypothetical example
and its associated analytical solution utilized for validation of the produced numerical
results are then discussed. In the next stage, the numerical results are compared with the
analytical solutions and finally, the conclusions are made.

2. Theoretical Backgrounds
2.1. Governing Equations

Unsteady flows in open channels are governed by the following partial differential equa-
tions representing the conservative form of the continuity and momentum equations [22]:

∂U
∂t

+
∂F
∂x

= S (1)

where the vectors U, F, and S are the flow variables, fluxes, and source terms, respectively,
and shown in the following:

U =

[
A
Q

]
; F =

[
Q

Q2

A + Agh

]
; S =

[
0(

S0 − S f

)
gA

]
; S f =

Q2n2

A2R
4
3

where A = flow cross-sectional area, Q = flow rate, h = distance between the free surface and
the centroid of the flow cross-sectional area, S0 = pipe slope, S f = energy grade line slope,
R = flow hydraulic radius, n = Manning coefficient, and g = gravitational acceleration.

2.2. TPA

By a smart trick, the above equation can be also used for calculating pressurized
flows. In PSM, a narrow slot above the crown of the pipe allows the flow to remain in
an open-channel flow regime even when the pipe is surcharged. The width of the slot is
selected narrow enough to make sure that, while the flow is in the slot the open channel
wave velocity replicates the acoustic wave speed of the pipe. The following equation relates
the slot width and pipe acoustic speed:

TS =
gA f

a2 (2)

where TS, A f , and a are the slot width, the cross-sectional area of the pipe, and the acoustic
speed of the pipe, respectively.
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In TPA [21], in order to use Equation (1) for pressurized flow, the flow depth in the
momentum flux split into two terms, as shown in the following:

F =

[
Q

Q2

A + Ag(hc + hs)

]
(3)

In this equation, hc represents the distance between the water surface and the centroid
of the flow cross-sectional area, and hs measures the surcharging head. When the pipe car-
ries open-channel flows, the surcharging head is set to zero, and the flux becomes identical
to its original form presented in Equation (1). However, when the pipe is pressurized, hc
remains constant at the maximum height of the pipe, and hs measures the pressure head of
the system. Since the pipe can expand and contract when exposed to positive and negative
surcharging pressure heads, the flow cross-sectional area is a function of the pressure head
and acoustic speed of the pipe and can be calculated using the following equation:

A = A f

(
1 +

ghs

a2

)
(4)

where a = pipe acoustic speed.
Note that when the pipe tends to be depressurized at a specific location with adequate

ventilation, the flow is switched back to open-channel flow, and hs is reset to 0. However,
lack of ventilation causes the pipe to receive negative pressures, and in such conditions, hs
measures the magnitude of the negative pressure head, and hc remains unchanged and
represents the maximum height of the pipe.

3. Numerical Solution

In this work, the Godunov scheme was utilized to numerically solve the governing
equations. The Godunov scheme is an explicit finite volume approach that is widely used
in solving hyperbolic partial differential equations. The computational domain in this
approach is discretized into some computation cells with a spatial length of ∆x. The order
of accuracy in the Godunov scheme depends on how the data are reconstructed in the
computational cells. Piecewise constant data reconstruction provides the first order of
accuracy, while a piecewise linear data reconstruction leads to a second-order accurate solu-
tion. Since first-order numerical schemes are generally more dissipative than second-order
schemes, they better fit into the existing application because, as shown by Malekpour and
Karney [14], lack of adequate numerical viscosity of the scheme during the pressurization
of the conduit is the main cause of the production of the spurious numerical oscillations.

By discretizing Equation (1), unknowns at the current time level can explicitly be
calculated based on the data retrieved from the previous timeline using the following
equation:

Un+1
i = Un

i −
∆t
∆x

(
Fn

i+ 1
2
− Fn

i− 1
2

)
+ ∆t × Sn

i (5)

where subscript i is the computational cell number, i + 1
2 and i − 1

2 refer to the upstream
and downstream boundaries of ith cell, respectively, n and n + 1 refer to the previous and
current timelines, respectively, and ∆t is the computational time step.

In the Godunov scheme, the fluxes at the cell boundaries are calculated by solving
the Riemann problem, which is defined as a hyperbolic system of equations with a flow
discontinuity. Although the exact Riemann solution is available for the current system of
equations, considering the iterative nature of the solution, it compromises the efficiency
of the numerical analysis. To resolve this problem, approximate Riemann solutions can
also be utilized to speed up the calculations [23]. Several approximate Riemann solutions
have been proposed, including Roe, HLL, and Harten–Lax–van Leer–contact (HLLC) [24],
among which the HLL Riemann solution is one of the most efficient ones, and thus, we
utilized it in this study.
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The HLL Riemann solution assumes that the generated waves on either side of the
discontinuity are both of shock wave type. Figure 1 describes the wave structure in the
HLL solver.
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The speed of the left and right waves can be easily approximated by the following
equations [25]:

SL = VL − ΩL

SR = VR + ΩR

where indexes L, R refer to the left and right waves, respectively, and ΩL and ΩR can be
calculating by the following equation:

ΩK(K=L, R) =


√

g[YG AG−(hs+hc)K AK ]AG
AK(AG−AK)

i f AG > AK

CK i f AG > AK

(6)

CK in Equation (6) is the gravity wave speed and calculated by the following equation
and the index G, as discussed later, refers to a reference condition through which one can
control the wave speeds:

CK =
√

gDK

where D is the hydraulic depth.
Having the SL and SR calculated, the fluxes can be approximated as follows:

F∗ =


FL i f SL > 0

SRFL−SLFR+SLSR(UR−UL)
SR−SL

i f SL ≤ 0 and SR ≥ 0

FR i f SR < 0

(7)

As can be seen, when SL is positive, the flow regime is of supercritical type, and
the flux at the star zone is equal to FL. If the right wave moves to the left, the flow is
supercritical, but it moves in the opposite direction. In such a condition, the upstream
condition prevails, and the flux at the star zone becomes equal to FR. In other conditions,
the flow is subcritical, and the flux at the star zone is affected by both upstream and
downstream flow conditions.

Although the fluxes presented in Equation (7) provide stable results over a wide range
of flow conditions, it produces strong spurious numerical oscillations when the flow is
being switched from an open channel to a pressurized flow. The induced oscillation is
due to the significant change in the magnitude of the wave speed during the pressuriza-
tion [14]. It is also found that during the pressurization, the numerical scheme fails to
admit adequate numerical viscosity to suppress the numerical oscillation. Obviously, to
control the numerical oscillation, artificial viscosity has to be added to the scheme when
the pressurization occurs.

In the Godunov type finite volume scheme, the amount of artificial viscosity of the
scheme can be controlled by changing the wave speeds based on which the fluxes are
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calculated. YG in Equation (6) is to control the magnitude of the wave speed whenever
required. Since the numerical oscillation is set up during the pressurization, it seems
that the best place to increase the artificial numerical viscosity is the computational cell
containing the pressurization front. However, increasing artificial viscosity only at the cell
containing pressurization front gives rise to spurious numerical oscillation in the neighbor
cells. To resolve this issue, it was found that the artificial viscosity should be distributed
around the computational cell with a pressurization front.

If YG is greater than the height of the conduit, the wave velocity calculated by
Equation (6) does not differ from the gravity wave velocity except in the vicinity of the
conduit roof. In other words, by using Equation (6), significant artificial velocity is admitted
to the numerical scheme only when the water surface in the conduit becomes very close
to the conduit roof, and the conduit is about to become pressurized. Extensive numer-
ical experiments by Malekpour and Karney [14] resulted in the following formula for
calculating YG:

YG = Ka × MAX [di−NS, di−NS+1, . . . , di, di+1, . . . dNS] (8)

where d = hc + hs.
By using the above equation, the maximum d is calculated within a number of cells

(NS) located on either side of the ith cell for which the wave velocity is being calculated. YG
is then calculated by multiplying the maximum d by the factor Ka. In this way, numerical
viscosity is distributed within a number of cells rather than being injected just in one cell.
If all d’s are greater than the conduit height, the system is pressurized, and a Ka = 1.001
would provide reasonable results. When there is a pressurization front located within the
cells, the numerical viscosity is further intensified by applying Ka = 1.4. The number of
cells (NS) considered depends on the resolution of the computational grid and should
be selected such that the numerical viscosity is adequately distributed on either side of
the computational cell for which the wave velocity is being calculated. Malekpour and
Karney [14] suggested that the number of cells should cover a distance equal to at least
three times as large as the conduit height, but in any case, it should not be less than three
cells. If the ith computational cell is found near a boundary, we should also incorporate the
flow depth at the boundary point into Equation (8).

3.1. Conduit Geometry

As mentioned earlier, the aim of this paper is to justify if the non-oscillatory TPA
model proposed by Khani et al. [21] for calculating transient mix flow in circular and
rectangular pipe cross sections performs equally well when other pipe shapes are used
in the calculations. The most popular pipe shapes are assumed to be those supported by
the program SWMM and presented in Figure 2. However, for the sake of generality, the
custom shape whose dimensions can be defined by the users is also tested.

For the custom shape, the width of the conduit, W, at different heights needs to be
defined; an example of such data is presented in Table 1. Note that the values of the table
are non-dimensional with respect to the height of the conduit, Yfull.

Shapes 1, 2, and 3 are all defined by the maximum height and maximum width of
the pipe, while shapes 4 to 10 can be defined by just the maximum height of the pipe.
Shape 12 is characterized by three parameters including maximum height, top width, and
triangle height. Similarly, maximum height and top width define Shape 13 but instead of
the triangle height, the bottom radius is used. Shape 14 is defined by maximum height,
bottom width, and top radius.
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Table 1. Non-dimensional geometry information for the custom shapes considered in the study.

Y
Yfull

W
Yfull

Y
Yfull

W
Yfull

0.00 0.000 0.56 0.928
0.08 0.667 0.64 0.874
0.16 0.930 0.72 0.798
0.24 1.000 0.80 0.697
0.32 0.997 0.88 0.567
0.40 0.988 0.96 0.342
0.48 0.967 1.00 0.000

The numerical solution uses the information related to the pipe geometry including
flow area, top width, and hydraulic radius as a function of depth and flow depth as a
function of flow area. For shapes 12, 13, and 14, all these parameters can be calculated
analytically but for the other shapes, they should be interpolated from some precalculated
tables. These tables are formed by calculating the geometry parameters at the incremental
depths from the bottom to the top of the conduit. For the sake of generality, these data are
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stored in non-dimensional form with respect to the maximum height of the conduit. In
this research, for the shapes 1 to 10, the data used by SWMM [26] were utilized. For the
custom shape, the data defined by the user (an example of which is presented in Table 1)
were employed to calculate the geometry-related parameters.

3.2. Model Verification

The validity of the proposed model, as well as its performance with regard to the
suppression of the spurious numerical oscillations, were justified once before [21] through
comparing the model results with the data obtained from a few experimental studies
and analytical solutions but the investigation remained limited to the pipe systems with
circular and rectangular shapes. Unfortunately, to the best of the authors’ knowledge,
there is no experimental study on transient mixed flow in pipes with pipe shapes other
than rectangular circular. Thus, in this research, an analytical solution was employed as a
benchmark for verifying the model performance.

The analytical solution consists of a horizontal-frictionless conduit with the maximum
height and the total length of 1 and 500 m, respectively. A reservoir at the upstream end of
the pipe supplies the pipe and a reservoir at the downstream end collects the flow. The
same water depth = 0.5 m at the upstream and downstream reservoirs made the pipe
initially contains a stagnant water column with a depth of 0.5 m. By suddenly increasing
the upstream reservoir level from 0.5 m to 6 m, a hydraulic bore is set up and moves along
the pipe with a constant speed called wave speed. Over a specific period, the location of
the wavefront can be easily calculated using the wave speed.

Different components of the moving hydraulic bore can be analytically calculated by
applying the discrete form of continuity and momentum equations on a frame of reference
moving with the same speed, as the hydraulic bore shown in Figure 3.
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YA − gY0A0 = (V − VW)A

V −
=0︷︸︸︷
V0

 Momentum Equation (9)

 =0︷︸︸︷
V0 − VW

A0 = (V − VW)A Continuity Equation (10)

where Y = distance between the HGL and the centroid of the pipe cross-sectional area,
Y0 = distance between the free surface and the centroid of the flow cross-sectional area,
A = pipe cross-sectional area, V = flow velocity in the pressurized section, and VW = moving
hydraulic bore speed.

The above equations contain three unknowns of V, VW, and Y and for being in the
closed form, they need an extra equation, which is the energy balance on the upstream side
of the system.

H = Y +
V2

2g
The energy balance at the upstream end of the conduit (11)

To calculate the three unknowns of the problem, Equations (9)–(11) can be solved
simultaneously by any iterative method such as the Newton–Raphson method. Having
the speed of the hydraulic bore calculated, the location of the pressurization front can be
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calculated at any given time after the formation of the bore. This method was applied to
the hypothetical pipe system with all pipe shapes shown in Figure 1, and the results are
summarized in Table 2.

Table 2. Analytical solution for different pipe shapes.

Pipe Shape Dimensions
(in meter) Y (m) HGL

(m) V (m/s) Wv
(m/s)

Location of the
Bore (m)

1 I = 1; II = 2 4.20 104.20 5.94 11.88 356.54
2 I = 1; II = 0.5 4.20 104.20 5.94 11.88 356.33
3 I = 1; II = 2 4.52 104.52 5.39 12.39 371.66
4 I = 1 3.91 103.91 6.40 11.54 346.10
5 I = 1 4.34 104.34 5.71 12.06 361.89
6 I = 1 4.32 104.32 5.73 12.06 361.69
7 I = 1 4.50 104.50 5.43 12.34 370.21
8 I = 1 4.59 104.59 5.26 12.53 375.97
9 I = 1 4.45 104.45 5.52 12.26 367.88

10 I = 1 4.50 104.50 5.43 12.34 370.16
11 I = 1 4.44 104.44 5.53 12.26 367.76
12 I = 1; III = 1; IV = 0.3 3.69 103.69 6.73 11.37 341.22
13 I = 1; III = 1; VII = 2 4.15 104.15 6.02 11.79 353.83
14 I = 1; V = 1; VI = 10 4.22 104.22 5.91 11.87 356.13

Note: I = maximum height; II = maximum width; III = top width; IV = triangle height; V = bottom width; VI = top
radius; VII = bottom radius.

4. Numerical Results

For all test cases shown in Table 2, the model was run, and the hydraulic bore motion
was numerically traced in 30 s. Since the spurious numerical oscillations are intensified
at higher wave speeds, to make sure that the model provides oscillation-free solutions,
the most possible acoustic speed that can occur in pipes (1400 m/s) was considered in the
calculations. The numerical calculations were performed using 200 computational cells
and the Courant number of 0.5, which resulted in a time step of 0.000911 s. Note that the
fine computational grid was selected herein to better capture the hydraulic bore interface.
The sharp interface can also give rise to small numerical wiggles in the solution regardless
of the dissipative fluxes proposed in this research. Numerical exploration shows that the
wiggles’ amplitude is reduced as the Courant number decreases. At Courant 0.5, it is found
that the wiggles disappeared.

Figures 4–8 compare the numerical results with the analytical solutions. The figures on
the left compare the hydraulic grade line calculated by the model with that of the analytical
solution at 30 s after the start of the simulation. The solid and dashed lines represent
analytical and numerical solutions, respectively, for the figures showing the HGL along the
pipe. In the figures demonstrating the HGL and flow velocity-time histories, the dashed
and solid lines refer to HGL and velocity, respectively. As can be seen for all pipe shapes,
the numerical results are in excellent agreement with the analytical solution, and there
is no sign of numerical oscillation in the results. The figures on the right represent the
time histories of the HGL and flow velocity at the middle of the conduit. It is obvious
that no numerical oscillation is produced during the pressurization of the pipe for all pipe
shapes considered. However, the time histories of the flow velocity contain tiny wiggles,
which are significant. The calculated velocities and the pressure heads of the water column
behind the hydraulic bore are compared with those obtained from the analytical solution,
and the results are summarized in Table 3. The table shows that the model captures the
flow velocity for all pipe shapes quite accurately with an error ranging between 0.0702%
and 0.1433%. Likewise, the calculated pressure heads are in excellent agreement with the
analytical solution and the errors change from 0.0350% to 1.2149%.
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Summary and Conclusions

A TPA-based numerical model was proposed for capturing transient mixed flows in
a variety of pipe shapes. The model utilizes the first-order Godunov-type finite volume
scheme to explicitly solve the governing equations. An HLL Riemann solver was proposed
to calculate the numerical fluxes at the cells’ boundaries. To suppress the spurious numeri-
cal oscillations, the solver automatically increases the amount of the numerical viscosity of
the computational cells located in the vicinity of the pressurization front.
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Due to the lack of experimental results, the model performance was evaluated by using
a hypothetical pipe system for which an analytical solution exists. Since the numerical
oscillations intensify with increasing the pace of pressurization of the pipe, the hypothetical
system was intentionally designed to give rise to a fast pace filling to make sure that
the model is verified in the worst condition. Comparing the numerical results with the
analytical solutions show that the model enables to successfully capture the hydraulics
of the transient mixed flows quite accurately and can efficiently suppress the numerical
oscillations even at as high acoustic pipe speed as 1400 m/s.

The model can perform well even at the worst condition, which is the combination of
using very high pipe acoustic speeds and fast rates of pipe filling, confirming that it can be
safely used for calculating transient mixed flows in real pipe systems, which may consist
of a verity of pipe shapes.
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Table 3. The comparison of numerical results with analytical solutions.

Pipe
Index

Y
(Analytical)

(m)

Y
(Numerical)

(m)

Error
(%)

V
(Analytical)

(m/s)

V
(Numerical)

(m/s)

Error
(%)

1 4.2003 4.1974 0.0689 5.9423 5.9484 0.1032
2 4.2024 4.1784 0.5709 5.9388 5.9447 0.0998
3 4.5198 4.5004 0.4278 5.3891 5.3930 0.0734
4 3.9104 3.9417 0.7990 6.4029 6.4121 0.1433
5 4.3367 4.3455 0.2025 5.7125 5.7175 0.0861
6 4.3238 4.3253 0.0350 5.7348 5.7399 0.0882
7 4.4973 4.5160 0.4149 5.4298 5.4336 0.0702
8 4.5904 4.6066 0.3532 5.2590 5.2655 0.1242
9 4.4480 4.4647 0.3769 5.5183 5.5224 0.0746

10 4.4977 4.5161 0.4079 5.4291 5.4330 0.0724
11 4.4403 4.4571 0.3783 5.5319 5.5362 0.0772
12 3.6913 3.7362 1.2149 6.7303 6.7130 0.2567
13 4.1505 4.1523 0.0445 6.0239 6.0305 0.1092
14 4.2187 4.1926 0.6194 5.9118 5.9171 0.0898
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Figure 8. The comparison of numerical results with the analytical solution: (a1) HGLs in Rectangular-
Round shape pipe; (a2) HGL and velocity time histories in Rectangular-Round shape pipe; (b1) HGLs
in Modified Basket Handle shape pipe; (b2) HGL and velocity time histories in Modified Basket
Handle shape pipe.
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