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Theoretical and mathematical background:  
The main, well-established argument of the semiconductor's tunneling mechanism is 

that the electron is considered a continuous wave function. When a wave function inci-
dent at the barrier, part of the wave is transmitted through the barrier, and part of the 
wave is reflected back. Hence, the transmitted wave is considered as tunneling electrons. 
Two possible cases could arise that the particle's total energy can either be higher than the 
potential barrier or lower than the potential barrier. If the particle energy is sufficiently 
high enough, it can roll over the barrier that meets classical mechanics. But if the particle 
energy is not sufficiently high enough, then tunneling happens. 

To explain this tunneling phenomenon, we have considered the one-dimensional 
Schrödinger wave equation as follows − ℏ2𝑚∗ ∆ + 𝑉 𝑥 Ψ 𝑥 = 𝐸Ψ 𝑥  (1)

Where the 𝑚∗ is effective mass, ℏ is plank constant, V(x) is barrier height and con-
sidered piecewise constant. It will not be straightforward if the V(x) varies with the posi-
tion in the x-direction. For a thin rectangle potential barrier, the height at the Interface can 
have three different zones. If "a" is the barrier's thickness, the incident wave would see 
barrier height, V=0 before and after the transmission, but its height is considered V=Vo in 
the middle of the barrier. So, in three regions, the Schrödinger wave equation can be writ-
ten as follows: − ℏ ∗ ∆ + 𝑉 𝑥 Ψ 𝑥 = 𝐸Ψ 𝑥 , region 1: [x<0 and V=0] (2)

− ℏ ∗ ∆ + 𝑉 𝑥 Ψ 𝑥 = 𝐸Ψ 𝑥 , region 2: [x<0<x<a and V=V0] (3)

− ℏ ∗ ∆ + V x Ψ x = EΨ x , region 3: [x>a and V=0] (4)

The solutions of equation (2–4) can be assumed as follows: Ψ 𝑥 = 𝐴𝑒 +  𝐵𝑒  (5)Ψ 𝑥 = 𝐶𝑒 +  𝐷𝑒  (6)Ψ 𝑥 = 𝐸𝑒 +  𝐹𝑒  (7)
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Where 𝑘 = 2𝑚∗𝐸/ℏ , 𝑘 = 2𝑚∗ 𝐸 − 𝑉 /ℏ  and 𝑘 = ∗ℏ = 𝑘  
Since there is no potential disturbance after the wave is wholly transmitted in the 3rd 

region, F=0, the probability of finding an electron in region 3 is constant and like to appear. 
After considering so many boundary conditions and solving equation (5–7), it can be writ-
ten as follows: 𝐵𝐴 = 𝑘 − 𝑘 1 − 𝑒𝑘 + 𝑘 − 𝑘 + 𝑘 𝑒  (8)𝐹𝐴 = 4𝑘 𝑘 𝑒𝑘 + 𝑘 − 𝑘 + 𝑘 𝑒  (9)

The tunneling probability is the modulus squared of the transmitted wave ratio to 
the incident wave function. So it can be defined as: 𝑇 = 𝐹𝐴 =  4𝐸 𝑉 − 𝐸𝑉 𝑠𝑖𝑛ℎ 𝑘 𝑎 + 4𝐸 𝑉 − 𝐸  (10)

In the case of a thick barrier, the electron wave will be reflected even the total given 
energy is greater than the barrier height potential. Hence all-electron can't tunnel through 
the potential barrier. Figure S1 shows a schematic illustration of the energy bandgap with 
an ultra-thin oxide tunneling layer. The conduction band offset (ΔEC) for different ul-
trathin oxides with n-GaAs, considered at the tunneling barrier potential for electrons. 
Similarly, the valence band offset (ΔEV) for various ultra-thin oxides with p-Si. The elec-
tron and hole can easily tunnel thru the oxides if the thickness gets thinner.  

 
Figure S1. A schematic illustration of energy bandgap with (a–c) UO interfacial layers with n-GaAS and (d–f) UO interfa-
cial layers with p-Si. 

A COMSOLTM Multiphysics simulation was carried out to calculate the strain for dif-
ferent oxides and 2D materials induced at the heterointerface between p-Si and n-GaAs. 
A temperature-dependent strain calculation for different oxides (Al2O3, HfO2, SiO2) and 
2D materials (graphene, h-BN) have been shown in Figure S2.  
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Figure S2. Simulated strain values of (a–c) UO interfacial layers and (d,e) 2D materials with different thicknesses as a 
function of temperature. 

Table S1. The parameters for oxides (HfO2, Al2O3, and SiO2) and 2D materials (h-BN and graphene) that are used to cal-
culate the transport property of the heterojunctions [1–27]. 

 HfO2 Al2O3 SiO2 h-BN Graphene 

Electron Effective mass 
(me*) 0.13 mo [1] 0.32 mo [2] 0.5 mo [3] 0.26 mo [4,5] 

Monolayer: 0.012 mo [6] 
Bilayer: 0.041 mo [7] 
Trilayer: 0.052 mo[8] 

Hole Effective mass 
(mh*) 0.58mo [9] 0.36mo [10] 0.33mo [11] 

0.47 mo 
[12,13] 

Monolayer: 0.013 mo 
Bilayer: 0.036 mo [14] 
Trilayer: 0.038 mo[15] 

Band Gap (eV) 5.70 [1] 8.70 [1] 9.0 [1] 5.97 [17] Close to 0, no more than 0.3 
[16] 

p-Si: Conduction band 
offset/barrier (eV) 1.5 [1] 2.8 [1] 3.1 [1] 1.0, 1.5 [17] 

Monolayer: −0.74 eV  
Bilayer: −0.45 eV  
Trilayer: −0.46 eV  

p-Si: Valence band off-
set/barrier (eV) 3.1 4.80 4.90 4.97, 4.47 

Monolayer: 0.74 eV 
Bilayer: 0.45 eV 
Trilayer: 0.46 eV 

n-GaAs: Conduction 
band offset/barrier (eV) 1.9  2.33 [18] 3.7 [19] 1.02 [20] 

Monolayer: −0.68 eV [21] 
Bilayer: −0.75 eV [21] 

Trilayer: −0.78 [22] 

n-GaAs: Valence band 
offset (eV) 

2.38 4.95 3.88 4.95 
Monolayer: 0.68 eV 

Bilayer: 0.75 eV 
Trilayer: 0.78 eV 

Density (g/cm−3) 9.68 3.98 2.65 2.1 2.267 
Thermal expansion coef-

ficient (/K) 
6 [23] 4.4×10−6 [24] 0.56 [25] 7.2 [26] −3.75 [27] 
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