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Abstract: In this paper, a link of fixed capacity is considered that services calls from different service-
classes. Calls arrive in the link according to a Poisson process, have an initial (peak) bandwidth
requirement while their service time is exponentially distributed. We model this system as a multirate
loss system and analyze two different multirate loss models. In the first model, named probabilistic
retry loss model, if there is no available link bandwidth, a new call is blocked but retries with a lower
bandwidth requirement and increased service time. To allow for the fact that a blocked call may be
impatient, we assume that it retries with a probability. In the second model, named probabilistic
threshold loss model, a call may reduce its bandwidth requirement (before blocking occurs) based on
the occupied link bandwidth. To determine call blocking probabilities in both multirate loss models,
we show that approximate but recursive formulas do exist that provide quite satisfactory results
compared to simulation.
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1. Introduction

Multirate loss models (MLMs) are widely adopted in the literature for the determina-
tion of call blocking probabilities (CBP), a significant performance index in contemporary
multiservice networks [1,2]. Among the MLMs, the basis is considered to be the Erlang
MLM (EMLM) not only because CBP can be efficiently determined via the Kaufman-
Roberts recursive formula [3,4] but also due to the fact that it has been widely adopted for
the CBP computation in various types of networks (from wired [4–16], to optical [17–20],
wireless [21–34] and even satellite networks [35–38]).

The EMLM is used for the analysis of a link of certain capacity (in terms of bandwidth
units (b.u.)) that services calls of different service-classes with various bandwidth require-
ments. The call arrival process in the link is Poisson while the available b.u. are shared
via the complete sharing policy. According to this policy, a new call will be accepted in
the link if there exist available b.u. at the time of the call’s arrival. Otherwise call blocking
occurs. An accepted call remains in the link for a generally distributed service time. The
fact that the steady state probabilities in the EMLM have a product form solution (PFS) is
significant for the derivation of the classical Kaufman–Roberts formula, which leads to the
accurate (compared to simulation) CBP computation [3,4].

In [39,40], two extensions of the EMLM are proposed. In the first extension, blocked
calls may immediately retry to be accepted in the link with a reduced b.u. requirement and
an increased service time. In that case, we have a retry loss model. Call blocking occurs if
the reduced b.u. are not available. In the second extension, the b.u. requirement of a new
call depends on the occupied link bandwidth. If the occupied link bandwidth is above a
threshold (which is common for all service-classes), then the new call tries immediately to
be accepted in the link with a reduced b.u. requirement and consequently an increased
service time. In that case, we have a threshold loss model. Call blocking occurs if the
reduced b.u. are not available. Conceptually, the main difference between the two loss
models is that in a threshold loss model, a new call does not have to be blocked with its
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initial bandwidth requirement in order to retry with a reduced value. It is the value of the
threshold and the occupied link bandwidth that decide with which bandwidth requirement
(the initial or the reduced), a new call will try to be accepted in the link. Note that in both
models, calls may have elastic bandwidth requirements but fixed bandwidth allocation (the
initial or the reduced bandwidth requirement) during their service time. Because of this,
we classify the models of [39,40] as models that consider stream traffic. This is different
from the case of elastic traffic where the bandwidth of in-service calls fluctuates during
their service time [2,13].

In this paper, we focus on both loss models and study the case where a call may wish
to enter a system with a reduced b.u. requirement and consequently increased service
time, with a predetermined probability. Such a probability expresses the fact that the
increased service time may cause impatience to calls and therefore may decide not to enter
a system, although the reduced b.u. are available. The steady-state probabilities in both
loss models cannot be described via a PFS due to the existence of retry (in the retry loss
model), the existence of the threshold (in the threshold loss model), and the incorporation of
impatience (in both models). However, we propose approximate formulas for the recursive
computation of the link occupancy distribution and consequently CBP whose accuracy is
validated via simulation.

Note that the characteristic of impatient calls that retry has received attention in the
literature under the assumption of queueing (and not loss) systems and single-rate (and
not multirate) service-class calls, which require a single b.u. for their service. The interested
reader may resort to [41–44] for the analysis of such queueing models.

The organization of this paper is the following: In Section 2, we review the probabilistic
retry loss model of [45]. In Section 3, we propose the probabilistic threshold model and
provide recursive formulas for the computation of both the link occupancy distribution
and CBP. In Section 4, simulation and analytical results are provided so as to validate the
accuracy of the proposed formulas. We conclude in Section 5. Finally, in Appendix A,
we present a tutorial example in order to show the intermediate calculations for the CBP
computation in the probabilistic threshold loss model.

2. The Probabilistic Retry Loss Model

In the probabilistic retry loss model, a link of capacity C b.u. services calls from K
service-classes. Service-class k (k = 1, . . . , K) calls arrive in the link according to a Poisson
process with an arrival rate λk and have an initial (peak) bandwidth requirement of bk
b.u. If these bk b.u. are available, then a new service-class k call remains in the link for
a service-time, which is exponentially distributed with mean µ−1

k . If the available link
b.u. are less than bk, then the new call is blocked and may: (1) Abandon the link with
probability 1 − pkr or (2) immediately retry to be connected in the system with probability
pkr, reduced bandwidth requirement bkr < bk and increased service time µ−1

kr > µ−1
k given

by µ−1
kr = bkµ−1

k /bkr (see Figure 1, where the call admission mechanism of [39] does not
include the grey parts).

The steady state probabilities in the probabilistic retry loss model cannot be deter-
mined via a PFS. However, it is proved in [45] that the computation of the link occupancy
distribution, q(j), with j = 0, 1, . . . , C, is based on the following recursive formula:

q(j) =


1, if j = 0
1
j

(
K
∑

k=1
αkbkq(j− bk) +

K
∑

k=1
αkr pkrbkrγk(j)q(j− bkr)

)
j = 1, . . . , C
0, otherwise

(1)

where αk = λkµ−1
k is the offered traffic-load of service-class k calls, αkr = λkµ−1

kr is the retry
offered traffic-load of service-class k calls accepted in the link with their reduced bandwidth
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requirement (bkr b.u.), pkr is the retry probability of blocked calls of service-class k while
γk(j) = 1 when j > C − (bk − bkr).
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Figure 1. The call admission mechanism for a new call in the probabilistic retry loss model. 
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Figure 1. The call admission mechanism for a new call in the probabilistic retry loss model.

In order to derive (1), we assume that: (1) Local balance exists between adjacent states,
which is correct in models whose steady state probabilities have a PFS and (2) retry calls
do not exist in the link (i.e., the occupied link bandwidth from such calls is considered to
be negligible) when the link occupancy j does not exceed the retry boundary, i.e., when
j ≤ C − (bk − bkr). The second assumption is expressed in (1) via γk(j).

Having computed, via (1), the unnormalized values of q(j)’s, we can now calculate
the CBP of service-class k calls with their reduced bandwidth requirement of bkr b.u., Bkr,
as follows:

Bkr = (1− pkr)
C−bkr

∑
j=C−bk+1

G−1q(j) +
C

∑
j=C−bkr+1

G−1q(j) (2)

where G =
C
∑

j=0
q(j) is the normalization constant.

Similarly, we may also obtain the CBP of service-class k calls with their initial (peak)
bandwidth requirement of bk b.u., Bk, and the conditional CBP denoted as
B∗kr = Prob{Bkr|j > C− bk } via (3) and (4), respectively:

Bk =
C

∑
j=C−bk+1

G−1q(j) (3)

B∗kr = Prob{Bkr|j > C− bk } =
Bkr
Bk

(4)

Additionally, we can determine the mean number of in-service calls of service-class k,
nk, accepted in the link with bk b.u. via the formula:

nk =
C

∑
j=1

yk(j)
q(j)
G

(5)

where yk(j) refers to the mean number of service-class k calls with bk b.u. in state j.
The latter can be determined via the formula:

yk(j) =
αkq(j− bk)

q(j)
(6)
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Similarly, we can compute the mean number of in-service calls of service-class k, nkr,
accepted in the link with bkr b.u. via the formula:

nkr =
C

∑
j=1

ykr(j)
q(j)
G

(7)

where ykr(j) refers to the mean number of service-class k calls with bkr b.u. in state j.
The latter can be determined via the formula:

ykr(j) =
αkr pkrγk(j)q(j− bkr)

q(j)
(8)

The percentage of calls accepted in the system with bkr b.u. can be obtained as
(nkr/(nk + nkr))× 100%.

3. The Proposed Probabilistic Threshold Loss Model

In the proposed probabilistic threshold loss model, a link of capacity C b.u. services
calls from K service-classes. Service-class k (k = 1, . . . , K) calls arrive in the link according to
a Poisson process with an arrival rate λk and have an initial (peak) bandwidth requirement
of bk b.u. and a reduced bandwidth requirement of bkc b.u. Contrary to the probabilistic
retry loss model, in this model, it is the value of j (the occupied bandwidth of the link)
together with the value of the threshold J0 ≤ C− bk that are closely related to the bandwidth
requirement (initial or reduced) a new call will use in order to enter the system. More
specifically, the call admission mechanism applied in the case of a new service-class k call is
the following: (a) Assuming that j ≤ J0 then the call will be accepted in the link with bk b.u.
and will be serviced for an exponentially distributed service time with mean µ−1

k , and (b)
assuming that j > J0 then the call will: (b1) abandon the link with probability 1-pkc or (b2)
try to be connected in the system with probability pkc, reduced bandwidth requirement
bkc<bk and increased service time µ−1

kc > µ−1
k computed as µ−1

kc = bkµ−1
k /bkc. Needless to

say, if the bkc b.u. are not available then the call will be blocked (see Figure 2, where the call
admission mechanism of [38] does not include the grey parts).

To determine the unnormalized values of q(j)’s, we initially consider the case of three
service-classes whose calls are serviced by a link of capacity C and have the following call
arrival parameters (λ1, λ2, λ3) and service parameters (b1, b2, b3), (µ1, µ2, µ3). Assuming
that j > J0, then calls of the third service-class have the choice to enter the system with
probability p3c, reduced bandwidth requirement b3c < b3, and increased service time
µ−1

3c > µ−1
3 computed as µ−1

3c = b3µ−1
3 /b3c. Contrary to the calls of the third service-class,

calls of the first and second service-classes do not have the option to enter the system with
a reduced bandwidth requirement.
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Figure 2. The call admission mechanism for a new call in the probabilistic threshold loss model. 
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The derivation of a recursive formula for the computation of q(j)’s, requires the
assumption (approximation) that local balance exists between the adjacent states: (a) j− bk
and j for k = 1, 2, 3 and (b) j− bkc and j for k = 3. More precisely, we consider the following
local balance equations for calls of the first two service-classes and j = 1, . . . , C:

λ1b1q(j− b1) = y1(j)b1µ1q(j) (9)

λ2b2q(j− b2) = y2(j)b2µ2q(j) (10)

where y1(j) and y2(j) refer to the average number of first and second service-class calls,
respectively, that exist in the system in state j.

Regarding the local balance equations for calls of the third service-class, we have the
following two equations for calls accepted with their initial bandwidth requirement and
calls accepted with their reduced bandwidth requirement:

λ3b3q(j− b3) = y3(j)b3µ3q(j), for j− b3 ≤ J0 (11)

λ3 p3cb3cq(j− b3c) = y3c(j)b3cµ3cq(j), for j− b3c > J0, (12)

where y3(j) refers to the average number of the third service-class calls with b3 b.u. that
exist in state j while y3c(j) refers to the average number of the third service-class calls with
b3c b.u. that exist in state j.

Based on (9)–(12) and since αk = λkµ−1
k for k = 1, 2, 3 and αkc = λkµ−1

kc for k = 3 are the
corresponding offered traffic-loads, we can write the following equations:

α1b1q(j− b1) + α2b2q(j− b2) + α3b3q(j− b3) = (y1(j)b1 + y2(j)b2 + y3(j)b3)q(j),for j ≤ J0 + b3c (13)

α1b1q(j− b1) + α2b2q(j− b2) + α3b3q(j− b3) + α3c p3cb3cq(j− b3c) = jq(j),for J0 + b3c < j ≤ J0 + b3 (14)

α1b1q(j− b1) + α2b2q(j− b2) + α3c p3cb3cq(j− b3c) = (y1(j)b1 + y2(j)b2 + y3c(j)b3c)q(j),for J0 + b3 < j ≤ C. (15)

In order to combine (13)–(15) into a single recursive formula for the computation
of q(j)’s, two necessary approximations are adopted: (1) in (13), the value of y3c(j) = 0
when j ≤ J0 + b3c and (2) in (15), the value of y3(j) = 0 when J0 + b3 < j ≤ C. Based on
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these approximations we can write the following recursive formula, assuming that zk(j)
expresses the second approximation and z3c(j) expresses the first approximation:

q(j) =


1, if j = 0
1
j

(
3
∑

k=1
αkbkzk(j)q(j− bk) + α3c p3cb3cz3c(j)q(j− b3c)

)
j = 1, . . . , C
0, otherwise

, (16)

where zk(j) = 1, if bkc > 0 and j ≤ J0 + bk, or if bkc = 0 and j ≤ C while z3c(j) = 1 when
J0 + b3c < j.

Assuming the general case where a link accommodates calls of K service-classes,
Equation (16) takes the following form:

q(j) =


1, if j = 0
1
j

(
K
∑

k=1
αkbkzk(j)q(j− bk) +

K
∑

k=1
αkc pkcbkczkc(j)q(j− bkc)

)
j = 1, . . . , C
0, otherwise

, (17)

where zk(j) = 1, if bkc > 0 and j ≤ J0 + bk, or if bkc = 0 and j ≤ C while zkc(j) = 1 when
J0 + bkc < j.

Having computed, via (17), the unnormalized values of q(j)’s in the probabilistic
threshold loss model, we can now calculate the CBP of service-class k calls with their
reduced bandwidth requirement of bkc b.u., Bkc, as follows:

Bkc = (1− pkc)
C−bkc

∑
j=J0+1

G−1q(j) +
C

∑
j=C−bkc+1

G−1q(j), (18)

where G =
C
∑

j=0
q(j) is the normalization constant.

Similarly, we may also obtain the conditional CBP denoted as B∗kc = Prob
{

Bkc|j > J0
}

via:

B∗kc = Prob{Bkc|j > J0 } =
Bkc

C
∑

j=J0+1
G−1q(j)

(19)

The probabilistic threshold loss model provides the same CBP with those obtained via
the probabilistic retry loss model if we set J0 = C− bk and pkc = pkr.

Apart from the CBP, we can also determine the mean number of in-service calls of
service-class k, nk, accepted in the link with bk b.u. via (5) where yk(j) can be computed via:

yk(j) =
αkzk(j)q(j− bk)

q(j)
. (20)

Similarly, we can compute the mean number of in-service calls of service-class k, nkc,
accepted in the link with bkc b.u. via the formula:

nkc =
C

∑
j=1

ykc(j)
q(j)
G

, (21)

where ykc(j) refers to the mean number of service-class k calls with bkc b.u. in state j.
The latter can be determined via the formula:

ykc(j) =
αkc pkczkc(j)q(j− bkc)

q(j)
. (22)
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The percentage of calls accepted in the system with bkc b.u. can be obtained as
(nkc/(nk + nkc))·100%.

4. Performance Evaluation

In this section, we consider an application example of a single link and present both
analytical and simulation CBP results of the proposed probabilistic threshold loss model
as well as the corresponding analytical and simulation results of the probabilistic retry
loss model. For reference we also present the corresponding analytical CBP results of
the models of [39,40] together with those obtained via the EMLM. The simulation results
presented in this section are mean values of seven runs and are based on Simscript III [46].
In each run, 1 million calls are generated while the initial 2% of these generated calls is
not considered in the blocking probability results, so as to account for a warm-up period.
Regarding reliability ranges, they are less than two orders of magnitude and therefore are
not presented in the following figures.

In our application example, two service-classes are considered whose calls are ac-
commodated in a link of 32 b.u. Calls of the first service-class have an initial bandwidth
requirement of 6 b.u. and they do not have the option to retry with a reduced bandwidth
requirement. On the other hand, calls of the second service-class have an initial (peak)
bandwidth requirement of 24 b.u. In the case of the probabilistic retry loss model, blocked
calls of this service-class retry with probability p2r and a reduced bandwidth requirement
of 8 b.u. In the case of the probabilistic threshold model, calls of this service-class try to
be connected in the link with probability p2c = p2r and a reduced bandwidth requirement
of 8 b.u., when j > J0. The value of the threshold J0 is set to 4 b.u. Regarding the values
of p we consider the cases of: (a) p2r = p2c = 0.2 and (b) p2r = p2c = 0.6. Calls of both
service-classes arrive in the link according to a Poisson process with arrival rates λ1 = 0.8
and λ2 = 0.1 while their service time is exponentially distributed with µ−1

1 = µ−1
2 = 1.0,

and µ−1
2r = µ−1

2c = 3.0. Based on these values, the initial offered traffic-load values (in erl)
are the following: α1 = 0.8, α2 = 0.1 and α2r = α2c = 0.3.

In the x-axis of Figures 3–6, we consider an increase in the value of α1 in steps
of 0.2 erl. Thus, point 1 (in the x-axis) is: α1, α2, α2r = (0.8, 0.1, 0.3) and point 7 is:
α1, α2, α2r = (2.0, 0.1, 0.3).

Figure 3 presents the analytical together with the simulation CBP of the first service-
class calls assuming the probabilistic retry loss model (p-RM in Figure 3) for p2r = 0.2 and
p2r = 0.6 and the corresponding analytical CBP for the retry loss model of [39] (RM in
Figure 3) and the EMLM. On the same hand, in Figure 4, we present the corresponding CBP
results of B2r. Both figures show that the analytical results obtained via the probabilistic
retry loss model are quite close to the corresponding CBP simulation results. Regarding
Figure 3, we observe that decreasing p2r results in a CBP decrease for the first service-class
calls compared to the values of [39] or even the values of the EMLM (where retries are not
permitted). As far as Figure 4 is concerned, we observe that a decrease of p2r significantly
increases the CBP of calls of the second service-class in the case of the probabilistic retry
loss model, compared to the case of the model of [39]. Regarding the EMLM, it is obvious
that it cannot capture the behavior of the proposed model or the model of [39].
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In Figure 5, we present the analytical together with the simulation CBP of the first
service-class calls assuming the probabilistic threshold loss model (p-TM in Figure 5) for
p2c = 0.2 and p2c = 0.6 and the corresponding analytical CBP for the threshold loss model
of [40] (TM in Figure 5) and the EMLM. On the same hand, in Figure 6, we present the
corresponding CBP results of B2c. In both figures, we see that the simulation results and
the analytical results obtained via the probabilistic threshold loss model are quite close.
Regarding Figure 5, we observe that decreasing p2c results in a CBP decrease for the first
service-class calls compared to the values of [40] or those obtained via the EMLM. In
addition, the CBP of the first service-class are lower to the corresponding CBP results
obtained via the probabilistic retry loss model (compare Figure 3 with Figure 5). This
can be explained by the fact that in the probabilistic threshold loss model, calls from the
second service-class may decide earlier (due to the value of J0 = 4) not to enter the system,
a fact that increases the available b.u. for calls of the first service-class. As far as Figure 6
is concerned, we observe that a decrease of p2c significantly increases the CBP of calls of
the second service-class in the case of the probabilistic threshold loss model, compared to
the model of [40] or the probabilistic retry loss model (compare Figure 4 with Figure 6).
Regarding the EMLM, it is obvious that it cannot capture the behavior of the proposed
model or the model of [40]. As a general comment for both the probabilistic retry and
the probabilistic threshold loss models, note that particular attention is necessary when
choosing the values of pkc and pkr for calls of service-class k.

5. Conclusions

We propose multirate loss models for a single link that services different service-classes
whose calls follow a Poisson process. New calls have an initial and a reduced bandwidth
requirement. In the probabilistic retry loss model, calls that cannot be accepted in the link
with their initial bandwidth requirement are allowed to retry with their reduced bandwidth
requirement at the cost of an increased service time. The latter may lead some impatient
calls to decide not entering the system. To this end, it is assumed that blocked calls retry
with a predetermined probability. In the probabilistic threshold loss model, new calls may
reduce their bandwidth requirement (before blocking takes place) based on the occupied
link bandwidth. The proposed multirate loss models do not have a PFS. However, we show
that recursive formulas do exist for the computation of CBP. The accuracy of the proposed
formulas is quite satisfactory compared to simulation. As a future work, we will extend
these models in order to incorporate the interesting case of elastic and adaptive multirate
traffic, where the bandwidth given to in-service calls is not constant during their service
time [47–54].

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Calls of two service-classes are accommodated in a link whose capacity is 5 b.u. First
service-class calls have a bandwidth requirement of 1 b.u. while calls of the second service-
class require 3 b.u. and may use their reduced bandwidth requirement of 2 b.u., with
probability p2c = 0.4, when the occupied link bandwidth is above the threshold J0 = 1. In
that case, the increased service time will be µ−1

2c = b2
b2c

µ−1
2 = 3

2 1.0 = 1.5. In addition, let
λ1 = λ2 = µ1 = 1.0.

Assuming that the in-service calls of both service-classes are denoted via n1, n2 and
n2c (the latter expresses calls of the second service-class accepted in the system with
b2c), then the state space of this multirate loss system consists of the following 16 states
n = (n1, n2, n2c):

n =

(
(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 0, 2),
(1, 1, 0), (2, 0, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0), (3, 0, 1), (4, 0, 0), (5, 0, 0)

)
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The computation of CBP for each service-class requires the solution of a system of 16
global balance equations, where the notation P(n) refers to the steady state probability of n:

P(1,0,0) + P(0,1,0) + 2/3 P(0,0,1) − 2P(0,0,0) = 0
P(0,1,1) + 4/3 P(0,0,2) + P(1,0,1) − (1.4 + 2/3) P(0,0,1) = 0

P(1,0,2) + 0.4 P(0,0,1) − 7/3 P(0,0,2) = 0
P(0,0,0) + P(1,1,0) +2/3 P(0,1,1) − 2.4 P(0,1,0) = 0

0.4P(0,1,0) − 5/3 P(0,1,1) = 0
2/3 P(1,0,1) + P(0,0,0) + 2P(2,0,0) + P(1,1,0) − 3 P(1,0,0) = 0
4/3 P(1,0,2) + P(0,0,1) + 2P(2,0,1) − (8/3 + 0.4) P(1,0,1) = 0

0.4P(1,0,1) + P(0,0,2) − 7/3 P(1,0,2) = 0
P(1,0,0) + P(0,1,0) + 2P(2,1,0) − 3P(1,1,0) = 0

P(2,1,0) + P(1,0,0) + 3P(3,0,0) + 2/3P(2,0,1) − 3.4P(2,0,0) = 0
0.4P(2,0,0) + P(1,0,1) + 3P(3,0,1) − 11/3 P(2,0,1) = 0

P(1,1,0) − 3P(2,1,0) = 0
2/3 P(3,0,1) + P(2,0,0) + 4P(4,0,0) − 4.4P(3,0,0) = 0

P(2,0,1) + 0.4P(3,0,0) − 11/3 P(3,0,1) = 0
5P(5,0,0) + P(3,0,0) − 5P(4,0,0) = 0

P(4,0,0) − 5P(5,0,0) = 0

The solution of this system of equations is the following:
P(0,0,0) = 0.173022, P(0,0,1) = 0.044023, P(0,0,2) = 0.012907, P(0,1,0) = 0.137834,

P(0,1,1) = 0.03308, P(1,0,0) = 0.178861, P(1,0,1) = 0.040692, P(1,0,2) = 0.012507,
P(1,1,0) = 0.135727, P(2,0,0) = 0.100354, P(2,0,1) = 0.032044, P(2,1,0) = 0.045242,
P(3,0,0) = 0.031912, P(3,0,1) = 0.012221, P(4,0,0) = 0.007978, P(5,0,0) = 0.001596.

The normalized values of q(j)’s, denoted as Q(j)’s, are:

Q(0) = P(0, 0, 0) = 0.173022
Q(1) = P(1, 0, 0) = 0.178861
Q(2) = P(0, 0, 1) + P(2, 0, 0) = 0.144377
Q(3) = P(1, 0, 1) + P(0, 1, 0) + P(3, 0, 0) = 0.210438
Q(4) = P(0, 0, 2) + P(2, 0, 1) + P(1, 1, 0) + P(4, 0, 0) = 0.188656
Q(5) = P(0, 1, 1) + P(2, 1, 0) + P(1, 0, 2) + P(3, 0, 1) + P(5, 0, 0) = 0.104646

Based on the above, we compute B1 and B2c as follows (in the parenthesis we provide
the corresponding values in the case of the probabilistic retry loss model):

B1 =
C
∑

j=C−b1+1
Q(j) = Q(5) = 0.104646 (0.148955)

B2c = (1− p2c)
C−b2c

∑
j=J0+1

Q(j) +
C
∑

j=C−b2c+1
Q(j) = 0.6(Q(2) + Q(3)) + Q(4) + Q(5) = 0.50619 (0.45411).

For reference only, the CBP results in the EMLM are: B1 = 0.09744, B2 = 0.52077.
The corresponding recursive calculations in the case of the probabilistic threshold loss

model are based on (17) and are the following (assuming that q(0) = 1, α1 = α2 = 1.0 erl,
α2c = 1.5 erl while z2(j) = 1, for 1 ≤ j ≤ 4 and z2c(j) = 1, for j > 3).

j = 1 : q(1) = α1b1q(1− b1) + 0 = 1.0 ⇒ q(1) = 1.0
j = 2 : 2 q(2) = α1b1q(2− b1) + 0 = 1.0 ⇒ q(2) = 0.5
j = 3 : 3 q(3) = α1b1q(3− b1) + α2b2q(3− b2) = 3.5 ⇒ q(3) = 1.16667

j = 4 : 4 q(4) = α1b1q(4− b1) + α2b2q(4− b2) + α2c p2cb2cq(4− b2c) = 4.76666 ⇒ q(4) = 1.19166
j = 5 : 5 q(5) = α1b1q(5− b1) + α2c p2cb2cq(5− b2c) = 2.59166 ⇒ q(5) = 0.51833
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and G = 5.37666 while:

Q(0) = q(0)
G = 0.185989, Q(1) = q(1)

G = 0.185989, Q(2) = q(2)
G = 0.092944, Q(3) = q(3)

G = 0.216987,
Q(4) = q(4)

G = 0.2216357, Q(5) = q(5)
G = 0.0964037.

Based on the previous values, we can compute the CBP of the two service-classes,
as follows (in the parenthesis, we repeat the exact values obtained via the global balance
equations):

B1 =
C

∑
j=C−b1+1

Q(j) = Q(5) = 0.096404 (0.104646)

B2c = (1− p2c)
C−b2c

∑
j=J0+1

Q(j) +
C

∑
j=C−b2c+1

Q(j) = 0.6(Q(2) + Q(3)) + Q(4) + Q(5) = 0.50403 (0.50619).
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