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Abstract: In the past few years, Internet of Things (IoT) devices have evolved faster and the use
of these devices is exceedingly increasing to make our daily activities easier than ever. However,
numerous security flaws persist on IoT devices due to the fact that the majority of them lack the
memory and computing resources necessary for adequate security operations. As a result, IoT
devices are affected by a variety of attacks. A single attack on network systems or devices can lead
to significant damages in data security and privacy. However, machine-learning techniques can be
applied to detect IoT attacks. In this paper, a hybrid machine learning scheme called XGB-RF is
proposed for detecting intrusion attacks. The proposed hybrid method was applied to the N-BaIoT
dataset containing hazardous botnet attacks. Random forest (RF) was used for the feature selection
and eXtreme Gradient Boosting (XGB) classifier was used to detect different types of attacks on IoT
environments. The performance of the proposed XGB-RF scheme is evaluated based on several
evaluation metrics and demonstrates that the model successfully detects 99.94% of the attacks. After
comparing it with state-of-the-art algorithms, our proposed model has achieved better performance
for every metric. As the proposed scheme is capable of detecting botnet attacks effectively, it can
significantly contribute to reducing the security concerns associated with IoT systems.

Keywords: IoT security; botnet detection; random forest; XGB; feature selection; Mirai

1. Introduction

The Fourth Industrial Revolution will be fueled by cutting-edge and innovative tech-
nologies where the Internet of Things (IoT) devices will play integral roles [1]. Countries
prepared to accept these changes will undoubtedly have a better chance of success in the
near future. IoT is one of the fastest expanding fields in the history of technology, with
around 50 billion devices in use by the end of 2020 [2]. As a result, the devices’ security
threats are increasing on a large scale. Because IoT devices lack fundamental security
protocols, they have become tempting targets for attackers. According to recent estimates,
IoT devices are subjected to an average of 5200 attacks per month [3]. Only in the first half
of 2019, attacks against IoT devices tripled compared with the previous year [4]. According
to Checkpoint’s study, 71% of security experts have observed an increase in security risks
in IoT networks after the prevalence of COVID-19 [5]. Recently, the Internet of Medical
Things (IoMT) [6,7], the Long Range (LoRa) IoT networks [8], Blockchain-based supply
chain systems [9,10] and Smart industries [11] have also been targeted by a huge num-
ber of attackers. Many of these attacks are extremely hazardous for the devices. Mirai
and BASHLITE, found in 2016 and 2015, respectively, are two common IoT botnets that
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infected numerous IoT devices over the years [12]. Among them, the Mirai Distributed
Denial-of-Service (DDoS) attack was the third most frequent IoT threat in 2018. Again, a
total of 15.4 million DDoS attacks are expected worldwide by 2023 [13]. So, with the rise in
cybercrime, detecting these attacks has become a crucial field of research [14]. There should
be an effective framework assuring the security of IoT devices as these issues are highly
alarming. Nonetheless, the use of regular security techniques for detecting botnet attacks
would not be sufficient to ensure the safety of the systems.

Many researchers have been working on developing intrusion detection systems in
recent years, as the attacks increasingly target IoT devices. They mainly focus on two types
of botnet attacks in the IoT environment, namely host-based [15], and network-based [16].
However, some of the common machine learning approaches for intrusion detection in-
clude support vector machine (SVM), K-nearest neighbor (KNN), neural networks, and
Naïve Bayes [17–19]. Shafiq et al. [20] presented a methodology for selecting the efficient
machine learning algorithm in IoT devices to detect malicious attacks. They claimed Naïve
Bayes as the efficient algorithm according to their experimental analysis. Soe et al. [21]
performed a feature selection approach on the N-BaIoT dataset to detect IoT attacks. They
obtained nearly 99% accuracy using three distinct machine learning algorithms, including
Naïve Bayes, ANN, and J48 decision tree. Diro et al. [22] introduced an intrusion detec-
tion method for IoT devices that uses deep learning as a primary tool for detection and
achieved significant improvement. Ahmad et al. [23] evaluated the NSL-KDD dataset
for intrusion detection using random forest (RF), SVM, and extreme learning machines
(ELM) algorithms. Their findings indicated that ELM outperformed SVM when deal-
ing with large data. In another study, a network-based intrusion detection proposed by
Deng et al. [24] achieved a detection rate of 96.8% when utilizing K-means clustering after
manually selecting 8 to 16 features. Mirsky et al. [25] proposed an unsupervised model
which is autonomous. This model is able to observe security issues in network environ-
ments where an ensemble autoencoder algorithm is used. This classification model, which
operates on low computational resources, is primarily composed of two steps: offline
training and online testing on IoT devices. In addition, Radford et al. [26] proposed an
unsupervised learning where Long-Short Term Memory (LSTM) cell Recurrent Neural
Networks (RNN) is used for network traffic anomaly detection by utilizing a public dataset
(https://www.unb.ca/cic/datasets/ids-2017.html (accessed 30 September 2021)). How-
ever, no research has provided an in-depth analysis of machine learnings’ applicability in
the field of host-based intrusion detection for IoT environments [27].

From the literature, it is clear that machine learning-based techniques, being used
widely in the IoT security domain, are proven to be effective for developing workable
models for detecting IoT threats. As most of the attacks happen in real-time in the IoT
environment, therefore a fast attack detection algorithm is required while maintaining
higher accuracy. This could be possible by using fewer features that reduce the system
complexity and consequently, it should execute faster. This could be very helpful in real-
time attack detection. To solve this issue, we propose a machine learning-based approach
for intrusion detection in IoT systems where the random forest (RF) algorithm is used
to select inevitable features from the N-BaIoT dataset to boost detection accuracy. Then,
the eXtreme Gradient Boosting algorithm (XGB) is utilized to characterize and detect
malicious attacks. This novelty is very essential for IoT-based intrusion detection as here
we have to deal with a big dataset where both time and accuracy are very crucial. However,
when RFE and RFECV are used, attributes are added recursively in a one-by-one fashion
and check whether that attribute improves the performance or not. If it doesn’t improve
the classification performance, then that attribute is discarded. In addition, this process
continues until all the attributes are checked. On the other hand, RF ranks the features
according to information gain rather than checking the feature importance of each feature
one-by-one basis. After that, the proposed system is compared with some other state-of-
the-art algorithms applied on the same N-BaIoT dataset, where our system achieves much
better performance in every case. The key contributions of this paper are as follows:

https://www.unb.ca/cic/datasets/ids-2017.html
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• A hybrid machine learning algorithm has been proposed, for the first time, named
XGB-RF where the prominent attributes are selected using RF algorithm and then
classified using XGB algorithm.

• The proposed algorithm has also been compared with other state-of-the-art machine
learning algorithms.

2. Materials and Methods

The hybrid method proposed for detecting in N-BaIoT multi-class attack is called XGB-
RF classification. Firstly, the RF feature selection algorithm is used for selecting feasible
features. Then XGB classification algorithm is to identify each type of attack that occurs
in the IoT network. For this, the proposed method is named XGB-RF. The multiplicity of
the N-BaIoT dataset is reduced from 115 to 40 features that relate to the same window
using our proposed strategy. The following diagram (Figure 1) represents our proposed
system architecture.

Data Aquisition Data Preprocessing

Min-Max 
Scal ing

Feature Selection

Sel ect ing 
f eat ur es by 
appl ying RF 

f eat ur e 
sel ect ion 
al gor it hm

     ClassifiersPerformance Analysis

Figure 1. Workflow diagram of the proposed system.

2.1. Data Acquisition

The research has considered the N-BaIoT dataset [28] to detect IoT botnet attacks, one
of the most recent datasets published in 2020 and publicly available (https://www.kaggle.
com/mkashifn/nbaiot-dataset (accessed 5 June 2021)). The dataset is comprised of nine
IoT sensor traffic captured in a local network using Wireshark in the central switch. It has
115 statistically designed attributes derived from the pcap files. Over five separate time
windows, seven statistical measures (mean, variance, count, magnitude, radius, covariance,
and correlation coefficient) were computed. Since it includes a time window, this dataset
is suited for a stateful Intrusion Detection System (IDS). It is a predetermined timeframe
during which data are extracted from traffic within the same period. However, three or
more statistical measures were computed for each of these four features, yielding a total of
twenty-three features.

A total of 229,829 samples were used; among them, benign and malicious attack
samples are 13,113 and 216,716, respectively. The malicious attack consists of 27,188, 9502,
23,361, 15,148, 26,210, 21,205, 24,250, 21,995, 23,755, 24,102 samples of Mirai.ack, Mirai.scan,
Mirai.syn, Mirai.udp, Mirai.udpplain, Gafgyt.combo, Gafgyt.junk, Gafgyt.scan, Gafgyt.tcp,
Gafgyt.udp, respectively. In this study, a multi-class (i.e., 11 classes) dataset was used. A
description of these classes is provided as below:

https://www.kaggle.com/mkashifn/nbaiot-dataset
https://www.kaggle.com/mkashifn/nbaiot-dataset
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• Benign (Class_1): The benign class is defined as the traffic which does not carry any
attack or malicious activities.

• Mirai ACK & Mirai SYN (Class_2 & Class_4): In order to prevent legitimate clients
from connecting to a server, Mirai uses SYN flooding. As soon as the two parties
complete the three-way handshake: the client sends SYN, receives SYN, the server
sends ACK+1, the client sends ACK+1 (which the server receives and processes),
and the information exchange may begin. Mirai (the threat actor) uses an illegal
IP address to send SYN queries to all open ports. The server will respond with an
SYN-ACK in response. Because of this, the attacker will not return the ACK intended.
It is an interactive Mexican standoff in the digital world at its core. Until the server
receives a response, it will wait. The attacker will transmit another SYN before the
connection expires, and the process begins again. The attack’s goal is to completely
fill the connection table so that a genuine user cannot access it. When Mirai attacks
its target, it uses a variety of methods. Mirai ACK is similar in fashion to Mirai SYM,
which uses ACK Flooding.

• Mirai Scan (Class_3): The virus and the command and control center (CnC) are the
two major parts of Mirai. In addition to the malware’s 10 attack vectors, Mirai also
includes a scanner that actively scans out more computers to infect. Later on, the CnC
plays the main initiator and can activate the single or multiple attack vectors onto
the compromised devices (BOT). When the scanner is running, it randomly attempts
to connect to IP addresses using the telnet protocol (on TCP port 23 or 2223). After
a successful login attempt, the CnC receives the identification of the new BOT and
its credentials from the CnC’s database. Attackers can use the CnC’s command-line
interface to choose a target IP address and length of the attack. New device addresses
and credentials discovered by the CnC are also used to copy over the infection code
and establish further BOTs.

• Mirai UDP (Class_5): The Mirai UDP attack is unique among other UDP Floods.
While still a UDP Flood, the default behavior of Mirai is to randomize the source port
and the destination ports. When combined with multiple source IPs (coming from
multiple bots), the result is a flood of UDP traffic that can be difficult to fingerprint on
an upstream router or firewall because there is no common source IP, source port, or
destination port.

• Mirai UDP plain (Class_6): In contrast to UDP flooding, a UDP plain attack is far
more "surgical" and effective. Because of how the attacking bot "picks" ports, its
effectiveness can be explained. The attacking bot will target the one that is most
frequently used rather than flooding all of them. Rather than going all-in, focus the
attack on a single target. This will boost the chances of success.

• Gafgyt [Combo, Junk, Scan, TCP & UDP] (Class_7, Class_8, Class_9, Class_10 &
Class_11): Gafgyt is an IoT botnet family that has been around for a long time with a
lot of variants. A massive family with the same notoriety as Mirai has developed over
time. Its variations have matured to the point that they can perform DDoS attacks,
scan for vulnerabilities, execute commands, and download and execute malware
in real-time. This Gafgyt service mode shows that the network of Gafgyt nodes is
used for easy communication between administrators and users as well as passing
command and control (C&C) instructions. Botnet administrators can use the Gafgyt
network to keep track of various attack instructions supplied by users and answer
inquiries and discuss ideas. Gafgyt is an Internet of Things-based botnet that uses
a variety of smart routers as both bot nodes and targets. Generally, an IoT device
infected with Gafgyt begins scanning the Internet for responding nodes soon after
infection and then attempts penetration via weak password cracking or vulnerability
exploitation, converting other PCs to bot nodes and spreading the botnet. The Gafgyt
botnet prefers smart routers among IoT devices due to their vast numbers, a plethora
of vulnerabilities, and weak management.
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2.2. Data Pre-Processing

The traffic in the N-BaIoT dataset is unbalanced as the number of general records
becomes very less with respect to attack records. Moreover, it displays the specific counts of
attack for each subclass. In the N-BaIoT dataset, there are a hundred and fifteen statistically
designed features retrieved from the pcap files. All these features are self-explanatory; a
feature can be generalized as Header_ time-windows_ statistical variables. These features
depict the following information:

- Header description
- Over five separate time-windows (100 ms; 500 ms; 1.5 s; 10 s; and 1 min)
- Seven statistical variables (mean; variance; count; magnitude; radius; covariance; and

correlation coefficient) were calculated.

The decay factor value is utilized throughout the dataset and this research refers to the
appropriate time window as L5, L3, L1, and so on. Using a time window, which is a preset
period where information is retrieved from the traffic, makes this dataset appropriate for
stateful IDS. Four information were collected from the pcap: packet count, jitter, the size of
outbound packets alone, and the combined size of outbound and inbound packets. Three
or more statistical measures were computed for each of these four features, resulting in a
total of 23 features. In order to obtain the one hundred and fifteen characteristics in this
dataset, these 23 distinct features were computed over five different time-window. The
following 115 features presented in Table 1 have been used in this study. Note that some
abbreviated terms are used in Table 1 which have been described in Table 2.

2.3. Feature Selection

Three variants of feature selection models are used for selecting features due to the
popularity of IoT-based Intrusion Detection Systems (IDS). Those are Recursive Feature
Elimination (RFE), Recursive Feature Elimination and Cross-Validation (RFECV), and
Select-K-Best. In addition, RF-based feature selection has also been employed. A brief
description of the algorithms is given below.

2.3.1. RF-Based Feature Selection

The relative significance of each independent variable in the RF model can also be
used for feature selection. A detailed description has been discussed in Section 2.4.1.

2.3.2. Recursive Feature Elimination (RFE)

There is a lot of irrelevant features in a large dataset. The redundancy of the features
affects the efficiency of the classification algorithm. As a result, the prediction may get
biased. To find the effective features which are mostly responsible for expected predictions,
we use RFE (Recursive Feature Elimination). This helps to reduce the dimensionality
of the dataset and keep the effective features derived from the more compact subsets of
features. This study employs a step-wise technique based on recursive feature elimination
(RFE) to eliminate less important features. RFE is believed to be beneficial in enhancing
RF models for intrusion detection [26]. It is an efficient feature selection algorithm for
selecting features from a training dataset. Removing features that aren’t relevant to the
task can produce an input feature-set without sacrificing classification accuracy. The name
“recursive” stands for the iterative approach that is deployed until a specified number
of features are found. After determining the importance of each feature based on their
contribution in classification using RF classifier, at first, it generates a feature ranking (high
to low). Then, the least important features are removed and the model is re-trained with
the revised features and the classification performance is obtained with the new feature set.
This is an iterative process that continues until the feature set becomes empty.
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Table 1. Name of the features used in this study.

Total Features Feature Name

115

MI_dir_L5_weight, MI_dir_L5_mean, MI_dir_L5_variance,
MI_dir_L3_weight, MI_dir_L3_mean, MI_dir_L3_variance,
MI_dir_L1_weight, MI_dir_L1_mean, MI_dir_L1_variance,
MI_dir_L0.1_weight, MI_dir_L0.1_mean, MI_dir_L0.1_variance,
MI_dir_L0.01_weight, MI_dir_L0.01_mean, MI_dir_L0.01_variance,
H_L5_weight, H_L5_mean,H_L5_variance, H_L3_weight,
H_L3_mean, H_L3_variance, H_L1_weight, H_L1_mean,
H_L1_variance, H_L0.1_weight, H_L0.1_mean, H_L0.1_variance,
H_L0.01_weight, H_L0.01_mean, H_L0.01_variance, HH_L5_weight,
HH_L5_mean, HH_L5_std, HH_L5_magnitude, HH_L5_radius,
HH_L5_covariance, HH_L5_pcc, HH_L3_weight, HH_L3_mean,
HH_L3_std, HH_L3_magnitude, HH_L3_radius, HH_L3_covariance,
HH_L3_pcc, HH_L1_weight, HH_L1_mean, HH_L1_std,
HH_L1_magnitude, HH_L1_radius, HH_L1_covariance, HH_L1_pcc,
HH_L0.1_weight, HH_L0.1_mean, HH_L0.1_std, HH_L0.1_magnitude,
HH_L0.1_radius, HH_L0.1_covariance, HH_L0.1_pcc, HH_L0.01_weight,
HH_L0.01_mean, HH_L0.01_std, HH_L0.01_magnitude,
HH_L0.01_radius, HH_L0.01_covariance, HH_L0.01_pcc,
HH_jit_L5_weight, HH_jit_L5_mean, HH_jit_L5_variance,
HH_jit_L3_weight, HH_jit_L3_mean, HH_jit_L3_variance,
HH_jit_L1_weight, HH_jit_L1_mean, HH_jit_L1_variance,
HH_jit_L0.1_weight, HH_jit_L0.1_mean, HH_jit_L0.1_variance,
HH_jit_L0.01_weight, HH_jit_L0.01_mean, HH_jit_L0.01_variance,
HpHp_L5_weight, HpHp_L5_mean, HpHp_L5_std,
HpHp_L5_magnitude, HpHp_L5_radius, HpHp_L5_covariance,
HpHp_L5_pcc, HpHp_L3_weight, HpHp_L3_mean, HpHp_L3_std,
HpHp_L3_magnitude, HpHp_L3_radius, HpHp_L3_covariance,
HpHp_L3_pcc, HpHp_L1_weight, HpHp_L1_mean, HpHp_L1_std,
HpHp_L1_magnitude, HpHp_L1_radius, HpHp_L1_covariance,
HpHp_L1_pcc, HpHp_L0.1_weight, HpHp_L0.1_mean, HpHp_L0.1_std,
HpHp_L0.1_magnitude, HpHp_L0.1_radius, HpHp_L0.1_covariance,
HpHp_L0.1_pcc, HpHp_L0.01_weight, HpHp_L0.01_mean,
HpHp_L0.01_std, HpHp_L0.01_magnitude, HpHp_L0.01_radius,
HpHp_L0.01_covariance, HpHp_L0.01_pcc

Table 2. Feature description.

Short Name Brief Description

MI Stats summarizing the recent traffic from this packet’s Source MAC-IP

H Stats summarizing the recent traffic from this packet’s host (IP)

HH Stats summarizing the recent traffic going from this packet’s host (IP)
to the packet’s destination host.

HpHp
Stats summarizing the recent traffic going from this packet’s host+port (IP)
to the packet’s destination host+port.
Example: 192.168.4.2:1242 ->192.168.4.12:80

HH_jit Stats summarizing the jitter of the traffic going from this packet’s
host (IP) to the packet’s destination host.

Algorithm 1 depicts the steps of RFE. Figure 2 represents the flowchart. Subsets of
classifier attributes are generated from all available variables and applied to the training
set in an iterative manner, as mentioned above. Next, performance from the subset of
classifiers is optimized; finally, a subset of classifiers with optimal results is selected.
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Algorithm 1: Followed steps for Recursive Feature Elimination (RFE)

1 Initialization: Deploy a complete set of classifier-attributes C with the training
data. Compute measurements, which are reflective of model performances.
Finally, identify variable rankings.

2 Pre-process data
3 N = len(C) where C = Total number of classifier-attributess
4 for i = 1 to N and Subset size from classifier-attributes, Xi do
5 Initiate with Xi significant classifier-attributes
6 Deploy Xi classifier-attributes on the training dataset
7 Compute measurements, which are reflective of model performances
8 Identify variable rankings
9 end

10 Result: Classifier-attributes corresponding to optimal Xi

Figure 2. Workflow diagram of Recursive Feature Elimination (RFE).

2.3.3. Recursive Feature Elimination and Cross-Validation (RFECV)

If there are too many features in the raw data, applying recursive feature elimination
with cross-validation (RFECV) to remove some of the unnecessary features is also very
effective [29]. The best subset of features gets selected for the supplied estimator by omitting
features using recursive feature elimination. The major difference between RFECV and
RFE is that in RFECV, the estimator is tested in terms of generating predictions on hold-out
fold data in each feature subset. As a result, the best feature subset can be identified by
ranking CV scores.
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2.3.4. Select-K-Best

The Select-K-Best method prioritizes top-scoring k features. The feature score is based
on univariate statistical analysis, which is a one-by-one assessment of the factors. It can
be applied to both classification and regression data. The score is generated for each
feature. Then according to the score, the first K best scoring features with the highest scores
are chosen.

2.4. Classifiers

The following section discusses the algorithms used for proposed algorithms and the
efficacy of understanding the inner workings of these well-established machine
learning models.

2.4.1. Random Forest (RF)

As the name suggests, the random forest (RF) algorithm is a collection of classification
trees where each tree casts one vote for the most frequent class being assigned to the input
data [30]. Afterward, a class with majority votes gets selected as the outcome. L. Breiman
in 2001, introduced the idea on top of the Bagging (Bootstrap-Aggregating) model, which
is currently known as random forest. Not only for classification and regression, but RF
is also being employed for feature selection (FS) purposes. Genuer et al., in their work,
contributed with the methodological model to rank variable importance through depth
analysis on variable importance index [31]. Sensitivity of sample size, variable quantity,
responsiveness towards different method parameters, and sensitivity towards presence of
correlated variables are observed to identify RF variable importance score in their work.
Being a supervised learning algorithm, random forest forms the forest, which is a part of
a decision tree. It outperforms many machine learning algorithms in terms of accuracy,
particularly for big datasets with numerous features. It is usually trained in the bagging
method in which a randomized selection (without replacement) is performed from the
training samples to construct each tree. It implies that the new trees are not reliant on older
ones. Depending on the predictions of decision trees, the model aggregates its output. In
general, few measurements are applied to calculate feature importance such as Gini index,
mean decrease accuracy, permutation importance method (overcomes the imperfection
of mean decrease impurity), etc. Due to the use of the bagging model, RF has gained
significance in reducing data over-fitting phenomenon and variance among decision trees.
Furthermore, handling missing data are a common treatment of RF architecture.

The RF classifier is integrated with the number of classification trees. Based on the
feature importance criteria, 40 notable features are selected. The classification result is
calculated using Equation (1).

C(t) = max
P

Et

K

∑
i=1

(ci(T) = P) (1)

where T is the training set from the original dataset S and K indicates the subsets from the
T dataset. For each subset, the algorithm automatically generates K decision trees with the
help of a random vector. C(t) represents the classification result where ci(T) denotes the
classification result of ith decision tree. Here, P is the target category. However, several
random forest hyper-parameters are being used to either enhance the model’s prediction
capability or speed up the algorithm.

RF gains higher-level performance in the case of high-dimensional data by completing
an implicit FS process. Gini importance can be used within RF as measurement criteria
for finding feature importance. These relevance scores help identify the decision trees
significant to the classifier and can be considered as an outgrowth.

i(t) = 1− f 2
1 − f 2

0 (2)



Telecom 2022, 3 60

Equation (2) is used to measure the Gini impurity. Here, each node is represented as
t, which can be any node of RF decision trees. Gini impurity is used to find the optimum
split, which is an estimation of measuring entropy. Furthermore, f j in Equation (3) is the
fraction of nj samples out of the total number of samples n and j = 0,1 represents the class.

f j =
nj

n
(3)

We can achieve decreasing δi by splitting and conveying products to two separate
sub-notes (tp & tq) by a threshold on variable Θ. Equation (4) reflects the procedure.

δi(t) = i(t)− fpi(tp)− fqi(tq) (4)

Next, an exhaustive search is performed with all-inclusive values of Θ, which is
obtainable in the node overall thresholds. Afterward, considering all nodes t, Gini impurity
values’ reductions are saved for all variables separately with Equation (5). IG reflects on the
number of times feature Θ gets selected during a split and significant within the classifier
during a particular problem at hand.

IG(Θ) = ∑
r

∑
q

δiΘ(t, T) (5)

2.4.2. eXtreme Gradient Boosting (XGBoost)

After selecting features using RF, an eXtreme Gradient Boosting classifier is utilized
in the proposed approach to detect botnet attacks based on a few selected preconditions.
XGBoost, also known as XGB, is a promising tree-based ensemble learning classifier, which
is treated as the most effective implementation of gradient-boosted decision trees. Gradient
boosted decision trees utilize a series of decision trees, each of which learns from the
preceding tree and affects the subsequent tree; therefore, they improve the model and
develop a powerful learner [32]. XGBoost combines weak classifiers to create a strong
one [33]. As opposed to RF, where independent trees are generated and work individually,
XGBoost incorporates feedback from previously accepted decision trees. Each iteration of
gradient boosting optimizes the given loss function. The goal is to minimize the residual
from the previous step where residual can be interpreted as the dissimilarity between
predicted estimation and true estimation. Upon reaching a threshold point for the residual
value, the final model is declared for further use. Nonetheless, if a number of decision
trees fall under a threshold value before the residual can drop under the threshold, training
is stopped and the final model is selected. The use of parallel execution, faster execution
than gradient boosting, acceptance of regularization, etc., are a few salient features of the
XGB model.

XGBoost’s objective function [34] for evaluating the model’s performance can be
represented as Equation (6).

P(θ) = t(θ) + r(θ) (6)

where θ represents the parameters, r denotes the term of regularization, and t is the loss of
training. Algorithm 2 depicts the XGBoost model architecture.

2.5. Model Performance Analysis

The purpose of this paper is to construct classification models using a training dataset
and to assess their performance throughout the dataset. To evaluate the performance of our
proposed model, several performance evaluation metrics are used. We calculate accuracy
(ACC), F1 score, Kappa index, Matthew’s correlation coefficient (MCC), sensitivity (SE),
specificity (SP), threat score, and balanced accuracy score. Furthermore, six confusion
matrices for different classifiers are also represented in Section 3.2.
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Algorithm 2: Followed steps for XGBoost classifier

Input: S ∈ Rn×d where data are of d dimension and n represents number of
samples. Target: F ∈ Rn×1

Output: ∑C
i=1 Pi = 1,∀i ∈ C = 2 where C = the number of classes and P ∈ [0, 1]

for unrevealed test set s. P represents posterior probability

1 Initialization: Fo(s) = argminΩ

T

∑
i=1

L(Y, Ω) [33], where L(Y, F(s)) represents

differentiable loss function and T is the total number of sampling.
2 for k = 1 to M (No. o f iterations = n) do
3 Compute pseudo-residuals, prim = −[ δL(F, F(Si))

δF(Si)
], where i = 1, 2, ..., N

4 Fit a base tree, hm deploying training set (Si, prim) where i = 1, 2, ..., N

5 Computing the multiplier Ωk by Ωk = argminΩ

n

∑
i=1

L(Fi, fk−1(Si) + γhk(Si))

6 Upgradation of model fk(s) = fk−1(s) + Ωkhk(s)
7 end

8 fk(s) is the target posterior probability, P ∈ [0, 1]

3. Experimental Results

The experimental results are based on the original test data. Hold out approach is
used for dividing the dataset. Here, 75% of data are used for training, and the remaining
25% are used for testing purposes. The performance comparison table among classification
algorithms and the confusion matrices are shown in Sections 3.1 and 3.2. In addition,
evaluation on different Train-Test schemes, Receiver Operating Characteristic (ROC) Curve
and comparison with other studies are demonstrated in Sections 3.3–3.5, respectively.

3.1. Performance Measures

After selecting features with RF and classifying these using XGB, some statistical
measures are performed to assess the performance of the proposed method. Five other
machine learning (ML) schemes have also been used: (i) RF-RF (RF classification using RF-
based feature selection), (ii) RF-RFE (RF classification using RFE-based feature selection),
(iii) RF-RFECV (RF classification using RFECV-based feature selection), (iv) RF-SelectK
(RF classification using Select-K-best feature selection) and (v) RF-WFS (RF classification
without feature selection). The classification performance is shown in Table 3.

Table 3. Performance of Classification Algorithms.

ML Balanced
Schemes ACC F1_Score Kappa MCC Sensitivity Specificity Threat_Score Accuracy
RF-RF 89.6638% 86.2163% 88.5499% 89.6139% 89.6638% 98.9503% 86.3819% 94.3070%
XGB-RF 99.9426% 99.9426% 99.9364% 99.9364% 99.9426% 99.9942% 99.8921% 99.9683%
RF-RFE 89.6603% 86.2128% 88.5460% 89.6100% 89.6603% 98.9499% 86.3725% 94.3051%
RF-RFECV 89.6585% 86.2112% 88.5441% 89.6077% 89.6585% 98.9498% 86.3728% 94.3041%
RF-SelectK 89.6551% 86.2076% 88.5402% 89.6042% 89.6551% 98.9494% 86.3635% 94.3022%
RF-WFS 89.6324% 86.8542% 88.5153% 89.4106% 89.6324% 98.9472% 86.6114% 94.2898%

From Table 3, it is clear that the best accuracy (99.9426%) has been achieved from
the XGB-RF model while RF-RF, RF-RFE, RF-RFECV, RF-SelectKBest, and RF-WFS model
obtained nearly 90% accuracy for each. XGB-RF has also obtained the highest results
for other performance metrics, including sensitivity (99.9426%), specificity (99.9942%),
F1 score (99.9426%), balanced accuracy (99.9683%), etc. The proposed model has the
lowest error score (0.06%). So, it can be said that the proposed model has surpassed
other remaining models to a large extent in terms of performance. However, the RF-
WFS approach performed worst among all of these models. In addition, we have now



Telecom 2022, 3 62

calculated the execution time of our proposed approach as well. For the whole test set
(57,458 instances), it required 57.822 s in a machine having a Core i9 Processor and 64 GB
of RAM. This implies that the time required for each attack detection is only 0.0010063 s
using XGB-RF.

3.2. Confusion Matrix

A multi-class confusion matrix is used to understand the comparativeness of different
classifiers. As we have multiple classes in our N-BaIoT dataset, the multi-class confusion
matrix lets us visualize the confusion faced during predicting attacks. The confusion matrix
for different classifiers is shown in Figure 3.

Here, the same test set is used in all cases in Figure 3 for a fair justification. From the
confusion matrix of (a) RF-RF, it is noticeable that the classifier rarely classifies Gafgyt.tcp
attacks where it only classifies 7 Gafgyt.tcp attacks out of 5939. Again, in the case of
Gafgyt.udp attacks, RF-RF classifies almost all the attacks. However, it misclassifies 5930 as
Gafgyt.tcp which affects the accuracy score. The confusion matrix of (b) XGB-RF, which
is our proposed method, overcomes the unexpected issues created by the previously
discussed classifier for detecting Gafgyt.tcp and Gafgyt.udp attacks, respectively. The
misclassification rate is extremely low for this XGB-RF model. The model successfully
recognizes 99.9426% of attacks.

Again, from the (c) RF-RFECV confusion matrix, we see that it rarely classifies
Gafgyt.tcp attacks. Here it classifies only 7 Gafgyt.tcp attacks out of 5939 while it mis-
classifies 5930 attacks as Gafgyt.upd. The accuracy of RF-RFECV is 89.6585% which is
much lower than our proposed approach. Similarly, for (d) RF-RFE, (e) RF-SelectKBest,
and (f) RF-WFS, a large amount of misclassification occurs for Gafgyt.tcp attacks as well.
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(f)
Figure 3. Confusion matrix for (a) RF-RF, (b) XGB-RF, (c) RF-RFECV, (d) RF-RFE, (e) RF-SelectKBest,
(f) RF-WFS. Note that X-axis shows the actual label whereas Y-axis represents the predicted label by
the classifier.

3.3. Evaluation on Different Train-Test Schemes

As mentioned earlier, in the proposed approach, 75% of data are used for training,
and the remaining 25% are used for testing purposes. Data were primarily divided into
75–25% according to our previous experience. We also evaluate the performance using
other train-test splitting schemes like 70–30% and 67–33%. These schemes are also used by
other N-BaIoT studies [35,36]. The result presented in the Table 4 reveals a very minimal
effect on data splitting.

Table 4. Performance Evaluation on Different Train-Test Schemes.

Performance Train-Test (70–30%) Train-Test (67–33%)

Accuracy 99.9564% 99.9539%
F1_Score 99.9565% 99.9539%
Kappa 99.9518% 99.9489%
MCC 99.9518% 99.9489%

Sensitivity 99.9565% 99.9539%
Specificity 99.9956% 99.9953%

Threat_Score 99.9220% 99.9160%
Balanced Accuracy 99.9760% 99.9746%

3.4. ROC Curve

It can be seen from Figure 3, that our proposed hybrid XGB-RF accurately classified
all the classes, including Gafgyt.udp class. On the other hand, other methods such as
RF-RF, RF-RFECV, RF-RFE, RF-SelectKBest and RF-WFS can not classify Gafgyt.udp class
well. Therefore, we have generated a receiver operating characteristic curve (ROC) for
Gafgyt.udp vs. all other classes in Figure 4. It can be seen that the proposed method
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can recognise Gafgyt.udp than other approaches. Note that ROCs for RF-RF, RF-RFECV,
RF-RFE, RF-SelectKBest and RF-WFS are overlaped together as they all exhibit the same
performance. Additionally, Mason et al. [37] showed that area under ROC (AUROC) is
equivalent to statistical Mann-Whitney U-statistic testing and relevant to statistical p values
as we have seen in our paper that ROC of our proposed method is about 1 which is a
perfect classifier and equivalently we can say p < 0.001. Therefore, we have not performed
a statistical test or ANOVA test for statistical significance.
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Figure 4. ROC Curve for Gafgyt.udp vs. all classes. Note that ROCs for RF-RF, RF-RFECV, RF-RFE,
RF-SelectKBest, and RF-WFS are overlapped.

3.5. Performance Comparison with Other Studies

A performance comparison is performed among our proposed XGB-RF model and
other contemporary studies concerning some performance indices where five of the other
methods used the same N-BaIoT dataset.

Therefore, we have used those studies in the comparison. Adeel et al. In addition,
Serpil et al. used RF and Deep Multilayer Perceptron (DMLP) on the same CICIDS2017
dataset and obtained an accuracy of 99.67% and 91%, respectively. Again, Kathleen et
al. employed Support Vector Machine-Decision Tree-Naïve Bayes (SVM-DT-NB) classifier
on the KDDCup99 dataset, which produced an accuracy of 99.62%. However, Yan et al.,
Chaw et al., Abdulkareem et al., Tran et al. In addition, Abdullah et al. utilized the Naïve
Bayes-J48 Decision Tree-Artificial Neural Network (NB-J48-ANN)), Classification and
Regression Trees (CART), Recurrent Neural Network (RNN), Collective Deep Learning
and Local-Global Best Bat Algorithm for Neural Networks (LGBA-NN) approaches on
the N-BaIot dataset that resulted in an accuracy of 99.10%, 99%, 89.75%, 99.84%, and 90%,
respectively. Most of the above-mentioned approaches used state-of-the-art classifiers
but still, their performance is less than our proposed XGB-RF approach. XGB-RF is a
hybrid machine learning model that selects the prominent feature subset and improves
classification accuracy. This is due to the fact that XGB-RF removes the redundant and
irrelevant features. Therefore, it provides a better decision boundary that improves the
classification performance and reduces the runtime. Here, from Table 5, it is clear that our
proposed model outperforms all the previous approaches.
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Table 5. Performance Comparison with Other Studies.

Studies Dataset Classifiers Accuracy

Adeel et al. [38] CICIDS2017 RF 99.67%
Kathleen et al. [39] KDDCup99 SVM-DT-NB 99.62%

Yan et al. [21] N-BaIoT NB-J48-ANN 99.10%
Serpil et al. [26] CICIDS2017 DMLP 91%
Chaw et al. [35] N-BaIoT CART 99%

Abdulkareem et al. [40] N-BaIoT RNN 89.75%
Tran et al. [41] N-BaIoT Collective Deep Learning 99.84%

Abdullah et al. [36] N-BaIoT LGBA-NN 90%
Proposed Method N-BaIoT XGB-RF 99.94%

4. Conclusions

The future IoT will have a profound effect on our economic and social life. There-
fore, it is urgent to keep them secure. Intrusion detection systems are highly effective
in identifying possible security risks and breaches. The proposed XGB-RF based hybrid
machine learning scheme successfully detects different types of intrusions. Five different
schemes were investigated in this proposed work. Among these, it has been shown that
the accuracy, sensitivity, Kappa index of XGB-RF is almost 10% higher than other schemes.
The effectiveness was tested to N-BaIoT dataset with more than 99% accuracy, which is
also higher than different state-of-the-art machine learning schemes. Since the security
and confidentiality of IoT devices are crucial for their success, this proposed approach can
contribute a lot to enhancing the security aspects of IoT systems. However, due to the
continual growth of new types of attacks, 383,379 identifying unknown attacks has proven
to be a difficult task. Currently, our proposed approach takes 0.0010063 s for detecting a
single attack. The near-future work could be reducing the detection time while maintaining
higher accuracy so that it can be implemented in a busy IoT system. In addition, we
will analyze the performance of machine learning classifiers to detect unknown attacks in
IoT environments.
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RF Random Forest
XGB eXtreme Gradient Boosting
KNN K-nearest neighbor
SVM Support Vector Machine
RFE Recursive Feature Elimination
RFECV Recursive Feature Elimination and Cross-Validation
WFS Without Feature Selection
TCP Transmission Control Protocol
UDP User Datagram Protocol
ACK Acknowledge
MCC Matthew’s Correlation Coefficient
ROC Receiver Operating Characteristic
ANN Artificial Neural Network
NB Naïve Bayes
DT Decision Tree
DMLP Deep Multilayer Perceptron
CART Classification And Regression Trees
RNN Recurrent Neural Network
LGBA-NN Local-Global Best Bat Algorithm for Neural Networks
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