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Abstract: In this paper, we exploit the artificial neural network (ANN) model for a spatial reconstruc-
tion of radio-frequency (RF) electromagnetic field (EMF) exposure in an outdoor urban environment.
To this end, we have carried out a drive test measurement campaign covering a large part of Paris,
along a route of approximately 65 Km. The electric (E) field strength has been recorded over a wide
band ranging from 700 to 2700 MHz. From these measurement data, the E-field strength is extracted
and computed for each frequency band of each telecommunication operator. First, the correlation
between the E-fields at different frequency bands is computed and analyzed. The results show that a
strong correlation of E-field levels is observed for bands belonging to the same operator. Then, we
build ANN models with input data encompassing information related to distances to N neighboring
base stations (BS), receiver location and time variation. We consider two different models. The first
one is a fully connected ANN model, where we take into account the N nearest BSs ignoring the
corresponding operator. The second one is a hybrid model, where we consider locally connected
blocks with the N nearest BSs for each operator, followed by fully connected layers. The results show
that the hybrid model achieves better performance than the fully connected one. Among N ∈ {3, 5, 7},
we found out that with N = 3, the proposed hybrid model allows a good prediction of the exposure
level while the maintaining acceptable complexity of the model.
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1. Introduction

The fast development of wireless communication technologies is accompanied by a
rising concern about the risk perception of electromagnetic field (EMF) exposure induced
by wireless network infrastructures. To respond to public concerns, many works [1–4]
have been conducted to assess radio-frequency (RF) EMF exposure. Usually, this could
be achieved by performing ’in situ’ measurement campaigns [4,5], as well as exploiting
data recorded by sensor networks. On the one hand, downlink (DL) and uplink (UL) EMF
exposures are differentiated and monitored depending on the emitting source (i.e., base
station antennas and mobile devices, respectively). On the other hand, RF-EMF exposure
from different generations of network technologies such as the fourth generation (4G),
small cells, and the fifth generation (5G) of wireless cellular networks are addressed.

In [4], the overall impact of the densification of macro cells with small cells on global
human exposure (including both DL and UL) was studied by using two drive test solutions.
In [6], RF-EMF exposure induced by RF base station (BS) antennas was assessed in an
outdoor environment and an underground shopping mall in Japan. The measurement
protocols are also being updated with the deployment of new 5G networks, as proposed
in [7,8]. However, measurement campaigns were performed mainly for compliance at the
designated locations with drawbacks, such as being time-consuming and expensive. For
the spatial RF-EMF exposure in a complex environment, a global view is missing.

In addition to conventional measurement approaches, simulations and mathematical
models were also well explored. In [9], simulation methods were adopted to assess RFEMF
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exposure in urban public trams. In [10,11], surrogate models are proposed to assess
exposure induced by 4G networks. In [12], stochastic geometry is used as a powerful
mathematical tool to model the distribution of RF-EMF exposure strengths induced by
5G networks. The simulation and mathematical modeling tools clearly bring advantages
in terms of cost reduction. However, the validity of models is questioned due to the
simplification of environments or propagation models.

To overcome those limitations, new methods, such as artificial neural network (ANN)
models, provide potential solutions from a data-driven point of view. Many machine learn-
ing or artificial intelligence (AI) related works have been dedicated to channel propagation,
such as path loss prediction [13,14]. In those papers, distance from the receiver to the source
is the key parameter. Moreover, other features are extracted from the physical environment
and fed to AI algorithms to predict propagation channel characteristics and perform opti-
mization [15,16]. Different from the prediction of propagation characteristics from single
transmitters, EMF exposure deals with aggregated received powers from multiple BSs.

To the best of the authors’ knowledge, the applications of AI in the field of RF-EMF
exposure are still very new but are receiving growing interest. Very rare works have started
to exploit AI to predict, on the one hand, the power emitted by a mobile phone (equivalent
to UL exposure) [17,18] and, on the other hand, the DL exposure [19–21]. Regarding the UL
exposure, the ANN model of [17] and the machine learning models of [18] are fed with easily
available parameters such as the DL connection indicators, e.g., reference signal received
power (RSRP), and other information related to the environment. They considered realistic
data by carrying out indoor measurement campaigns and outdoor drive test measurements,
respectively. In [19], machine learning is exploited for the estimation of DL and UL EMF
exposure in multi-source indoor WiFi scenarios. In [20], the DL exposure map in indoor
environments is reconstructed using convolutional networks. Both proposed models [19,20]
were validated on data collected from simulations. Indeed, ANN-based predictions either
require prior knowledge of measurements or are only valid using simulations. Predicting
the DL RF-EMF exposure based on realistic measurement data and only requiring publicly
accessible information is not well addressed.

In our previous work [21], we studied the possibility of utilizing an ANN model to
predict exposure levels from simulated measurement data in an urban outdoor environment.
In the present work, we intend to extend our work in [21] by conducting real-life drive test
measurements in an outdoor urban environment. Broadband isotropic measurements of the
E-field are performed over the frequency band from 700 to 2700 MHz in Paris. After data
analysis, we performed RF-EMF spatial reconstruction by considering two different ANN
models. The first one is a fully connected ANN model, where we take into account the
N nearest BSs ignoring the corresponding operator. The second one is a hybrid model
consisting of locally connected blocks, where each block is dedicated to a given operator
with N nearest BSs as inputs. More common inputs consist of the position of the receiver
and the time. Finally, the comparison between the two models, as well as the impact of the
number of neighboring BSs (N) on the prediction accuracy, are addressed.

This paper is organized as follows: Section 2 explains the measurement system, setup,
and drive test protocol used in the present paper. Section 3 introduces the structure of
ANN models used to predict RF-EMF exposure. Section 4 gives the results of the analysis
of drive test measurement data and the performance of ANN-based predictions. Section 6
concludes the paper.

2. Measurement Description
2.1. Measurement Equipment

Drive test measurement campaigns were carried out in Paris using a portable spectrum
analyzer, i.e., RSA306B from Tektronix [22]. A wide frequency band from 700 to 2700 MHz
was selected in the drive test, covering all RF bands from 2G, 3G and 4G networks. Isotropic
measurements of the E-field are performed by connecting the one-port Tektronix to a 3-axis
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dipole antenna via a switch. The 3-axis antenna was fixed on the top of the vehicle while
conducting the drive measurement. The measurement equipment is shown in Figure 1.

Figure 1. Measurement system: 3-axis antenna, Tektronix and switch.

The signal acquisition was performed on the Tektronix RSA306B, while the data
analysis, storage and replay were performed on the laptop (PC) side. Managing the PC
separately from the acquisition hardware makes processing upgrades easy and minimizes
IT management issues. We developed a python-based graphical user interface (GUI) to
configure and control the RF-EMF measurements by transferring the measurement setup
to Tektronix. The setup information includes resolution bandwidth (RBW), reference level,
center frequency and span. For each measurement record, the isotropic E-field strength is

obtained by scanning over the three ports of the antenna and computed as E =
√

∑ Ej
2,

where j ∈ {1, 2, 3}. Then, the process is repeated continuously. The measurement steps can
be found in Figure 2.

Start

Select Antenna Port 𝑃𝑗

Stop ?

𝑗 ≥ 3

𝑗+1Broadband Measurement

End

Yes
No

No
Yes

𝑗 = 1

Figure 2. Flow chart of the measurement procedure.
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2.2. Drive Test Protocol and Analysis

The drive test route (shown in Figure 3) is selected to increase the diversity of mea-
surement environments in Paris. The total itinerary is approximately 65 Km in one day,
from 9 a.m. to 5 p.m. The objective of the drive test is to conduct measurements covering
a large area of Paris within a limited time. In other words, the challenge is to perform
the measurements on the three antenna axes at almost the same position, which depends
mainly on the driving speed. In our case, the average driving speed is 9 Km/h (i.e., 2.5 m/s),
which allows for reducing the discontinuity of 3-axis measurements while bringing the least
inconvenience possible to the road traffic. The average distance between two successive
measurement points is around 3 or 4 m.

2 0 2 4 6 8 10 12 14
[km]

2

0

2

4

6

8

10

[k
m

]

Drive Test Route 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3. Drive test route in Paris.

The GPS information is recorded using a mobile phone application, i.e., ‘Geo Tracker’
since Tektronix does not have a built-in GPS module. Geo Tracker records Universal Time
Coordinated (UTC) and coordinates (Longitude and Latitude) information, which are
later used to be synchronized with Tektronix data. Then, the GPS coordinates of each
measurement record are obtained by: (1) Interpolation of the GPS information recorded by
Geo Tracker based on time synchronization, (2) conversion from longitude and latitude to
Universal Transverse Mercator (UTM) coordinates.

After the broadband drive test measurement was obtained, the processing and analysis
were carried out. First, the E-field levels from RF cellular bands of 4 main French operators
were extracted and computed. In Figure 4, we compare the correlation of E-field levels from
each band. A strong correlation is observed among bands from the same operator. This
could result from a deployment strategy in that each operator tends to put new antennas
on an existing site for the consideration of cost. For this reason, we consider two different
ANN models for the RF-EMF spatial reconstruction, which is explained in Section 3.1.
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Figure 4. Heatmap of the correlation between bands of different operators.

According to guidelines given by ICNIRP [23], the reference levels for EMF exposure
from 100 KHz to 300 GHz in the whole body case are frequency-dependent since they
depend on the equivalent surface of the body, which is linked to the frequency. For example,
reference limits at frequencues 400 MHz (L4MHz) and 2 GHz (L2GHz) are 27.5 and 61 V/m
for the general public, respectively. As described in [23], the human body has a higher
capability to grab and absorb EM energy in the frequency band (60–100 MHz). In this
frequency band, the adult human body size (e.g., height between 1.5 and 1.8 m) is close to
a quarter wavelength. Because of that, the admissible maximum power density must be
lower than elsewhere. For a frequency above 2 GHz, the human absorption is much more
local and less dependent on the frequency. In this case, the admissible maximum power
density is constant. In this context, the root squared integration of the E-fields E1 and E2

measured, respectively, at the frequency bands f1 and f2 (given by
√

E2
1 + E2

2) cannot be
used to check the compliance to the limit. Indeed, the objective is to verify that the sum of
the percentages with respect to the relative reference limit is less than 100%. Considering
the limits L1 and L2 at f1 and f2, the sources S1 and S2 are, respectively, inducing ( E1

L1
)2

and ( E2
L2
)2 percent of their corresponding limits. For frequency between 400 and 2000 MHz,

limit L is defined as 1.375
√

f , where f is the frequency in MHz. Therefore, we adopt the
following metric to assess total exposure level [24]:

Etotal =

√√√√ N

∑
i

fre f

fi
(Ei)2, (1)

where N is the number of frequency bands and fre f is the reference frequency of interest.
In the present paper, the E-field from each band is normalized to frequency fre f = 900 MHz.

Therefore, the total Equivalent 900 (Eq900) E-field is used to represent the overall RF-EMF
exposure in the outdoor urban environment collected by drive test measurements.

After processing the data from drive test measurements, we can obtain the following
features: (1) total E-field level in terms of Eq900, (2) time of each measurement point,
(3) UTM coordinates of each measurement point. In addition to the features obtained via
post-processing of measurements, the additional publicly accessible information about the
BS is extracted from [25]. To summarize, with all the features and information obtained in
this section, we plan to build ANN models and perform spatial reconstruction on RF-EMF
exposure in an urban outdoor environment.
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3. Spatial Reconstruction on EMF Exposure

In this section, we describe the ANN model selected for the spatial reconstruction
of the EMF exposure. Then, we explain and discuss the different input parameters of the
ANN model.

3.1. ANN Model

We consider a feedforward ANN model, which consists of one input layer, several
hidden layers, and one output layer. Each layer is composed of several artificial neurons,
inside which an activation function is applied to the dot product between the output of the
previous layer and weights Wi (including bias). In the training process of the ANN model,
the weights Wi are optimized in order to minimize the loss function. However, one must
notice that an ANN model cannot be overtrained to avoid overfitting.

The ground truth is the total Eq900, which takes into account all frequency bands from
all operators. Accordingly, the ANN model’s inputs include the relative distances from
each measurement point to the N nearest base stations. Additional inputs concern publicly
accessible information, as mentioned in the previous section.

As mentioned in Section 2, whether taking into account the network operator or not
when choosing the N closest BSs motivates us to propose two different architectures for the
ANN model. The first one is a fully connected ANN model, and the second one is a hybrid
model with M locally connected blocks followed by fully connected layers.

The two ANN models are illustrated in Figure 5 and described as follows:
(a) Fully connected ANN model. We consider the N nearest distance to a mixture of all

BSs without distinguishing operators, as the ground truth is used to reconstruct the total Eq900.
A fully connected feedforward neural network is used in this model (as seen on the left

in Figure 5). Inputs {x1, x2, . . . , xN} represent distances to N nearest neighboring BSs, while
{xP,1, . . . , xP,Q} represent hour of the measurement and normalized UTM coordinates.

(b) Hybrid connected structure. As seen in Figure 4, E-field strengths in different
bands from each operator are highly correlated. It is of interest to utilize this information
to help predict the total Eq900. Therefore, we sorted distance to neighboring BSs from
each operator and adopted the same hybrid structure as proposed in [21] (as shown on the
right in Figure 5). The hybrid design of locally connected (LC) blocks and fully connected
(FC) blocks can reduce unnecessary interactions and enhance the interactions of correlated
inputs. Input xm,n, m ∈ {1, . . . , M}, n ∈ {1, . . . , N} represents n-th nearest distance to
neighboring BS from m-th operator. Then {xP,1, . . . , xP,Q} contain the same information
as in the previous model. Here, the ground truth is the same as model (a), i.e., Eq900
computed from drive test measurements.

Furthermore, to explore the impact of N on the prediction of the measured E-field
strength, we consider different values for N in the results.

LC

LC

LC

LC
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Figure 5. ANN structure for model (a) and model (b).



Telecom 2022, 3 402

4. Results

In this section, the results of the spatial prediction of EMF exposure based on the ANN
models described in Section 3 are presented. First, the analysis of data collected from drive
test measurements is carried out, then the reconstruction performance based on the ANN
models is studied for several scenarios.

4.1. Analysis of Drive Test Data

The drive test measurements along the route illustrated in Figure 3 recorded 19,834 points
in total. The variation of the E-field strength along this route is shown on the left of Figure 6.
The cumulative distribution functions (CDF) of Eq900 E-field from each operator (EOpi)
and total Eq900 (ETotal) are compared on the right of Figure 6. The Eq900 for each cellular
operator (EOpi) is calculated using Equation (1). We note here that the E-field represents
the total Eq900, which is obtained from the integration of the E-field strength over all
the cellular operators (EOpi), computed as ETotal =

√
E2

Op1 + E2
Op2 + E2

Op3 + E2
Op4. We

observe that Eq900 from each operator has almost similar distributions. Obviously, the total
Eq900 presents higher values for the E-field strength because of the integration over all the
operators. However, the CDF plots show that the RF-EMF exposure in the outdoor urban
environment is well below the limit given by ICNIRP guidelines (over the frequency range
700 to 2700 MHz, the maximum limit is 61 V/m). The measurement point with higher
values EOpi shown in an area tends to have close BSs of the corresponding operator. The
measurement point with low values, on the other hand, tends to be far away from the BS
or the antenna is directed elsewhere. Similarly, total Eq900 varies spatially according to
the distribution and the density of the BSs in a given area. Moreover, the E-field strength
strongly relies on the traffic.
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Figure 6. (Left): The variation of the total Eq900 along the drive path. (Right): CDF of total Eq900
and Eq900 from each operator.

In order to check the density of the BSs in Paris, we computed the mean distances
between each measurement point and its n-th nearest neighboring BSs. The results given
in Table 1 show a dense deployment of BSs in the urban city. This raises the question of
how many neighboring BSs significantly influence the local exposure level in an urban
environment. To answer this question, we study the impact of a number of neighboring
BSs N on the ANN-based prediction performance of EMF exposure.

Table 1. Mean distance between each measurement point and neighboring BS.

1st BS 2nd BS 3rd BS 4th BS 5th BS 6th BS 7th BS

Mean Distance (m) 80.693 127.296 163.649 192.726 219.452 242.019 262.701

4.2. ANN-Based Prediction of RF-EMF Exposure

The proposed models (a) and (b) have, respectively, N + 2 and 4N + 2 inputs. The num-
ber of outputs for both models (a) and (b) is one, e.g., total Eq900. Both ANN models were
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tuned using the grid-search method with a 5-fold cross-validation. The hyper-parameters
used for the two models in the current paper are shown in Table 2. The exponential decay
learning rate is adopted with k = 0.001 when training the ANN model. The neural network
is constructed with the Python interface Keras in the TensorFlow environment. The PC is
equipped with GPU from NVIDIA Quadro RTX 8000. After the ANN model is trained,
the model is then applied to the test data with 10-fold averaging to obtain performance
metrics. The obtained metrics, i.e., mean square error (MSE) and R2, are shown in Table 3.
Here, R2 measures how close the two distributions are. A higher R2 indicates a better
prediction performance.

Table 2. Hyper-parameters of the proposed ANN model.

Hyper-Parameters Model (a) Model (b)

Number of layers 5 3 (LC) + 3 (FC)

Number of neurons (Hidden layers) 40 3N (LC) + 50 (FC)

Optimizer Adamax

Activation function Relu

Learning rate lini 0.01 0.005

Learning Rate decay l = lini exp−kEpoch

Number of epoch 100

Train:Validation:Test 0.49:0.21:0.3

Loss function mean squared error

The results of both models are shown in Table 3. In the spatial reconstruction of total
Eq900, we compared the prediction performance by considering different values of the N
nearest BSs with N = {3, 5, 7}. For model (a), there is a significant improvement comparing
N = 5 to N = 3. While when N = 7, there is a slight improvement in prediction quality in
terms of R2. When N increases, the complexity of the model and the data pre-processing
time increase, as well as the time of the model training.

Table 3. Results of the prediction performance with different values of N.

N
Model (a) Model (b)

R2 MSE R2 MSE

3 0.66522 0.00148 0.805 0.000805

5 0.74810 0.00111 0.806985 0.00079

7 0.75016 0.0011 0.813376 0.000764

In model (b), total Eq900 E-field is predicted by considering N nearest BSs from
each operator, as shown in Table 3. Increasing N from three to seven yields a limited
improvement in the prediction performance but increases the computation time and the
model complexity. Consequently, N = 3 is the adequate choice for this model. Nonetheless,
if we compare horizontally in Table 3, we observe a clear improved prediction accuracy
under the same value of N. This could be explained by the higher correlation between
E-fields from the same operator, as shown in Figure 4.

From Figures 7 and 8, we observe that predictions (figure on the right) from the ANN
model can provide a good reconstruction performance with ground truth (figure on the
left), which agrees with the metrics in Table 3. The proposed ANN model is able to predict
the total Eq900 E-field level with MSE = 0.000805 and R2 = 0.805 for N = 3. From the
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comparison of the two figures, we can see the majority of the predicted E-field strength
is low, which agrees with the CDF plot in Figure 6. There are a few measurement points
with higher values that stand out, possibly due to the closer distance to neighboring BS.
The proposed ANN model is able to reconstruct those higher values well.
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Figure 7. Ground truth (left) and prediction (right) of total Eq900 E-field prediction for N = 3 (and
model b).
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Figure 8. Scattering plot obtained from hybrid ANN with N = 3.

5. Discussion

The results show a good prediction in the outdoor urban environment using publicly
accessible information. Indeed, considering the complexity of the ANN model and perfor-
mance of prediction, the hybrid model with N = 3 is the best model for the reconstruction
of RF-EMF exposure in terms of total Eq900.

However, the wireless traffic is time-varying [26,27], depending on the usage of voice
and data. According to [26], the ratio of maximum to mean E-field at a given location and
for a long duration is mainly below two. However, the time variation during the daytime
is limited. As a consequence, the influence of the traffic on the drive test measurements
along routes of 65 Km is limited compared to the influence of spatial location affected by
the path loss. While in this paper we focus on the spatial reconstruction, we will dedicate
future works to taking into account the temporal variation of the traffic.

Due to the limitation of devices for the current measurements, frequency selective
drive test measurements with high resolution are not possible. To assess the RF-EMF
exposure level in the frequency band of interest and improve the measurement design in
the future, higher data acquisition resolution will be considered.

Since in the present paper we are interested in total Eq900, the impacts from channel
fading are reduced in the computation of total Eq900. Therefore, large-scale fading domi-
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nates the total Eq900, which indicates using distances to neighboring BSs as the input of
the ANN models is reasonable. Moreover, the ANN model should consider more input pa-
rameters related to the surrounding environment, such as the building density, the average
building heights, etc. Extensive measurement campaigns should be carried out in order to
collect more data from various environments. Consequently, the model should be updated
and tested on a small part of the route. All these aspects will be considered in future works.

6. Conclusions

In this work, we focus on the prediction of DL total RF-EMF exposure in the out-
door urban environment. A broadband (700 to 2700 MHz) drive test measurement was
performed on the streets of Paris using a spectrum analyzer, i.e., Tektronix RSA306B, con-
nected to a 3-axis dipole antenna via a switch. From the broadband measurements, E-fields
for each frequency band of each operator were extracted and compared. The correlation
between the E-fields indicates a strong correlation of E-field levels from bands belonging to
the same operator. The measurement data were used to build an ANN model in order to
predict the E-field strength. Eq900 was selected in order to account for the human body’s
capability of absorbing EM energy at different frequency bands and then to adequately
represent the DL exposure. Then, two ANN models were built to predict total Eq900,
considering N nearest BS with and without distinguishing operators. The results show
that increasing N would increase complexity and computation time in training the ANN
model while the performance of prediction is not always significantly improved. Moreover,
we proved in the results that the hybrid model with N = 3 from model (b) is the best
model for the current paper to use in assessing RF-EMF exposure levels in an outdoor
urban environment.
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