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Abstract: This paper addresses the evolving landscape of communication technology, emphasizing the
pivotal role of 5G and the emerging 6G networks in accommodating the increasing demand for high-
speed and accurate data transmission. We delve into the advancements in 5G technology, particularly
the implementation of millimeter wave (mmWave) frequencies ranging from 30 to 300 GHz. These
advancements are instrumental in enhancing applications requiring massive data transmission
and reception, facilitated by massive MIMO (multiple input multiple output) systems. Looking
towards the future, this paper forecasts the necessity for faster data transmission technologies,
shifting the focus toward the development of 6G networks. These future networks are projected to
employ ultra-massive MIMO systems in the terahertz band, operating within 0.1–10 THz frequency
ranges. A significant part of our research is dedicated to exploring advanced signal detection
techniques, helping to mitigate the impact of interference and improve accuracy in data transmission
and enabling more efficient communication, even in environments with high levels of noise, and
including zero forcing (ZF) and minimum mean square error (MMSE) methods, which form the
cornerstone of our proposed approach. Additionally, signal detection contributes to the development
of new communication technologies such as 5G and 6G, which require a high data transmission
efficiency and rapid response speeds. The core contribution of this study lies in the application
of deep learning to signal detection in ultra-massive MIMO systems, a critical component of 6G
technology. We compare this approach with existing ELMx-based machine learning methods, focusing
on algorithmic efficiency and computational performance. Our comparative analysis included the
regularized extreme learning machine (RELM) and the outlier robust extreme learning machine
(ORELM), juxtaposed with ZF and MMSE methods. Simulation results indicated the superiority of
our convolutional neural network for signal detection (CNN-SD) over the traditional ELMx-based,
ZF, and MMSE methods, particularly in terms of channel capacity and bit error rate. Furthermore,
we demonstrate the computational efficiency and reduced complexity of the CNN-SD method,
underscoring its suitability for future expansive MIMO systems.

Keywords: signal detection; ELM; deep learning; ultra-massive MIMO

1. Introduction

Wireless communication technology has continuously evolved, especially with the
development of multiple input multiple output (MIMO) systems that use multiple receiving
and sending antennas for data transmission. This advancement has led to the extensive
study of massive MIMO systems due to the increasing demand for higher data transmission
capacities, a critical component as we look ahead to 6G communication systems [1,2]. Ultra-
massive MIMO has been identified as a key technology for enhancing data transmission in
the 6G network [3–5]. Currently, 5G networks utilize various frequency bands, including
sub-6GHz and millimeter wave (mmWave), catering to virtual environments and the
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Internet of Things (IoT). However, research and development into 6G are ongoing, aiming
to support more connected devices and higher capacities, while providing faster data rates
and lower latency than 5G [6]. Additionally, 6G seeks to enhance communication security
and reliability and may introduce new applications, such as holographic communication.
Technologies for AI and autonomous cars are also being developed in anticipation of 6G.
Compared to 5G, 6G is expected to increase data rates by 10 to 100 times, supporting up to
Tb/s and 10 Gb/s user experience data rates. Moreover, 6G could use flexible frequency-
sharing technology, to optimize frequency reuse. Ultra-massive MIMO technology, a
crucial aspect of 6G’s future, can be categorized into four main areas: frequency bands,
transmission mode, intelligent transmission, and integrated network. As mentioned, 6G
will support the use of terahertz frequencies ranging from 0.1 THz to 10 THz, which
will aid in the development of systems and meet future needs such as the application
of AI, medical devices, or autonomous driving systems that require lower latency and
higher precision. This also includes high-speed internet access, allowing everyone to access
increased communication resources [7,8].

In order to overcome limitations and highlight differences in wireless communications,
signal detection techniques like zero forcing (ZF) and MMSE (minimum mean square error)
are utilized, along with deep learning techniques [9,10]. Current 5G technology aims to
provide higher data rates and lower latency than 4G, accommodating new applications like
virtualization and more connected devices. Ultra-massive MIMO considers using more
than 128 antenna elements at both the transmitter and receiver [11]. The Saleh–Valenzuela
(SV) channel model has been selected by many researchers and is applicable in various
communication formats, including hybrid beamforming, hybrid precoding, and spatial
multiplexing [12]. Machine learning architecture, particularly ELMx-based systems, that
includes ELM is widely used in communication for channel estimation [13], including
articles of interest regarding the application of AI in traffic prediction [14].

The main contributions of this work are summarized as follows:

• We propose the CNN-SD, which integrates three machine learning algorithms of ELM,
RELM, and ORELM for signal detection. The hidden layer bias and input weight in
CNN-SD are randomly generated from distributions [15–17].

• We foresee greater complexity with the larger number of antennas. The application of
deep learning to signal detection contributes to improved performance and reduced
complexity, rather than using more complex channel estimation methods.

• We developed a modeling framework for detailed learning and simultaneous regres-
sion, incorporating real and imaginary components of complex matrices into the input
layers of artificial neural networks to minimize potential errors. This approach allows
us to reduce the system’s overall complexity and enhance its efficiency.

The simulation results demonstrate that, in terms of mean square error (MSE), bit error rate
(BER), channel capacity, outage probability, and computational time, CNN-SD performed
better for signal detection.

The remainder of this paper is summarized as follows: Section 2 details the materials
and methods. The proposed CNN-SD algorithm is specifically described in Section 2.
Section 3 gives simulation figures to illustrate the signal detection performance of the
proposed algorithm. Section 4 is the conclusions.

2. Materials and Methods

For the construction of a system model, we developed a comprehensive commu-
nication framework emphasizing ultra-massive MIMO technology, with the objective
of facilitating the computation of a diverse array of results. This will be explained in
Section 2.1, including massive MIMO and ultra-massive MIMO.
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2.1. Fundamentals System Models

A simple system model has transmitting antennas (MT) and receiving antennas (MR).
The relation between the transmitted and received signal is spatial multiplexing. The
memoryless MIMO flat fading channel (narrowband model) is given by

Y = Hx + n (1)

According to the framework of Equation (1), the matrix H, which represents a signal re-
sponse channel matrix with dimensions (MR ×MT), is utilized to clarify the application
of both massive MIMO and ultra-massive MIMO systems. Furthermore, the variable n,
defined as an additive white complex Gaussian noise vector with dimensions (MR × 1),
is recognized as a primary noise model in information theory. This model is specifically
crafted to replicate the effects of the diverse random processes commonly observed in natu-
ral settings. The matrix representation thus effectively captures the relationship between
transmitted and received signals, illustrating the intricate dynamics of signal propagation
in these advanced communication systems as

Y1
Y2
...

YMR

 =


h11 h12 · · · h1,MT
h12 h22 · · · h2,MT

...
...

. . .
...

hMR ,1 hMR ,2 · · · hMR ,MT




X1
X2
...

XMT

+


n1
n2
...

nMR

 (2)

2.1.1. Massive MIMO

Massive MIMO has been much researched regarding channel response. First, as il-
lustrated in Figure 1, we investigate a typical massive MIMO system. A block diagram
is assumed for delivering data sources from the X (vector of transmitted signals) to the Y
(vector of received signals). In this model, the channel parameter h represents the commu-
nication link between nodes X and Y, which clearly shows the behavior of Equation (1).
Rayleigh channels are commonly used in massive MIMO systems, due to their ease and
accuracy in simulating the internal conditions of the communication channel. They can also
estimate the impact of low-risk distribution in a large number of wireless communications.
However, it should be noted that using Rayleigh channels in massive MIMO often results in
simulating channel states invariantly. Since the simulation is local, this approach may yield
results that are not entirely accurate to natural conditions.Including the future possibilities
of 6G, studies across various works have found that the current number of antennas in
massive MIMO still face operational limitations in the THz frequency bands, starting with
as few as 16 antennas. Meanwhile, the concept of ultra-massive MIMO, discussed in this re-
search, explores the use of a significantly larger number of antennas, up to 256, representing
a full-capacity model. Further details will be provided in the subsequent section.

Figure 1. The structure of massive MIMO system.
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2.1.2. Ultra-Massive MIMO

This paper focuses on different channels based on potential real situations. This was
considered as much as possible by using the Saleh–Valenzuela signal model, in which
the signal consists of a combination of discrete radiation bundles. This is a typical model
for mmWave signals, which have high reflectivity and low diffusion. Mathematically, the
ray/cluster signal matrix can be represented as

H =
Nclust

∑
v=1

Nray

∑
u=1

βu,varx(AoAu,v)atx(AoDu,v)
∗ (3)

where u and v denote the number of subarrays at MT and MR, and where the signal
comprises cluster Nclust is the cluster angle. In each group, Nrays is the ray, where each ray
is considered in the loop of the simulation, accounting for the multipath effects encountered
by the signal. Cluster βu,v shows complex gain. In addition, AoDu,v is the angle of departure
(from the transmitting array) and AoAu,v is the angle of arrival (from the receiver array).
The subsequent sending and receiving arrays are atx(AoDu,v) and arx(AoAu,v), respectively.

This section focuses on signal detection in ultra-massive MIMO systems, which is cru-
cial for transmitting large amounts of data across multiple transmitting antennas arranged
in a matrix, while simultaneously dealing with interference signals. k-QAM modulation is
commonly employed to introduce and simulate intricate scenarios in ultra-massive MIMO
systems, specifically in relation to the proposed modulation schemes for 6G. The modula-
tion process is controlled by the phase of constellation mapping. The procedure involves
receiving binary bits as input, converting them into complex numbers, and subsequently
using them as symbols. The analysis involves a multiple-input multiple-output (MIMO)
wireless system that experiences flat fading. This system utilizes multiple transmitting an-
tennas MT and multiple receiving antennas MR. The symbol XN(p) denotes the transmission
conducted by the antenna MT at a precise moment p. The symbols that have been sent are or-
ganized into a vector of length MT such as XN(p) = [X1(p), ..., XMT(p)]T, which is referred to as

XN(p) = |N(p)| cos(arg{N(p)}) cos(2π fc p)− |N(p)| sin(arg{N(p)}) sin(2π fc p) (4)

k is the number of modulations that covers all QAM modulation,
where |u(t)| and argu(t) are the amplitude and phase of the complex baseband signal,

respectively.

2.2. Traditional Method

This paper focuses on the critical role of specific technology or methods in enhancing a
multiple-input multiple-output (MIMO) system in Figure 2. By leveraging this technology,
we aim to augment the system’s capacity, primarily by improving performance metrics
such as the bit error rate. Our study involves a comprehensive comparison between
conventional signal detection techniques, including ZF and MMSE, and advanced methods
based on the ELMx algorithm, namely ELM, RELM, and ORELM. Moreover, we introduce
the convolutional neural network-based signal detection CNN-SD algorithm, proposing it
as a novel approach for further performance enhancement in MIMO systems.

Figure 2. A block diagram of how to estimate signal detection.
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2.2.1. Zero Forcing Detector

Zero forcing was an early concept in channel estimation. By detecting signals, this
type of estimation is classified as a one-dimensional (1D) estimator, which means that the
channel estimation is performed using test cycles. In one dimension, whether frequency
or time, (ZF) signal detection reduces the amount of squared error between the received
signal and the estimated value. As a result, it is possible to find X̃ZF signal detection by

ĤZF = argminHZF
∥Y− HZFX|∥2 (5)

On the other hand, the signal detection can be written in the following form:

X̃ = H†Y (6)

All transmitting and receiving antennas, the impulse response signals are encapsulated
and presented in the form of a matrix by

X̃ZF = YHH(HHH)−1 (7)

In this formulation, (∗)H is designated as the conjugate transpose of the matrix, and (∗)−1

pertains to the inverse of the matrix.

2.2.2. MMSE Signal Detector

The MMSE signal detector is an algorithms referenced in many works. It is calculated
similarly to channel estimation [18,19]. It is the second comparator that we used for signal
estimation, because it is the most commonly used and most complex calculation method.
As a result, it is more accurate than the ZF signal detection given by

X̃MMSE = argmin
∥∥∥Y− X̃MMSEH

∥∥∥2
(8)

The detection strategy includes accounting for noise during the computation process, which
is measured by

X̃MMSE = YHH(HHH +
σn

2

σh
2 I)−1 (9)

In this context, I denotes the identity matrix of size MT × MR, while σn
2 represents

the noise variance, which is inversely proportional to the signal-to-noise ratio (SNR).
Additionally, all signal response energies have been normalized, as exemplified by

E
{∣∣hMR ,MT

∣∣2} = σh
2 (10)

2.3. Machine Learning Method
2.3.1. Extreme Learning Machine (ELM)

This study introduces an accelerated learning method for single hidden layer feedfor-
ward networks (SLFNs) [20,21], which is designed to effectively manage networks with
Ñ hidden neuron nodes. Additionally, the method is tailored to handle Ñ ≤N training
samples. The focus is on significantly speeding up the learning process in SLFNs, thereby
enhancing training efficiency and effectiveness. Extreme learning machine (ELM), an algo-
rithm within the machine learning domain that employs neural networks, is known for its
impressive efficiency in regression tasks and an accelerated learning rate. This was substan-
tiated through both theoretical analysis and empirical validation. The architectural frame-
work of ELM is detailed in Figure 3, providing a clear visual representation of its structure.
n and m respectively denote the numbers of input and output data. The analysis utilizes
the ELM training process with N training samples (Xi, ti), where Xi = [Xi1, Xi2, . . . , Xin]

T



Telecom 2024, 5 285

represents the input data, and ti = [ti1, ti2, . . . , tim]
T the output data. The approach to

detecting patterns in SLFNs employs a mathematical model, outlined as follows:

t̂j =
Ñ

∑
i=1

β
i

o
(
ci · Xj + Vi

)
, j = 1, 2, . . . , N (11)

ci = [ci1, ci2, . . . , cin]
T is the input weight vector that connects to the i-th hidden neuron,

and β = [βi1, βi2, . . . , βim]
T refers to the output weight vector of the i-th hidden neuron

node. The term Vi is the bias of the i-th hidden neuron node, and ci indicates the activation
function in SLFNs. Unlike other machine learning algorithms, ELM can randomly assign
the input weight ci and bias Vi. A significant feature of ELM, contributing to its regression
performance, is its verification of zero error, which allows an accurate approximation of all
N samples as i = 1Ntj− tj = 0; i.e., the N equations can thus be compactly expressed as

Hβ = T , where β =

 β1
...

βÑ


T

Ñ×m

, T =

T1
...

TN


T

N×m

(12)

H(ci, · · · , cN , Vi, · · · , VN , Xi, · · · , XN) =


o(c1 · X1 + V1) · · · o(cÑ · X1 + VÑ)

... · · ·
...

o(c1 · XN + V1) · · · o(cÑ · XN + VÑ)


N×Ñ

(13)

where H is the neural network’s hidden layer output matrix and T is the training data
target matrix. The variable H represents the output matrix of the hidden layer in the neural
network, whereas T represents the matrix that contains the training data targets. Moreover,
β̂ was identified as the solution with the minimum magnitude in the least-squares approach,
which is essential to the linear system of the ELM solution.

β̂ = HPT (14)

where (∗)P is the Moore–Penrose pseudoinverse.

Figure 3. An illustration of an extreme learning machine.

2.3.2. Regularized Extreme Learning Machine (RELM)

While the ELM has proven effective in numerous applications, the implementation of
the Ñ method is recommended to circumvent overfitting and underfitting. As the study
in [22] suggests, smaller norm parameters in the RELM designed for SLFNs with a sigmoid
function can lead to improved generalization. This equation is versatile and applicable to
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various activation functions and hidden neuron nodes like kernels, specifically to resolve
challenges in the l2 norm of β. Consequently, RELM can be described as a method by which

minimize
(β0, β) ∈Ñx1

C
2
∥Hβ + β0 − t∥2

2 +
(1− a)

2
∥β∥2

2 + a∥β∥1 (15)

When just the l2 norm penalty (α = 0) with β0 = 0 is considered, the RELM formula
is given where C and β0 are regularization parameters.

β̂ = (HH H +
I
C
)
−1HHt (16)

2.3.3. Outlier-Robust Extreme Learning Machine (ORELM)

Recent modifications to the ORELM aimed to enhance its proficiency in the l1 norm for
outlier-producing techniques. Such advancements can be realized through the application
of the ELM [23], as elaborated by

β̂ =
argmin

β
∥τHβ− t∥1 (17)

The optimal solution to the outlined optimization problem is obtained utilizing the stan-
dard l2 norm.

β̂ =
argmin

β
∥τHβ− t∥1 +

1
2C
∥β∥2

2 (18)

The specific processes of the ELMx-based algorithm are summarized in
Algorithm 1. Noting, the ELMx based algorithm is used to obtain the estimated chan-
nel matrix in Algorithm 1.

Algorithm 1 ELM, RELM and ORELM algorithm.

1: Input: Real and Imaginary number X ∈ Rn×l , Y ∈ Rn×l

2: Output: X̃.
3: Initialization: Randomly assign input weight ci and bias Vi for each hidden neuron i,

where i = 1, 2, . . . , L.
4: Hidden Layer Output Matrix Calculation:
5: for i = 1 to N do
6: Calculate the hidden layer output vector ti for each input Xi using the activation

function o(x):
7: ti = o(ci · xi + Vi)
8: end for
9: Form the hidden layer output matrix H using all Hi.

10: Output using Equations (14), (16) and (18).

2.4. Proposed Method
Architecture of The Proposed Convolutional Neural Network for Signal
Detection (CNN-SD)

A model of a serial data processing system known as a convolutional neural network
(CNN) was developed to recognize and manipulate widely connected data. The basic
equation is as follows:

O(t) =
L−1

∑
z=0

I(z) · w(t− z) + b (19)

O(t) represents the output of the 1D convolution at position t on the output signal O, I(z)
denotes the value of the input data signal I at position z., w(t − z) corresponds to the
value of the filter w at position (t− z), and b is the bias term added to the result after the
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convolution operation if bias is used. L is the length of the input signal I and the length
of the filter w, which is also the size of the filter. This equation shows how to perform 1D
Convolution using the input signal I and filter, and including the bias term b if given. To
obtain O(t) in the output signal I, which multiplies and adds values from all positions in
I, we use the filter w, shifted by I positions on I. To process the fully connected layer, it
receives data from the previous layer as a vector of variable values or feature values. The
importance of each feature can be adjusted by multiplying it by a weight and adding a
bias value to allow the system to learn how the data looks and create connections between
features. The linear layer

y = Wx + b (20)

y is the output vector of the linear layer with dimensions (m, 1), where m is the number of
output layers we need. W is a weight matrix with dimensions (m, n) and is used to multiply
the input x. x is an input data vector with dimensions (n, 1), where n is the number of
data features. b is a bias vector with dimension (m, 1) and is added to the result after
multiplication by W. The rectified linear unit (ReLU) is a mathematical function commonly
used in neural networks and deep learning as an activation function to process data within
a layer. The results obtained by multiplying the feature values by weights and adding bias
values are sent to an activation function to generate the output values of this layer. The
ReLU activation function sets each layer value to zero if it is less than zero and retains the
same value if it is greater than or equal to zero. The ReLU enables neural networks to learn
effectively and accelerates their computations. The functional representation of the neural
network ReLU function is as follows:

f (x) = max(0, x) (21)

where if the value x is positive or equal to 0, then the value f (x) will be x itself. If the
value of x is less than 0, then f (x) will be zero. In the initial phase of data preparation,
the role of information is critical. This phase is methodically divided into two primary
categories, as delineated in Figure 4. The first category, designated as ‘training data’, con-
sists of variably prepared data from ultra-massive MIMO systems, intended to facilitate
the algorithm’s capabilities in computation and memory retention. The second category,
named ‘teaching data’, is structured to enable the algorithm to assimilate and accurately
reproduce the desired outputs. The differentiation between these data types is established
based on their channel response attributes within the ultra-massive MIMO communication
system after the data preparation stage. The sequential procedures of the CNN-SD algo-
rithms are comprehensively outlined in Algorithm 2, providing a clear framework for the
algorithmic workflow.

Algorithm 2 CNN-SD algorithm.

1: Input: Real and Imaginary number X ∈ Rn×l , Y ∈ Rn×l

2: Output: X̃.
3: Initialization: Randomly assign input weight Wi and bias bi for each hidden neuron i,

where i = 1, 2, . . . , L.
4: procedure PROCESSING(X)
5: Xconv1 ← ReLU(Wconv1 ∗ X + bconv1)
6: Xconv2 ← ReLU(Wconv2 ∗ Xconv1 + bconv2)
7: X f lat ← Flatten(Xconv2)
8: X f c1 ← ReLU(W f c1 · X f lat + b f c1)
9: X f c2 ← ReLU(W f c2 · X f c1 + b f c2)

10: X f c3 ← ReLU(W f c3 · X f c2 + b f c3)

11: X̂ ←Wpredict · X f c3 + bpredict

12: return X̂
13: end procedure
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Figure 4. The process for CNN-SD.

2.5. Channel Capacity

The concept of the Shannon capacity of a channel is centered on the maximum data rate
that can be reached within a certain bandwidth (BW) and at a specific signal-to-noise ratio.
This theoretical capacity suggests a decrease in bit error rate (BER) that is challenging to
achieve in real-world scenarios. However, as link level design techniques evolve, the actual
data rate for noise channels is approaching this theoretical boundary, as discussed in [24].
Often measured in bits per second (bps)/Hz or equivalent units, a high channel capacity
denotes the communication system’s capability for swift and effective data transmission. It
is formulated as

C = log2det
[

IMR +
Pt

Pn MT
HHH

]
(22)

Here, IMR is the identity matrix with dimensions (MR × MR), H characterizes the channel
response sized size (MT × MR), (∗)H is the conjugate transpose, and Pt/Pn quantifies
the signal noise ratio (SNR). In estimating the capacity of the channel, our examination
included channel responses obtained through the LS method, the prevalent MMSE method,
and three additional approaches rooted in machine learning applications, namely ELM,
RELM, and ORELM. The formula for calculating the estimated capacity within the CNN-SD
model is prescribed as follows (6) to produce (23).

2.6. Outage Probability

Another primary performance indicator in communication techniques is the outage
probability, as discussed in [20]. This is often expressed as a percentage and depends on
the channel’s state and the interference in the system. Outage probability measures the risk
that a communication signal may not be received or may be lost. If the outage probability
is low, the communication system is efficient in transmitting data. The outage probability
can be determined as follows:

Pout(Ces < R) (23)

where R is the rate of capacity. As a consequence, the most favorable course of action for the
transmitter is to employ data encryption. This decision is contingent upon the channel gain
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being sufficient to accommodate the desired rate denoted as R. Under such circumstances,
the attainment of dependable communication becomes feasible; otherwise, an outage is
incurred. In the presence of a fading gain represented as h, one may conceive of the channel
as permitting the flow of information. Provided that the volume of data surpasses the
designated rate, the prospect of reliable decoding becomes attainable. The Saleh channel’s
outage probability, as a function of the transmission rate R, can be expressed as follows:

Pout(R) = 1− exp
(
−2R − 1

SNR

)
(24)

Pout signifies the outage probability of the system, characterized by how the destination
performs detection when relying only on the received signals from the relay node.

2.7. Total Loss of Algorithm
2.7.1. Mean Square Error (MSE)

The efficacy of machine learning algorithms can be analyzed through multiple ap-
proaches. Consequently, mean squared error (MSE) was chosen for the performance
analysis, to yield definitive conclusions, as corroborated by references [11,12]. This met-
ric, frequently used in performance evaluation, requires calculating the error X̃, which
represents the difference from the actual X, and then averaging this error. Based on this
difference, the gradient of loss is computed and utilized for backpropagating the weights.
The next step involves applying gradient descent in the subsequent training phase to lower
losses. The loss function used in regression is presented by

MSEN =
1
N

N

∑
i=1

(
X− X̃i

)2

(25)

2.7.2. Training Loss

The total loss can help us check the feasibility of the dataset between trainings, because
it can specify the range to test to obtain an appropriate dataset. Practically, the mean loss is
calculated for each batch and then averaged across all the batches within an epoch. This
provides a comprehensive assessment of the model’s performance on the training data,
helping to follow its progress over time. Considering the fast-processing time, calculating
the total number of training rounds in epochs is performed as follows:

TB = TD/BS (26)

where TB is the total number of batches, TD is total data size, and BS is the batch size. For
determination of the number of samples that will be distributed across the network, the
batch size is essential. When training a deep learning model, the average loss is typically
computed over the entire training dataset, in small batches of samples. This is known as
batch training. This is because training the model on the entire dataset in one go could be
computationally expensive, and it could also cause the model to overfit on the training data.

2.7.3. Validation Loss

The formula for calculating validation loss is likely MSE (25) but we only considered
the amount of validation data to calculate, where M is the number of an epochs and f is the
loss function. However, we calculated the validation loss as

V =
1
M ∑ f (Ŷd, Yd) (27)

where Ŷd is prediction data and Yd is teaching data. In addition, the interpretation of
the results was very important and was divided into three parts: Underfitting refers to
a situation in scenario 1 where the results indicate that additional training is required to
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decrease the loss experienced during the training process. Alternatively, we can enhance
the training data by either acquiring additional samples or augmenting the existing data.
Overfitting occurs when, in scenario 2, the validation loss surpasses the training loss. In
scenario 3, a good fit is characterized by the training loss and validation loss decreasing
and reaching a stable point.

3. Result and Discussion
3.1. Dataset Setup

The dataset employed consisted of three components: training data, testing data, and
validation data. These components encompassed two datasets: the received signal data set,
denoted as Y, and the transmitted data set, denoted as X, in accordance with the principles
of communication systems. We collected and simulated a total of 100,000 datasets.

3.2. MSE and BER

This section of the study focuses on evaluating the mean square error (MSE) and bit
error rate (BER), as well as assessing the effectiveness of zero forcing (ZF), minimum mean
square error (MMSE), and ELMx-based signal detection approaches in confirming the per-
formance of several CNN-SD algorithms. These strategies were evaluated in ultra-massive
MIMO systems that included 256 transmitting and receiving antennas, each with 256QAM
modulation mapping and a certain number of pilots. The attributes and approaches of the
ELMx-based and CNN-SD algorithms are explained in Algorithms 1 and 2, correspond-
ingly. The results of the comparative mean squared error (MSE) performance are shown in
Figure 5. It was noted that ZF, because of its more rudimentary approach, was less success-
ful compared to the other four methodologies. On the other hand, MMSE outperformed the
least squares (LS) method, because of its increased complexity. The ELMx-based methodol-
ogy, a machine learning technique, outperformed both ZF and MMSE by effectively using
large training and testing datasets to accurately replicate the necessary data. The CNN-SD
approach distinguished itself by showing a superior performance, which was attributed to
its unique structural arrangement, which is optimized for exceptional results.

Figure 5. The performance of MSE in ultra-massive MIMO systems.

Figure 6 shows the performance of BER for all signal detection techniques in an ultra-
massive MIMO-based communication system, which included 256 transmitting antennas
(MT) and 256 receiving antennas (MR). The CNN-SD outperformed the fundamental
approaches such as LS, MMSE, and ELMx-based machine learning in signal detection. The
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results revealed that the BER performance of the CNN-SD algorithm was the best among
all methods.

Figure 6. The performance of BER in ultra-massive MIMO systems.

3.3. Model Validation

Figure 7 shows the performance of the good fit learning curve for training loss and
validation loss, and it shows that the values were closely grouped around the range of
1–3%. Therefore, the model exhibited a strong aptitude for learning. This model can be
utilized to make precise predictions for previously unseen data. Alternatively, it can be
referred to as a model that exhibits the ability to apply its knowledge to unfamiliar data. We
divided the 100,000 datasets into 60% training data, 20% testing data, and 20% validation
data, for our proposed method.

Figure 7. The performance of the CNN-SD model.

3.4. Computational Time

Figure 8 shows that the computation time was different in the computational com-
parison between ELMx and CNN-SD, according to the computational complexity for the
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number of nodes from 2048 nodes. The result for ELMx, such as ELM RELM and ORELM,
revealed that the computational time was higher than CNN-SD because the data manage-
ment in CNN-SD had a batch size that could help reduce the use of computer resources.
This is because training on a large dataset can reduce communication time between proces-
sors. It can significantly help reduce the use of computer resources and the management of
data in RAM. This is important when training models that are data-intensive or that have
complex structures.

Figure 8. The computational times for ELMx and CNN-SD.

3.5. Channel Capacity and Outage Probability

Another focus of this section was on the performance metrics of channel capacity
and outage probability within ultra-massive MIMO systems. Equation (19) was used for
processing and comparing the channel capacity, as presented in Figures 9 and 10.

Figure 9. The channel capacity performance of ELMx and CNN-SD in ultra-massive MIMO systems.
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Figure 10. The outage probability performance of ELMx and CNN-SD in ultra-massive
MIMO systems.

Meanwhile, for determining the outage probability, Equations (20) and (21) were
utilized, as demonstrated in Figure 10. The test result for channel capacity vs. SNR shows
that the machine learning algorithm ELM, RELM, and ORELM techniques provided a lower
channel capacity than the CNN-SD techniques. In Figure 9, the CNN-SD at 10 SNRdB had
a capacity 200 bps/Hz more than the ELMx-based techniques. It is apparent that the ultra-
massive MIMO channel is highly likely to achieve high capacity.At a 90% probability level,
the capacities stand at 105 bps/Hz for ELM, 105 bps/Hz for RELM, and 116 bps/Hz for
ORELM. Consequently, this demonstrates a significant likelihood of high channel capacity
when compared to ELM, RELM, and ORELM. The CNN-SD, with a capacity of 128 bps/Hz,
exhibited excellent performance in line with the method, as depicted in Figure 10.

4. Conclusions

Ultra-massive MIMO systems, representing a significant future advancement, incor-
porate additional communication antennas and new techniques or procedures that can
enhance system efficiency and problem-solving capabilities. This paper focused on finding
methods that lead to more effective communication and reduce issues. One such approach
was the introduction of a CNN-SD deep learning signal detection technique within an ultra-
massive MIMO system. The authors employed various techniques for comparison with the
LS, MMSE, and ELMx-based machine learning groups. Three algorithms of ELM, RELM,
and ORELM, along with the proposed CNN-SD, were examined to assess their performance
for signal detection. The analysis of MSE, BER, capacity, and outage probability demon-
strated that CNN-SD outperformed the other algorithms. Therefore, for future systems
utilizing ultra-massive MIMO, CNN-SD emerges as the optimal choice for signal detection.
In our future work, we aim to enhance the efficacy of our proposed method by employing
a strategy that integrates score combination techniques and multi-scale neural networks, as
well as exploring additional neural network architectures for performance optimization.
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