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Abstract: 2-(Trimethylsilyl)ethyl 2,2,2-trichloroacetimidate is readily synthesized from 2-
trimethylsilylethanol in high yield. This imidate is an effective reagent for the formation of 2-
trimethylsilylethyl esters without the need for an exogenous promoter or catalyst, as the carboxylic
acid substrate is acidic enough to promote ester formation without an additive. A deuterium labeling
study indicated that a β-silyl carbocation intermediate is involved in the transformation.
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1. Introduction

Esters are ubiquitous protecting groups for organic molecules with a carboxylic acid
functionality. Demand for specialized esters that can be cleaved under mild conditions in
complex molecules has led to the development of a number of creative solutions [1,2]. The
trimethylsilylethyl (TMSE) ester [3,4] has become popular in this context, as the ester can be
easily cleaved (with acid, [5] base [6] or fluoride [7–9]) without disturbing most other benzyl
or alkyl esters. TMSE esters may also be transformed to other esters or lactones by capturing
the carboxylate resulting from treatment with fluoride with an electrophile [10,11]. Similar
chemistry can be employed to decarboxylate TMSE-protected β-keto esters, facilitating the
enantioselective formation of all carbon quaternary centers [12]. Despite its synthetic utility,
the most common methods of forming TMSE esters directly from a carboxylic acid remain
dependent on carbodiimide based reagents [3,13–17], Mukaiyama’s reagent [18–20], or uti-
lize Mitsunobu conditions [21–25]. While effective, these transformations are often plagued
by issues with the separation of side products and also create significant waste streams.

Recently, we have been involved in a number of studies evaluating the promoter
free reactivity of trichloroacetimidate electrophiles with nitrogen [26,27], sulfur [28], and
oxygen [29] nucleophiles. Carboxylic acids have been noted to be alkylated under promoter-
free conditions via symbiotic activation by trichloroacetimidates that are precursors to
stabilized carbocations, including the 2-phenylisopropyl [30,31], 4-methoxybenzyl [32],
diphenylmethyl [33], and tert-butyl imidates [34]. Given that trichloroacetimidates are
simple to prepare from inexpensive starting materials and that the esterifications often
proceed under mild conditions without the need for an exogenous promoter or catalyst,
the formation of TMSE esters using this chemistry was investigated. Use of the previously
unknown trimethylsilylethyl trichloroacetimidate 2, which may be a precursor to a β-silyl
stabilized carbocation that can be trapped with an carboxylic acid, would provide a mild
method for installing a TMSE ester with trichloroacetamide 4 as the sole by product, which
is easily removed by washing with aqueous sodium hydroxide.

2. Results and Discussion

Initially, the preparation of trimethylsilylethyl 2,2,2-trichloroactimidate 2 was investi-
gated. Imidate 2 was readily formed in 97% yield by reaction of commercially available
2-trimethylsilylethanol with trichloroacetonitrile using DBU as a catalyst following the
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conditions developed by Schmidt and co-workers [35]. With the imidate (2) in hand, the
esterification reaction was explored (Table 1) using 3-nitrobenzoic acid 1 as a test substrate.
Use of TMSOTf led to the destruction of the imidate without formation of any ester prod-
uct. Switching to the Brønsted acids CSA and PPTS did provide some ester product when
catalytic amounts of the acids were used; however, the yields were low (entries 4 and
6). These poor yields were attributed to decomposition of the imidate in the presence of
the strong acid catalysts. Esterification under promoter free conditions [32–34] was then
explored by heating carboxylic acid 1 and imidate 2 in refluxing toluene for 24 h (entry 7).
These conditions gave complete conversion to the TMSE ester, but the ester product was
difficult to separate from the excess imidate. Allowing the reaction mixture to cool to rt
and treating the mixture with 1% TFA/H2O resulted in the hydrolysis of the excess imidate
and led to the isolation of an 81% yield of the desired ester 3. As we had previously shown
that these conditions were optimal for esterifications with other imidates [34], no further
optimization was performed.

Table 1. Esterification of 3-nitrobenzoic acid 1 with trimethylsilylethyl (TMSE) imidate 2.
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4 1.2 CSA (0.2) DCM 1 rt 22
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a isolated yields. b imidate was consumed, but the starting acid remained. c crude reaction was subjected to 1%
aq. TFA to remove excess imidate.

The scope of the esterification reaction was then explored (Table 2). Benzoic acids
bearing electron-withdrawing groups generally produced higher yields than benzoic acids
with electron-donating groups due to the acid being both a substrate and a proton source,
which can activate the imidate. The lower yield observed with compound 7 was attributed
to the sensitivity of this substrate, which has been shown to decompose when exposed
to mild acid like silica gel or wet CDCl3 [36]. Esters conjugated with alkenes (like 9)
and alkynes (like 10) were also successfully formed under these reaction conditions. No
isomerization of the Z alkene in ester 9 was observed in the crude 1H NMR or the purified
product. Alkyl substituted esters were also good substrates for the esterification reaction
(Table 2, entries 6–12). The lower yield in the case of alkynyl ester 13 was due to difficulties
in handling this volatile product. No racemization was observed in the formation of the
naproxen ester 15, demonstrating that the conditions are compatible with nearby chiral
centers. The presence of alcohol in the carboxylic acid substrate was detrimental to the
esterification process; however, as some of the alcohol was converted to the OTMS ether by
the excess imidate. Clean conversion to the TMSE ester was accomplished by using one
equiv of imidate 2, but the yield of ester was lower when compared to other acids. In the
case of ester 19, the yield was low and the ester appeared to be undergoing decomposition.
This may have been due to side reactions between the indole and the imidate, as indoles are
known to be alkylated with imidate electrophiles [37–42], although these reactions usually
require a Lewis acid promoter. Lowering the reaction temperature to 100 ◦C and increasing
the reaction time to 29 h improved the yield to 78% in this case.
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Table 2. Esterifications with Imidate 2.
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In earlier cases of thermal esterifications with trichloroacetimidates, evidence sug-
gested that carbocation intermediates were involved [34]. For the esterification with
2-(trimethylsilyl)ethyl 2,2,2-trichloroacetimidate 2, this implicates the proposed mechanism
shown in Figure 1. Proton transfer from the acid 5 to the imidate 2 forms the protonated
imidate 20, which then dissociates trichloroacetamide 4 leading to the formation of the
β-silyl carbocation 21. β-Silyl carbocations like 21 are known to be unusually stable due to
hyperconjugation from the nearby silicon-carbon bond [43]. Based on experimental and
computational evidence, the structure of this cation is best represented by the bridged silyl
cation 22 rather than the primary carbocation structure represented by 21 [43,44]. Addition
of the carboxylate to the cation 22 then provides the observed ester product.
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Figure 1. Proposed mechanism of the esterification.

While the ability of the trimethylsilyl group to stabilize a β-carbocation is well known,
an SN2 mechanism where the carboxylate directly displaced the acetamide from the proto-
nated imidate 20 could not be ruled out. To gain further insight into the reaction mechanism,
a deuterated version of imidate 2 was synthesized (Scheme 1). This involved the reduction
of methyl trimethylsilylacetate 24 with lithium triethylborodeuteride to provide the deuter-
ated alcohol. This alcohol was then converted to the corresponding deuterated imidate 2-d2,
which was utilized in an esterification with 4-methoxybenzoic acid 25. This esterification
resulted in the formation of two deuterated esters (26 and 27) in equal amounts, implying
that the bridged β-silyl cation 22 was indeed an intermediate in the esterification reaction.
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Scheme 1. Deuterium labeling implicates a bridged carbocation intermediate.

Attempts were also made to form trimethylsilylethyl ethers with alcohols (4-nitrobenzyl
alcohol and diphenylmethanol were utilized) and phenols (4-nitrophenol and 4-chlorophenol
were used) under similar conditions (toluene, reflux). These experiments showed no forma-
tion of the TMSE ether, and the starting materials were recovered. Evidently, phenols and
alcohols are not acidic enough to promote etherification through activation of the imidate.
Employing Lewis or Brønsted acids to catalyze or promote the formation of TMSE ethers
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(TMSOTf and CSA were used) led to decomposition of the imidate and only trace amounts
of the desired TMSE ether, so these attempts were abandoned.

3. Conclusions

In summary, 2-(trimethylsilyl)ethyl 2,2,2-trichloroacetimidate was prepared from the
corresponding alcohol. This reagent provides a new method for the formation of the
valuable TMSE esters by simply heating the unprotected carboxylic acid with the imidate.
These thermal reactions proceed under near neutral conditions and create significantly less
waste than other transformations that depend on carbodiimide- and diazodicarboxylate-
based reagents. A mechanistic study implies that the esterifications proceed through a
carbocation manifold.

4. Materials and Methods

All anhydrous reactions were run under a positive pressure of argon. DCM was dried
by passage through an alumina column. 1,2-Dichloroethane (DCE) was freshly distilled
from calcium hydride before use. Silica gel column chromatography was performed
using 60 Å silica gel (230−400 mesh). Melting points are uncorrected. Copies of NMR
(1H and 13C) spectra and chiral HPLC traces for ester 15 are available in the associated
Supplementary Materials.

4.1. Synthesis of Imidates

2-(Trimethylsilyl)ethyl 2,2,2-trichloroacetimidate (2). 2-(Trimethylsilyl)ethanol (10.2 mmol,
1.46 mL) and trichloroacetonitrile (10 mmol, 1.00 mL) were dissolved in dichloromethane
(20 mL) in a flame-dried round bottom flask under argon. With a gas tight syringe, 1,8-
diazabicyclo[5.4.0]undec-7-ene (1.05 mmol, 157 µL) was gradually added into the reaction
mixture at room temperature. The reaction was stirred vigorously for an hour. The resulted
reaction mixture was then concentrated in vacuo. The residue was purified with a silica gel
plug (85% hexanes/10% EA/5% Et3N) to give imidate 2 as a clear oil (2.55 g, 97%). TLC Rf

= 0.59 (10% EA/90% hexanes); IR (ATR) 3346, 2954, 2897, 1660, 1249, 835, 821 cm−1; 1H
NMR (CDCl3, 400 MHz) δ 8.21 (bs, 1H), 4.40 (t, J = 8.4 Hz, 2H), 1.17 (t, J = 8.4 Hz, 2H), 0.09
(s, 9H); 13C{1H} NMR (CDCl3, 100 MHz) δ 163.0, 91.7, 68.1, 17.0, −1.4. HRMS (ESI): m/z
Calcd for C7H14Cl3NOSiNa (M + Na+): 283.9802. Found: 283.9802.

2-(Trimethylsilyl)(1,1-d2)ethyl 2,2,2-trichloroacetimidate (2-d2). Synthesized using the
same procedure as 2 using the known 2-(trimethylsilyl)(1,1-d2)ethanol (2-(trimethylsilyl)(1,1-
d2)ethanol was prepared as previously reported [45]). 1H NMR (CDCl3, 400 MHz) δ 8.21
(bs, 1H), 1.15 (s, 2H), 0.09 (s, 9H); 13C{1H} NMR (CDCl3, 100 MHz) δ 163.0, 91.7, 67.4 (t,
J = 22.6 Hz), 16.7, −1.4.

4.2. Esterification Reactions

General Procedure for Esterification with 2-(Trimethylsilyl)ethyl 2,2,2-trichloroacetimidate.
Trichloroacetimidate 2 (260 mg, 1.0 mmol, 2.0 equiv) was added via a syringe to a stirred
solution of the specified acid (0.5 mmol, 1.0 equiv.) in anhydrous toluene (2 mL, 0.25 M) at
room temperature. The reaction mixture was warmed to a gentle reflux. After 18–24 h, the
reaction mixture was allowed to cool to room temperature and concentrated in vacuo. In
cases where the excess imidate was difficult to separate from the TMSE ester product (as in
esters 3, 8, and 10), the crude residue was dissolved in ethyl acetate and stirred with 1% aq.
TFA until consumption of excess imidate 2 was observed by TLC. The organic layer was
then washed with 2 M aq. NaOH (2×), which removes the trichloroacetamide by-product)
and brine, dried with Na2SO4, filtered, and concentrated. The residue was then purified by
silica gel chromatography to provide the ester product.

2-(Trimethylsilyl)ethyl 3-nitrobenzoate (3). TLC Rf = 0.35 (10% EA/90% hexanes); IR
(ATR) 3088, 2956, 2899, 1722, 1533, 1350, 1259, 861, 838 cm−1; 1H NMR (CDCl3, 400 MHz):
δ 8.87 (t, J = 1.8 Hz, 1H), 8.42 (ddd, J = 8.2, 2.3, 1.1 Hz, 1H), 8.37 (dt, J = 7.6, 1.3 Hz, 1H), 7.66
(t, J = 8.0 Hz, 1H), 4.49 (t, J = 8.5 Hz, 2H), 1.18 (t, J = 8.6 Hz, 2H), 0.11 (9H, s); 13C{1H} NMR
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(CDCl3, 100 MHz) δ 164.6, 148.3, 135.2, 132.5, 129.5, 127.2, 124.5, 64.3, 17.5, −1.5; HRMS
(ESI): m/z Calcd for C12H17NO4SiNa (M + Na+): 290.0819. Found: 290.0817.

2-(Trimethylsilyl)ethyl 4-nitrobenzoate (7). TLC Rf = 0.294 (5% EA/95% hexanes); IR
(ATR) 3122, 2953, 2896, 1708, 1522, 1348, 1249, 859, 835 cm−1; 1H NMR (CDCl3, 400 MHz) δ
8.30 (d, J = 9.0 Hz, 2H), 8.22 (d, J = 9.0 Hz, 2H), 4.48 (t, J = 8.5 Hz, 2H), 1.17 (t, J = 8.5 Hz,
2H), 0.10 (s, 9H). 13C{1H} NMR (CDCl3, 100 MHz) δ 164.8, 136.1, 130.6, 123.5, 115.8, 64.4,
17.4, −1.5. This compound has been previously reported [46].

2-(Trimethylsilyl)ethyl 4-methoxybenzoate (8). TLC Rf = 0.54 (10% EA/90% hexanes); IR
(ATR) 2952, 2897, 1707, 1274, 845 cm−1; 1H NMR (CDCl3, 400 MHz) δ 8.00 (d, J = 8.9 Hz,
2H), 6.92 (d, J = 8.9 Hz, 2H), 4.40 (t, J = 8.4 Hz, 2H), 3.87 (s, 3H), 1.13 (t, J = 8.3 Hz, 2H), 0.08
(s, 9H); 13C{1H} NMR (CDCl3, 100 MHz) δ 166.5, 163.2, 131.5, 123.2, 113.5, 62.9, 55.4, 17.4,
−1.4. Anal. Calcd for C13H20O3Si: C, 61.87; H, 7.99. Found: C, 61.47; H, 7.79. HRMS (ESI)
m/z Calcd for C13H20O3SiNa (M + Na+): 275.1073. Found: 275.1071.

2-(Trimethylsilyl)ethyl (2Z)-3-(2-methoxyphenyl)prop-2-enoate (9). TLC Rf = 0.31 (5%
EA/95% hexanes); IR (ATR) 3040, 2951, 2895, 1717, 1249, 859, 839 cm−1; 1H NMR (CDCl3,
400 MHz) δ 7.58 (dd, J = 7.6, 1.3 Hz, 1H), 7.30–7.34 (m, 1H), 7.17 (d, J = 12.4 Hz, 1H), 6.93
(td, J = 11.3, 0.5 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 5.97 (d, J = 12.4 Hz, 1H), 4.19 (t, J = 8.5 Hz,
2H), 3.85 (s, 3H), 0.92 (t, J = 8.5 Hz, 2H), 0.02 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3) δ
166.5, 157.1, 138.9, 130.8, 130.3, 124.1, 120.1, 119.9, 110.2, 62.3, 55.4, 17.1, −1.6. Anal. Calcd
for C14H22O3Si: C, 64.71; H, 7.96. Found: C, 64.74; H, 7.76.

2-(Trimethylsilyl)ethyl 3-phenylprop-2-ynoate (10). TLC Rf = 0.33 (5% EA/95% hexanes);
IR (ATR) 2952, 2897, 2217, 1704, 1282, 858, 837 cm−1; 1H NMR (CDCl3, 400 MHz) δ 7.58–7.60
(m, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.4 Hz, 2H), 4.34 (t, J = 8.6 Hz, 2H), 1.11 (t, J = 8.6
Hz, 2H), 0.09 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3) δ 154.3, 133.0, 130.5, 128.5, 119.7,
85.8, 81.0, 64.5, 17.3, −1.5. Anal. Calcd for C14H18O2Si: C, 68.25; H, 7.36. Found: C, 67.98;
H, 7.60.

2-(Trimethylsilyl)ethyl 4-oxopentanoate (11). TLC Rf = 0.47 (20% EA/80% hexanes); IR
(ATR) 2955, 1717 cm−1; 1H NMR (CDCl3, 400 MHz) δ 4.11–4.15 (m, 2H), 2.71 (t, J = 6.3 Hz,
2H), 2.51 (t, J = 6.3 Hz, 2H), 2.15 (s, 3H), 0.93–0.97 (m, 2H) 0.00 (s, 9H). 13C{1H} NMR
(100 MHz, CDCl3) δ 208.3, 174.4, 64.4, 39.5, 31.4, 29.7, 18.7, 0.00. HRMS (ESI) m/z Calcd for
C10H20O3SiNa (M + Na+): 239.1073. Found: 239.1072.

(Trimethylsilyl)ethyl benzoylaminoethanoate (12). TLC Rf = 0.58 (20% EA/80% hex-
anes); IR (ATR) 3319, 2951, 2897, 1734, 1646, 1536,1249, 1194, 1176, 859 cm−1; 1H NMR
(400 MHz, CDCl3) δ 7.80–7.84 (m, 2H), 7.43–7.55 (m, 3H), 6.65 (bs, 1H), 4.28–4.34 (m, 2H),
4.23 (d, J = 4.7 Hz, 2H), 1.02–1.08 (m, 2H), 0.06 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3)
δ 171.6, 168.9, 135.3, 133.2, 130.1, 128.6, 65.1, 43.5, 18.9, 0.0. HRMS (ESI) m/z Calcd for
C14H21NO3SiNa (M + Na+): 302.1182. Found: 302.1178.

2-(Trimethylsilyl)ethyl pent-4-ynoate (13). TLC Rf = 0.45 (10% EA/90% hexanes); IR
(ATR) 3309, 2953, 1732 cm−1; 1H NMR (CDCl3, 400 MHz) δ 4.16–4.20 (m, 2H), 2.45–2.54 (m,
4H), 1.96 (m, 1H), 0.96–1.00 (m, 2H), 0.02 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3) δ 173.4,
84.1, 70.5, 64.4, 35.0, 18.8, 15.8, 0.0. HRMS (ESI) m/z Calcd for C10H18O2SiNa (M + Na+):
221.0968. Found: 221.0968.

2-(Trimethylsilyl)ethyl 2-nitrobenzoate (14). TLC Rf = 0.21 (10% EA/90% hexanes); IR
(ATR) 2953, 2897, 1732, 1525, 1380, 1249, 859, 838 cm−1; 1H NMR (CDCl3, 300 MHz) δ 8.12
(d, J = 8.1 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.36 (d, J = 7.5 Hz, 1H),
4.21 (m, 2H), 4.02 (s, 2H), 1.00 (m, 2H), 0.02 (s, 9H); 13C{1H} NMR (CDCl3, 75 MHz) δ 170.0,
148.9, 133.5, 133.3, 129.9, 128.5, 125.3, 63.6, 40.0, 12.2, −1.6. Anal. Calcd for C13H19NO4Si:
C, 55.49; H, 6.81; N, 4.98. Found: C, 55.11; H, 6.44; N, 4.90.

2-(Trimethylsilyl)ethyl (2R)-2-(6-methoxynaphthalen-2-yl)propanoate (15). TLC Rf = 0.65
(20% EA/80% hexanes); IR (ATR) 2950, 1722, 1149 cm−1; 1H NMR (CDCl3, 400 MHz) δ
7.67–7.77 (m, 3H), 7.42 (dd, J = 8.5, 1.7 Hz, 1H), 7.12–7.16 (m, 2H), 4.11–4.23 (m, 2H), 3.91 (s,
3H), 3.84 (q, J = 7.2 Hz, 1H), 1.58 (d, J = 7.2 Hz, 3H), 0.92–0.97 (m, 2H) 0.00 (s, 9H); 13C{1H}
NMR (100 MHz, CDCl3) δ 176.3, 159.1, 137.4, 135.2, 130.8, 130.5, 128.6, 127.8, 127.5, 120.4,
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107.1, 64.6, 56.9, 47.2, 20.1, 18.8, 0.0. Anal. Calcd for C19H26O3Si: C, 69.05; H, 7.93. Found:
C, 69.30; H, 7.76. The enantiopurity was determined by chiral HPLC (AD-H column),
n-hexane: i-PrOH = 99:1, 1 mL/min; t1 = 7.5; t2 = 8.6 min.

2-(Trimethylsilyl)ethyl 2,2-diphenylacetate (16). TLC Rf = 0.59 (10% EA/90% hexanes); IR
(ATR) 2952, 2895, 1730, 1496 cm−1; 1H NMR (400 MHz, CDCl3) δ 7.22–7.34 (m, 10H), 4.99
(s, 1H), 4.22–4.28 (m, 2H), 0.97–1.02 (m, 2H), 0.00 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3)
δ 174.4, 140.3, 130.2, 130.1, 128.7, 65.1, 58.8, 18.8, 0.0. Anal. Calcd for C19H24O2Si: C, 73.03;
H, 7.74. Found: C, 73.37; H, 8.10.

2-(Trimethylsilyl)ethyl 2-methyl-2-phenylpropanoate (17). TLC Rf = 0.37 (5% MTBE/95%
hexanes); IR (ATR) 3060, 2952, 2896, 1724, 1250, 858, 838 cm−1; 1H NMR (CDCl3, 400 MHz)
δ 7.31–7.37 (m, 4H), 7.21–7.26 (m, 1H), 4.16 (t, J = 8.5 Hz, 2H), 1.58 (s, 6H), 0.92 (t, J = 8.5 Hz,
2H), −0.02 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3) δ 176.9, 144.9, 128.3, 126.6, 125.7, 63.1,
46.5, 26.5, 17.1, -1.6. Anal. Calcd for C15H24O2Si: C, 68.13; H, 9.15. Found: C, 67.78; H, 9.22.

2-(Trimethylsilyl)ethyl 2-hydroxy-2-phenylacetate (18). TLC Rf = 0.18 (10% EA/90%
hexanes); IR (ATR) 3457, 3064, 3032, 2953, 2897, 1728, 1250, 859, 838 cm−1; 1H NMR
(CDCl3, 400 MHz) δ 7.31–7.44 (m, 5H), 5.14 (s, 1H), 4.17–4.35 (m, 2H), 3.50 (bs, 1H), 0.97 (t,
J = 8.6 Hz, 2H), 0.00 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3) δ 173.8, 138.5, 128.5, 128.4,
126.6, 73.0, 64.7, 17.2, −1.6. HRMS (ESI) m/z Calcd for C13H20O3SiNa (M + Na+): 275.1073.
Found: 275.1071.

2-(Trimethylsilyl)ethyl 2-(1H-indol-3-yl)acetate (19). TLC Rf = 0.63 (20% EA/80% hex-
anes); IR (ATR) 3350, 1715, 1662, 1462, 1309, 1248 cm−1. 1H NMR (400 MHz, CDCl3) δ
8.14 (bs, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 8.2, 1H), 7.11–7.22 (m, 3H), 4.18–4.24 (m,
2H), 3.76 (s, 2H), 0.98–1.03 (m, 2H), 0.03 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3) δ 173.8,
137.6, 128.8, 124.6, 123.6, 121.1, 120.4, 112.7, 110.1, 64.6, 33.1, 18.8, 0.0. Anal. Calcd for
C15H21NO2Si: C, 65.41; H, 7.69; N, 5.09. Found: C, 65.02; H, 8.04; N, 5.15.

2-(Trimethylsilyl)(1,1-d2)ethyl 4-methoxybenzoate (26) and 2-(Trimethylsilyl)(2,2-d2)ethyl
4-methoxybenzoate (27). TLC Rf = 0.54 (10% EA/90% hexanes); 1H NMR (CDCl3, 400 MHz)
δ 8.00 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 4.40 (t, J = 8.4 Hz, 2H), 3.87 (s, 3H), 1.13 (t,
J = 8.3 Hz, 2H), 0.08 (s, 9H); 13C{1H} NMR (CDCl3, 100 MHz) δ 166.5, 163.2, 131.5, 123.2,
113.5, 62.9, 55.4, 17.4, −1.4.

Supplementary Materials: The following are available online at https://www.mdpi.com/2673-401
X/2/1/2/s1, PDF file containing copies of NMR Spectra (1H and 13C) and chiral HPLC traces for
Ester 15.
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