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Abstract: Dihydropyrrolo[1,2-a]pyrazinone rings are a class of heterocycles present in a wide range
of bioactive natural products and analogues thereof. As a direct result of their bioactivity, the
synthesis of this privileged class of compounds has been extensively studied. This review provides
an overview of these synthetic pathways. The literature is covered up until 2020 and is organized
according to the specific strategies used to construct the scaffold: fusing a pyrazinone to an existing
pyrrole, employing a pyrazinone-first strategy, an array of multicomponent reactions and some
miscellaneous reactions.
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1. Introduction

Nitrogen-containing heteroaromatic rings are valuable motifs in bioactive molecules
and recurrent scaffolds present in drugs [1,2]. The application of nitrogen ring systems
in drug development is related to their diverse properties, including relatively small con-
formational freedom, while retaining some polarity, compared to aromatic hydrocarbons.
Additionally, commercial availability, synthetic tractability, chemical diversity and the
tendency for functionalization should also be highlighted [3]. However, the wide chem-
ical space of nitrogen heterocycles is not yet fully explored in the attempt to find new
drug candidates.

Dihydropyrrolo[1,2-a]pyrazinone rings are found in the structure of a number of
bioactive compounds, including synthetic and natural products isolated from various
sources like fungi, plants or sponges. These natural products (some structures are shown
in Figure 1) often contain one or two bromine substituents on the pyrrole ring. The sim-
plest congeners are longamide A [4] and its nonbrominated analog mukanadin C [5]
(not shown), longamide B [6], hanishin [7], stylisine D [8], cyclooroidin [9], and age-
samide [10]. More complicated tetracyclic analogs include dibromophakellstatin, dibro-
mophakellin [11] and the different agelastatins A-F [12,13]. One of the most complicated
pyrrolopyrazinone natural products is palau’amine [14], and its structure has been seen as
a challenge for total synthesis. Some related natural products are the higher oxidation state
analogs peramine [15] and nannozinone B [16], containing the pseudoaromatic pyrazi-
none ring, the pyrrolodiketopiperazines brevianamide T [17] and macrophominol [18],
and the oxopyrrole derivative oxocyclostylidol [19] (Figure 1).

Several bioactivities have been found for these pyrrolopyrazinone natural products.
Hanishin shows cytotoxicity against non-small cell lung carcinoma [7], and agelastatin A
and D display significant activity against different cell lines [20]. Longamide B was found to
have antiprotozoal [21] and antibacterial [6] properties, with good potency against African
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trypanosome. Palau’amine and the similar dibromophakellin and dibromophakellstatin
inhibit the human 20S proteasome [22]. Peramine is an insect feeding deterrent [23].
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described as melanin-concentrating hormone (MCH-R1) antagonists of interest in anti-
obesity therapy [25]. Other notable bioactive derivatives are the HIV-1 integrase com-
pounds 2 [26], the potent and noncompetitive mGluR1 antagonists 3 [27], the kinase in-
hibitors 4 [28] and 5 [29] and the immunosuppressive response indoleamine-2,3-dioxy-
genase 1 (IDO-1) inhibitors 6 [30] (Figure 2). 

Figure 1. Pyrrolopyrazinone natural products.

In view of these bioactivities, there has been a keen interest in synthetic analogs, and
pyrrolopyrazine is now recognized as a privileged scaffold. The best known example is
AS-3201 (ranirestat), a potent aldose reductase inhibitor [24] that has been granted orphan
drug status for the treatment of diabetic neuropathy. Pyrrolopyrazines 1 have also been
described as melanin-concentrating hormone (MCH-R1) antagonists of interest in antiobe-
sity therapy [25]. Other notable bioactive derivatives are the HIV-1 integrase compounds
2 [26], the potent and noncompetitive mGluR1 antagonists 3 [27], the kinase inhibitors
4 [28] and 5 [29] and the immunosuppressive response indoleamine-2,3-dioxygenase 1
(IDO-1) inhibitors 6 [30] (Figure 2).

In this review, we will cover the different synthetic strategies leading to the dihy-
dropyrrolopyrazinone scaffold. These include (1) the fusion of a pyrazinone to a pyrrole
derivative, (2) the fusion of a pyrrole to a pyrazinone, (3) multicomponent reactions and
(4) miscellaneous strategies. The literature will be covered until the end of 2020, and
the focus is indeed on ring formation rather than an elaboration of substituents during
the multistep total syntheses of complicated natural product analogs or the details of
their biological properties. Also, we will not cover any examples that have indoles or
other fused pyrrole rings in the structure, neither quinoxalines nor other fused pyrazines,
since their chemistry is in most cases rather different. This review has a focus on the
dihydropyrrolo[1,2-a]pyrazinones, in comparison to a recent general overview of the eight
different pyrrololactam isomers [31].
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2. Fusion of a Pyrazinone to a Pyrrole Derivative
2.1. Starting from 2-Monosubstituted Pyrroles

The most common way toward pyrrolopyrazinones is fusing a pyrazinone to a pyrrole.
One way to realize this is starting from 1H-pyrrole-2-carboxamide bearing electrophilic
groups on the amide that react in an intramolecular fashion with the nucleophilic pyrrole
nitrogen. Several electrophilic groups are possible. Electron-poor alkenes can undergo
aza-Michael addition, as in the base-catalyzed formation of N-benzyl longamide B deriva-
tive 8 from the corresponding open chain pyrrole-2-amide 7 after potassium carbonate
(K2CO3)-catalyzed cyclization, bromination with N-bromosuccinimide (NBS) and saponifi-
cation (Scheme 1) [32]. A similar aza-Michael cyclization was reported in the total synthesis
of longamide B and cyclooroidin via the Wadsworth–Horner–Emmons olefination of
longamide A [33,34] or in the 1,8-diazabicyclo[5.4.0]undec-7-ene(DBU)-catalyzed cycliza-
tion of precursors to kinase inhibitors 5 [29]. An enantioselective aza-Michael cyclization
(up to 56%ee) was realized with compounds analogous to 7 in the presence of a chiral
N-benzylammonium phase transfer catalyst derived from quinine [35].
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The total synthesis of (-)-agelastatin A involved a similar aza-Michael reaction to an
enone intermediate 9, which was generated by the oxidation of an allylic alcohol precur-
sor [36] or by a metathesis reaction [37]. Different bases were tried for the cyclization
of 9 to the intermediate 10 that then could be further elaborated to the natural prod-
uct. It was found that diisopropylethylamine (DIPEA) in THF is a suitable base/solvent
combination after the acidity of the pyrrole is increased by bromination, whereas nonbromi-
nated pyrrole 9 resulted in the recovery of the starting material, rearrangement and/or
decomposition [36,38,39]. Many variants of this cyclization have been described, with
other base/solvent combinations like cesium carbonate in methanol [37] or THF [40] at
room temperature, potassium carbonate in dimethyl sulfoxide (DMSO) at 100 ◦C [41],
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trimethylamine in acetonitrile (ACN) at −20 ◦C [42] and triethylamine (Et3N) in DMSO at
room temperature with the in situ generation of enone 9 by the elimination of a sulfone
group [43,44] (Scheme 2).
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Scheme 2. Aza Michael reaction as part of (-)-agelastatin total synthesis.

Instead of changing the nucleophilicity of the pyrrole, the electrophilicity of the
double bond may be increased by the addition of a Brønsted or Lewis acid. In fact, the
biosynthesis of hanishin or longamide B has been described as involving the protonation of
a precursor analogous to 7 by an appropriate enzyme [7]. In a bioinspired total synthesis of
rac-agelastatin A, a cascade process occurs starting from a hemiaminal 11 that is converted
with trifluoroacetic acid (TFA) into a reactive iminium salt 12 that cyclizes to intermediate
13 and then undergoes the addition of water to give the hydroxyl derivative 14. The
deprotection of 14 and cyclization by heating in the presence of silica (SiO2) at 45 ◦C affords
agelastatin A (68%) and a minor amount (13%) of its 4,5-epimer [45] (Scheme 3). We can
also mention a similar report wherein trifluoroethanol functions as an acidic medium
(40 ◦C) for the diastereoselective cyclization of 14 to agelastatin A [46]. Rac-cyclooroidin
has been prepared in excellent yield (93%), by heating the formic acid salt of the acyclic
precursor at 95 ◦C for 45 h in a sealed tube [47].
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Scheme 3. Silica-promoted synthesis of (-)-agelastatin A.

The palladium-catalyzed cyclization of N-allyl pyrrole-2-carboxamide 15 (R1 = H)
leads to different products depending on the catalyst. In the presence of palladium acetate
(0.1 eq), sodium acetate and tetrabutylammonium chloride (Bu4NCl) in DMSO at 120 ◦C,
the pyrrolo[1,2-a]pyrazine 16a is formed. On the other hand, PdCl2(CH3CN)2 catalyst
(0.1 eq.) in a dimethylformamide (DMF)/tetrahydrofuran(THF) mixture at 100 ◦C, in the
presence of a stoichiometric benzoquinone oxidant, gave a 1:1 mixture of the two isomeric
[2,3-c] and [3,2-c] fused pyrrolopyridinone derivatives 17 and 18, apparently as the result
of cyclization involving the 2-position of the pyrrole followed by rearrangement [48].
Remarkably, when the Pd(OAc)2 method was applied to the N-cinnamyl derivative 15
(R1 = Ph), the dihydro derivative 19 was obtained in modest yield and different oxidants
failed to afford the corresponding pyrrolo[1,2-a]pyrazine 16b [49] (Scheme 4).
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Scheme 4. Palladium-catalyzed cyclization of N-allyl pyrrole-2-carboxamide.

The cyclization reactions of pyrrole nitrogen onto alkyne substituents were studied
in basic circumstances. Thus, N-imidazolylpropargyl-substituted pyrrole-2-carboxamide
20 was favorably converted to the pyrrolopyridazinone 21, by an 6-exo-dig process, using
cesium carbonate (Cs2CO3) in DMF at room temperature. Further deprotection and exo-
double bond reduction yielded cyclooroidin analog 22 [50] (Scheme 5).
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substituted pyrrolopyrazinones 28 [52] in e.e. of 92–95% (Scheme 7). In a subsequent re-
port, an Ir/phosphoramidite catalytic system was explored to obtain the (S)-isomer, which 
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clooroidin analogs [53]. 
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Pyrrole-2-carboxamides 30 N-substituted with an acetal-protected aldehyde function 
cyclized upon acid-catalyzed deprotection. The outcome of the reaction is dependent on 
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Scheme 5. Base-catalyzed ring closure of N-propargyl pyrrole-carboxamides.

Other examples of the base-catalyzed ring closure of N-propargyl derivatives were
reported, with 30 mol% DBU in dichloromethane (DCM) at reflux temperature [51], which
led to a mixture of pyrrolopyrazinone isomers 24 and 25 with an exo double bond and an
endo double bond, respectively. The isomerization of the exo-isomers 24 to the thermody-
namically preferred endo-product 25 and the deprotection mediated by triisopropylsilane
(iPr3SiH) and TFA under microwave (MW) heating, only yielded 26 (Scheme 6).
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An iridium (I) complex with chiral N-heterocyclic carbene ligand 29 was used as a
catalyst for the intramolecular aminoallylation of acylpyrroles 27, leading to (R)-vinyl-
substituted pyrrolopyrazinones 28 [52] in e.e. of 92–95% (Scheme 7). In a subsequent report,
an Ir/phosphoramidite catalytic system was explored to obtain the (S)-isomer, which is
used as a starting material for the total synthesis of longamide B, hanishin or cyclooroidin
analogs [53].
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Scheme 7. Iridium-catalyzed intramolecular allylation strategy toward pyrrolopyrazinones.

Pyrrole-2-carboxamides 30 N-substituted with an acetal-protected aldehyde function
cyclized upon acid-catalyzed deprotection. The outcome of the reaction is dependent
on the reaction conditions. The treatment of 30 with 4-toluenesulfonic acid or HCl in
acetone/water at room temperature gave longamide A, probably after the cyclization
of the intermediate aldehyde 31. Racemic longamide A can be separated into the two
enantiomers through chiral chromatography, but these racemize at room temperature
within minutes [54]. On the other hand, the isomeric pyrrolopyridine 32 was formed on
the heating of 30 with methanesulfonic acid (MeSO3H). Longamide A was formed on
heating with methanesulfonic acid or on treatment with 4-toluenesulfonyl chloride, and
trimethylamine gave the dehydrated pyrazinone 33 [55] (Scheme 8). Unprotected ketone
analogs of 31 (with different degrees of bromination on the pyrrole ring) were shown to be
in equilibrium with the hydroxypyrrolopyrazinones, but the oxidation of the pyrrole ring
to a 2-hydroxypyrrolin-5-one with Selectfluor gave the ring-opened product [56].
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Scheme 8. Alternate intramolecular reactions of acetals and pyrrole.

The pyrrole-2-carbamide 34 (R = H) derived from prolinol on oxidation with 2-
iodoxybenzoic acid (IBX) in DMSO at room temperature [57] or Dess–Martin (D-M) reagent
in DCM at room temperature [58] gave the hydroxypyrrolopyrazinone 35, which could be
dehydrogenated with phosphoryl chloride (POCl3) in pyridine at room temperature [57]
or with mesyl chloride and DBU in DCM at room temperature [58] to afford the tricyclic
compound 36 (Scheme 9). The compounds 35 and 36 (R = H, Br) were also obtained
in a similar sequence from the reduction of the pyrrolecarboxamide connected to the
Weinreb amide of proline with lithiumaluminium hydride [59] or with hydroxyprolinate



Organics 2021, 2 124

(diisobutylaluminum hydride reduction) [60], in the framework of total syntheses of dibro-
mophakellstatin.
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Scheme 9. Cyclization of prolinol derivatives.

Amides 37, resulting from the condensation of 2-trichloroacetylpyrrole (or pyrrole-2-
carboxylic acid and amidation reagents) and different amino esters derived from natural
amino acids (shown here for proline), were cyclized with sodium hydride in THF to
the diketopiperazine derivatives 38 in high yield. Several reports have appeared in the
literature [59,61–64]. These compounds 38 could be oxygenated with molecular oxygen to
a hydroperoxide and could be reduced in situ with dibutyl sulfide ((n-Bu)2S) or triphenyl
phosphine (PPh3), affording the hydroxy product 39 in high yield [62] (Scheme 10). Recently,
it was found that these diketopiperazines 38 could function as catalysts in oxygenation
reactions [65], and the oxygenation of compound 38 in the presence of guanidine has also
been mentioned as acting in the biogenesis of 2-aminoimidazolidinone metabolites from
sponges [61].

Organics 2021, 2, FOR PEER REVIEW 8 
 

 

 
Scheme 10. Diketopiperazine derivatives from amino esters and pyrrole-2-carboxylic reagents. 

Pyrrole-2-carboxylic acid, carbonyl compounds, isocyanides and amino esters un-
dergo the four-component Ugi reaction to afford the adducts, which cyclized spontane-
ously at room temperature in methanol and triethylamine (Et3N) to afford a library of 
polysubstituted pyrrole diketopyrazines 40 [66] (Scheme 11). An extensive discussion of 
pyrrolo-fused diketopiperazines is out of the scope of this review. Instead, we give a few 
additional key references [57,65,67–70]. 

N N

O

O R1

R3

40

N
H

O

OH
H2N

R1 O

OMe R3 R2

O
R4 NC

NHCOR4

R2
+ + +

Et3N
MeOH, RT

 
Scheme 11. Pyrrolopyrazinones by Ugi four component reaction. 

2.2. Starting from 1-Monosubstituted Pyrroles 
There are few examples in the literature of a 1-monosubstitued pyrrole that is con-

verted to a pyrrolopyrazinone. Thus, the pyrrole 41 was prepared from aspartic acid di-
methyl ester and reacted with chlorosulfonyl isocyanate (CSI), affording the pyrrolopyra-
zinedione 42. Reduction with sodium borohydride in methanol, and dehydration, gave 
the pyrazinone 43, which was then reduced with Pt/C and H2, simultaneously removing 
the bromine, to longamide B analogs 44 [71] (Scheme 12). Compounds analogous to 42 
have also been prepared from the 2-trichloracetylation of 41 followed by substitution with 
primary amines [20,70]. 

 
Scheme 12. Cyclization of 1-monosubstituted pyrrole with CSI. 

2.3. Starting from 1,2-Disubstituted Pyrroles 
There are a number of reports wherein a 1,2-disubstituted pyrrole was used as a start-

ing material for the formation of a pyrrolopyrazinone. This may be done with (1) a single 
acyclic precursor containing an electrophilic carbonyl group at the 2-position and a nucle-
ophilic substituent (mostly amine) at the 1-position, or (2) vice versa, or (3) the condensa-
tion of two components of which one contains the disubstituted pyrrole. 

Thus, methyl 2-pyrrolecarboxylate 45 was combined with a nitroalkene 46 in the 
presence of potassium hydroxide to give a nitroalkyl-substituted pyrrole 47, which was 
then reduced with sodium borohydride (NaBH4)/cobalt(II)chloride (CoCl2), and the amine 
48 cyclized at reflux temperature in toluene after which ethanol was eliminated from 49 

Scheme 10. Diketopiperazine derivatives from amino esters and pyrrole-2-carboxylic reagents.

Pyrrole-2-carboxylic acid, carbonyl compounds, isocyanides and amino esters un-
dergo the four-component Ugi reaction to afford the adducts, which cyclized spontaneously
at room temperature in methanol and triethylamine (Et3N) to afford a library of polysubsti-
tuted pyrrole diketopyrazines 40 [66] (Scheme 11). An extensive discussion of pyrrolo-fused
diketopiperazines is out of the scope of this review. Instead, we give a few additional key
references [57,65,67–70].

Organics 2021, 2, FOR PEER REVIEW 8 
 

 

 
Scheme 10. Diketopiperazine derivatives from amino esters and pyrrole-2-carboxylic reagents. 

Pyrrole-2-carboxylic acid, carbonyl compounds, isocyanides and amino esters un-
dergo the four-component Ugi reaction to afford the adducts, which cyclized spontane-
ously at room temperature in methanol and triethylamine (Et3N) to afford a library of 
polysubstituted pyrrole diketopyrazines 40 [66] (Scheme 11). An extensive discussion of 
pyrrolo-fused diketopiperazines is out of the scope of this review. Instead, we give a few 
additional key references [57,65,67–70]. 

N N

O

O R1

R3

40

N
H

O

OH
H2N

R1 O

OMe R3 R2

O
R4 NC

NHCOR4

R2
+ + +

Et3N
MeOH, RT

 
Scheme 11. Pyrrolopyrazinones by Ugi four component reaction. 

2.2. Starting from 1-Monosubstituted Pyrroles 
There are few examples in the literature of a 1-monosubstitued pyrrole that is con-

verted to a pyrrolopyrazinone. Thus, the pyrrole 41 was prepared from aspartic acid di-
methyl ester and reacted with chlorosulfonyl isocyanate (CSI), affording the pyrrolopyra-
zinedione 42. Reduction with sodium borohydride in methanol, and dehydration, gave 
the pyrazinone 43, which was then reduced with Pt/C and H2, simultaneously removing 
the bromine, to longamide B analogs 44 [71] (Scheme 12). Compounds analogous to 42 
have also been prepared from the 2-trichloracetylation of 41 followed by substitution with 
primary amines [20,70]. 

 
Scheme 12. Cyclization of 1-monosubstituted pyrrole with CSI. 

2.3. Starting from 1,2-Disubstituted Pyrroles 
There are a number of reports wherein a 1,2-disubstituted pyrrole was used as a start-

ing material for the formation of a pyrrolopyrazinone. This may be done with (1) a single 
acyclic precursor containing an electrophilic carbonyl group at the 2-position and a nucle-
ophilic substituent (mostly amine) at the 1-position, or (2) vice versa, or (3) the condensa-
tion of two components of which one contains the disubstituted pyrrole. 

Thus, methyl 2-pyrrolecarboxylate 45 was combined with a nitroalkene 46 in the 
presence of potassium hydroxide to give a nitroalkyl-substituted pyrrole 47, which was 
then reduced with sodium borohydride (NaBH4)/cobalt(II)chloride (CoCl2), and the amine 
48 cyclized at reflux temperature in toluene after which ethanol was eliminated from 49 

Scheme 11. Pyrrolopyrazinones by Ugi four component reaction.

2.2. Starting from 1-Monosubstituted Pyrroles

There are few examples in the literature of a 1-monosubstitued pyrrole that is con-
verted to a pyrrolopyrazinone. Thus, the pyrrole 41 was prepared from aspartic acid
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dimethyl ester and reacted with chlorosulfonyl isocyanate (CSI), affording the pyrrolopy-
razinedione 42. Reduction with sodium borohydride in methanol, and dehydration, gave
the pyrazinone 43, which was then reduced with Pt/C and H2, simultaneously removing
the bromine, to longamide B analogs 44 [71] (Scheme 12). Compounds analogous to 42
have also been prepared from the 2-trichloracetylation of 41 followed by substitution with
primary amines [20,70].
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2.3. Starting from 1,2-Disubstituted Pyrroles

There are a number of reports wherein a 1,2-disubstituted pyrrole was used as a
starting material for the formation of a pyrrolopyrazinone. This may be done with (1) a
single acyclic precursor containing an electrophilic carbonyl group at the 2-position and
a nucleophilic substituent (mostly amine) at the 1-position, or (2) vice versa, or (3) the
condensation of two components of which one contains the disubstituted pyrrole.

Thus, methyl 2-pyrrolecarboxylate 45 was combined with a nitroalkene 46 in the
presence of potassium hydroxide to give a nitroalkyl-substituted pyrrole 47, which was
then reduced with sodium borohydride (NaBH4)/cobalt(II)chloride (CoCl2), and the amine
48 cyclized at reflux temperature in toluene after which ethanol was eliminated from 49 in
basic medium, leading to the product 50 that was used as a starting material for the first
total synthesis of peramide [23,72] (Scheme 13). As an alternative to a nitro compound, a
N-CH2CN functionality can be introduced, using iodoacetonitrile, which can be reduced to
the amine, which then further cyclizes to a pyrrolopyrazinone [27].
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Scheme 13. First total synthesis of peramide.

The azide function is a common precursor for amine that can easily be generated in situ
by catalytic reduction. Therefore, in the framework of a total synthesis of cyclooroidin, alco-
hol 51 was mesylated and converted into azide 52, and catalytic hydrogenation followed by
the addition of sodium hydride (NaH) resulted in the formation of the pyrrolopyrazinone
53, which was then further elaborated to cyclooroidin [73] (Scheme 14). Similar strategies
have been used in the total synthesis of (-)-hanishin [74] or in the synthesis of histone
deacetylase inhibitors [75] and the inhibitors of the mycobacterium ATP synthase [76].



Organics 2021, 2 126

Organics 2021, 2, FOR PEER REVIEW 9 
 

 

in basic medium, leading to the product 50 that was used as a starting material for the first 
total synthesis of peramide [23,72] (Scheme 13. As an alternative to a nitro compound, a 
N-CH2CN functionality can be introduced, using iodoacetonitrile, which can be reduced 
to the amine, which then further cyclizes to a pyrrolopyrazinone [27]. 

 
Scheme 13. First total synthesis of peramide. 

The azide function is a common precursor for amine that can easily be generated in 
situ by catalytic reduction. Therefore, in the framework of a total synthesis of cyclooroidin, 
alcohol 51 was mesylated and converted into azide 52, and catalytic hydrogenation fol-
lowed by the addition of sodium hydride (NaH) resulted in the formation of the pyr-
rolopyrazinone 53, which was then further elaborated to cyclooroidin [73] (Scheme 14). 
Similar strategies have been used in the total synthesis of (-)-hanishin [74] or in the syn-
thesis of histone deacetylase inhibitors [75] and the inhibitors of the mycobacterium ATP 
synthase [76]. 

 
Scheme 14. Azides as intermediates in the total synthesis of cyclooroidin. 

Typical amine-protecting groups like tert-butoxycarbonyl (Boc) and fluorenyl-
methoxycarbonyl (Fmoc) can also be used in intermediates leading to pyrrolopyrazi-
nones. Thus, the condensation of methyl 2-pyrrolocarboxylate 45 with cyclic sulfamidates 
54 and the potassium tert-butoxide base gave the precursor 55, which was deprotected 
with acid and then cyclized, mediated by triethylamine (Et3N) [77]. The resulting pyr-
rolopyrazinone 56 can then be further elaborated to longamide B or hanishin [30,77,78] 
(Scheme 15). Further examples of this strategy have been reported toward longamide B 
derivative, kinase inhibitors [28] and mGluR1 antagonists [27], and we can also mention 
a Fmoc-based total synthesis of cyclooroidin [79]. 

Scheme 14. Azides as intermediates in the total synthesis of cyclooroidin.

Typical amine-protecting groups like tert-butoxycarbonyl (Boc) and fluorenylmethoxy-
carbonyl (Fmoc) can also be used in intermediates leading to pyrrolopyrazinones. Thus,
the condensation of methyl 2-pyrrolocarboxylate 45 with cyclic sulfamidates 54 and the
potassium tert-butoxide base gave the precursor 55, which was deprotected with acid and
then cyclized, mediated by triethylamine (Et3N) [77]. The resulting pyrrolopyrazinone 56
can then be further elaborated to longamide B or hanishin [30,77,78] (Scheme 15). Further
examples of this strategy have been reported toward longamide B derivative, kinase in-
hibitors [28] and mGluR1 antagonists [27], and we can also mention a Fmoc-based total
synthesis of cyclooroidin [79].
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Scheme 15. Boc-strategy toward longamide B derivatives.

An effective example of a two-component reaction leading to the pyrrolopyrazinone
scaffold is the reaction of N-(2-bromoethyl)pyrrole-2-carboxylates 57 with amines, leading
to the N-substituted bicyclic derivatives 58 (Scheme 16). Probably the reaction starts with
the substitution of the bromine by the amine, followed by lactamization. Several examples
were reported [25,27,80]. In the framework of agelastatin total synthesis, some examples
were reported where, in the presence of sodium hydride, an amide substituted a bromine
at the side chain connected to nitrogen, proving that the opposite order of reactions is also
possible [81,82].
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The condensation of hydrazine in ethanol with the triester 59 led to the N-aminopyrrolo
pyrazinone 60, which, upon treatment with sodium nitrite and acid, gave the deaminated
derivative 61, and the condensation of 60 with dimethyl acetylenedicarboxylate (DMAD)
catalyzed by BF3/acetic acid (BF3·AcOH) complex in acetonitrile afforded the interesting
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pyrazolo-fused analog 62 [83]. A related cyclization of 1-alkynylpyrrole-2-carboxylate 63
and hydrazine hydrate occurred with remarkable selectivity. Electron-rich aryl groups or
alkyl groups R give the pyrrolopyrazinone 64a,b, whereas for R = 4-nitrophenyl, only the
1,2,4-triazine 65c is obtained. The phenyl substituted analogs 63d gave a mixture of the
two products 64d and 65d [84] (Scheme 17).
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N-Propargylpyrrole-2-carboxamides 66 prepared in situ were cyclized to pyrrolopy-
razinones 67 using NaH in DMF at room temperature [85], which was applied to a total
synthesis of peramide [86] (Scheme 18).
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Scheme 18. N-propargylpyrrole-2-carboxamide synthesis and cyclization.

N-(phenacyl)substituted pyrrole-2-carboxylates 68 (R = H) reacted with methylamine
(MeNH2) in methanol at reflux to give direct access to pyrrolopyrazinones 69. The diaryl-
substituted analogs 68 (R = Ar), on the other hand, gave the amidation product 70, which
could be converted to the diaryl analog of 69 (R = Ar) by heating 70 at reflux in a 85%
phosphoric acid/ethanol mixture [87] (Scheme 19). An early study of the synthesis of
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analogs of 69 involved the condensation of amines with intermediate pyrrolo-1,4-oxazines
(derived from the N-alkylation of 2-(trichloroacetyl)pyrrole with chloroacetone) [88]. When
acetal-protected 1-acetaldehyde 2-carboxamidepyrrole is deprotected in reflux acetic acid,
the unsubstituted derivative of pyrrolopyrazinone analog of 69 was obtained [89].
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Scheme 19. Cyclization of N-phenacylpyrroles and methylamine.

The carboamination of N-allyl pyrrole carboxamide 71 (R = Ts) with allyl chloride
in the presence of 10 mol% Pd(II) hexafluoroacetoacetate (Pd(hfacac)2) and potassium
dihydrogenphosphate in toluene/water at 50–80 ◦C leads to dihydropyrrolopyrazinone
72 [90]. A similar reaction carried out with the same catalyst in the presence of benzo-
quinone in DMF/water gave the oxygenated analog 73 [91]. Similarly, the carboamination
of 71 (R = p-methoxyphenyl, PMP) with aryl bromides in the presence of Pd(OAc)2/S-Phos
catalyst at 100 ◦C afforded the dihydropyrrolopyrazinone 74 [92] (Scheme 20).
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Scheme 20. Pd(II)-catalyzed carboamination reactions.

Allylpalladium species can function as electrophiles in cyclization reactions leading
to pyrrolopyrazinones, and this has mainly been used in the context of the total synthe-
sis of natural products. Thus, an enantioselective synthesis of agelastatin A reported by
Trost et al. involved firstly the palladium-catalyzed allylation starting from the prochiral
bisprotected cyclopentenediol 75 with 5-bromopyrrolecarboxylate 76 in the presence of a
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chelating chiral bisphosphine catalyst, affording the precursor that then, after conversion to
the N-methoxyamide 77, underwent a second intramolecular allylation to afford pyrrolopy-
razinone 78, which could then be further elaborated to agelastatin A [93] (Scheme 21).
Many variants on this allylation strategy, mostly as a part of agelastatin natural product
total syntheses, were reported [94–99].
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Scheme 21. Palladium-catalyzed intramolecular allylation strategy toward pyrrolopyrazinone.

A remarkable domino reaction of pyrrole-2-carboxamides 79 and vinyl selenones 80
(R2 = H, alkyl) in basic medium occurs via an initial Michael addition, followed by the
intramolecular substitution of intermediate 81, leading to pyrrolopyrazinone 82. In the case
of styryl selenone 80 (R2 = Ph), the N-(1-phenylethenyl)pyrrole 83 is formed instead [100]
(Scheme 22).
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Scheme 22. Domino reaction of pyrrole-2-carboxamides and vinyl selenones.

The Castagnoli–Cushman reaction (CCR) is a ring opening/ring closure reaction of
cyclic anhydrides with imines. When applied to anhydride 84, prepared from the diacid
with trifluoroacetic anhydride, condensation with different imines 85 in 1,2-dichloroethane
(DCE) at room temperature led to a large variety of trisubstituted pyrrolopyrazinones
86 [101] (Scheme 23). The reaction has also been applied to substituted pyrrole anhydrides
84 [102].
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the Ugi reaction are present on the pyrrole moiety, and two more are added under the
form of an isonitrile and an amine. This leads to a library of polysubstituted pyrrolopy-
razinones 88 [103] (Scheme 24). Compounds of this type have been described as dengue
inhibitors [104].
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Scheme 24. Ugi reaction toward pyrrolopyrazinones.

Different approaches to rac-dibromophakellin or other tetracyclic marine natural
products rely on the intramolecular cycloaddition of a reactive intermediate 90 generated
after the oxidation of aminoimidazole 89. This chemistry has been reviewed before [105].
Recently, an intermolecular variant has been described starting from tricyclic 91, which
was reacted with guanidine derivative 92 after oxidation with (diacetoxyiodo)benzene
(PIDA) and sodium tetrafluoropropoxide (NaTFP) base. Fair amounts of cycloadduct 93
were obtained together with a minor amount of open chain compound 94. The reduction of
93 with an excess of SmI2 then gave the rac-phakellin [106] (Scheme 25). Other approaches
involving regio- and stereoselective additions of nitrogen species to analogs of 91 have been
mentioned in the framework of dibromophakellstatin total syntheses [58,105,107–109].
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Different strategies for the total synthesis of palau’amine have been reported, and an
exhaustive discussion is beyond the scope of this text, so the reader is referred to some
dedicated reviews [110]. One of methods that stand out is the ring contraction of the
macrocycle 95 reported by Baran as the final step toward palau’amine [111]. One other
remarkable process is a cascade reaction of precursor 96 with the initial deprotonation and
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ring opening of the tetrahydropyrazole toward intermediate 97a followed by formation or
the pyrrolidine ring of intermediate 97b and subsequent formation of the diketopiperazine
98, which then was further elaborated to palau’amine [112] (Scheme 26).

Organics 2021, 2, FOR PEER REVIEW 15 
 

 

 
Scheme 26. Different cyclization strategies to palau’amine. 

A final strategy toward pyrrolopyrazinones starting from pyrrole building blocks is 
through the ring expansion of pyrrolizidine derivatives, using the Beckmann rearrange-
ment of the phenyl derivative 99, and, after condensation with hydroxylamine and heat-
ing in polyphosphoric acid (PPA), the pyrrolopyrazine 100 is obtained [113] (Scheme 27). 

 
Scheme 27. Ring expansion of pyrrolizidine to pyrrolopyrazinone. 

2.4. Fusion of a Pyrrole to a Pyrazinone Derivative 
This approach has been much less studied than the pyrrole-first method, with only a 

few reports so far. Thus, the integrase inhibitors 2 were obtained, starting from pyrazinone 
101 and diethyl ethoxymethylene malonate 102, by heating at 100 °C in toluene. The re-
sulting enamine 103 was then cyclized with lithium bis(trimethylsilyl)amide LHMDS at 
80 °C in THF, affording compound 2 [26] (Scheme 28). 

 
Scheme 28. Synthesis of hydroxy-substituted pyrrolopyrazinones. 

An efficient two step synthesis of polysubstituted pyrrolopyrazinones started with 
the Vilsmeier–Haack chloroformylation of readily available ketones 104 to afford biselec-
trophilic 2-chloroacrolein intermediate 105, which was then condensed with pyrazinones 

Scheme 26. Different cyclization strategies to palau’amine.

A final strategy toward pyrrolopyrazinones starting from pyrrole building blocks is
through the ring expansion of pyrrolizidine derivatives, using the Beckmann rearrangement
of the phenyl derivative 99, and, after condensation with hydroxylamine and heating in
polyphosphoric acid (PPA), the pyrrolopyrazine 100 is obtained [113] (Scheme 27).
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2.4. Fusion of a Pyrrole to a Pyrazinone Derivative

This approach has been much less studied than the pyrrole-first method, with only a
few reports so far. Thus, the integrase inhibitors 2 were obtained, starting from pyrazinone
101 and diethyl ethoxymethylene malonate 102, by heating at 100 ◦C in toluene. The
resulting enamine 103 was then cyclized with lithium bis(trimethylsilyl)amide LHMDS at
80 ◦C in THF, affording compound 2 [26] (Scheme 28).
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An efficient two step synthesis of polysubstituted pyrrolopyrazinones started with the
Vilsmeier–Haack chloroformylation of readily available ketones 104 to afford biselectrophilic
2-chloroacrolein intermediate 105, which was then condensed with pyrazinones 106 in the
presence of N-methylmorpholine (NMM) base in DMF at 115 ◦C, affording compounds 107
in fair yields, in some case accompanied with the isomer 108 [114] (Scheme 29).
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Scheme 29. Two-step synthesis of pyrrolopyrazinones from 2-chloroacroleins.

Isoxazolino-fused piperazinones 111 were prepared via the 1,3-dipolar cycloaddition
of nitrones 110, which was in equilibrium with the open chain oximes 109, to dimethyl
acetylene dicarboxylate (DMAD). Remarkably, upon heating a rearrangement occurs to
pyrrolopyrazinones 112, presumably via a multistep ring contraction/ring expansion
mechanism [115] (Scheme 30).
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Scheme 30. Synthesis and rearrangement of isoxazolinopyrazinones.

Diketopiperazines 113 underwent base-catalyzed aldol condensations with different
aldehydes, affording adducts that, in the case of acetal substituents, as for 114, underwent
camphorsulfonic acid (CSA)-mediated cyclization on heating in toluene to pyrrolodike-
topiperazines 116. The aldol condensation products 115 resulting from alkynyl aldehydes
underwent gold-catalyzed cyclization under similar conditions, giving an alternative
preparation for compounds 116 with a larger scope of R1-substituents [116] (Scheme 31).
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2.5. Multicomponent Reactions

A three-component reaction of 1,2-diaminoethane, dialkyl acetylene dicarboxylate
and different biselectrophiles present a very straightforward way to pyrrolopyrazinones.
Probably the diamine first reacts with the electrophilic acetylene, and the intermediate
pyrazinone derivative 117 then cyclizes with the biselectrophile. Thus, reaction with
bromopyruvate in acetonitrile or water at reflux resulted in diester 118 [117,118]. On the
other hand, reactions with nitrostyrene, catalyzed by sulfamic acid (SA) in acetonitrile [119]
or Fe3O4@SiO2-OSO3H magnetic nanoparticles in water [40] afforded aryl derivatives 119,
and condensation with methyl- or arylglyoxal in ethanol at reflux with p-toluenesulfonic
acid (TsOH) catalysis gave hydroxyl derivatives 120 [120] (Scheme 32).
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In a variant of this three component reaction, 1,2-diaminoethane and ethyl pyruvate
are combined at room temperature in acetonitrile, and then α-bromo ketones are added
and the mixture heated in the presence of iron (III) chloride to afford 122 via the reaction of
intermediate pyrazine 121 with the bromoketone [121] (Scheme 33).
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2.6. Miscellaneous

The ABDE core of palau’amine was constructed from the dibromide salt of diamine
123 and triscarbonyl compound 124 by a cascade reaction involving a Paal–Knorr pyrrole
synthesis, leading to intermediate pyrrole 125, which, after neutralization, undergoes
subsequent lactamization to afford tetracyclic 126 [122] (Scheme 34).
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Pyrrolidino-fused diketopiperazines 127 could be oxidized to the pyrrolodiketopiper-
azines 128 after sequential deprotonation, phenylselenation, oxidation with dimethyldioxi-
rane (DMDO)/elimination and aromatization of the intermediate pyrroline by heating
with selenium dioxide in dioxane. Earlier attempts to aromatize 127 with 2,3-dichloro-5,6-
dicyano-1,4-benzoquinone (DDQ) gave a lower yield (20–30%) and was accompanied by
difficult purification [107]. Recently, the proline-derived compound 129 was oxidized to the
pyrrole 130 with MnO2 in THF at 85 ◦C without effecting the vinyl or dihydropyrazinone
parts [123] (Scheme 35).
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The condensation of N-(2-aminoethyl)aziridine with two equivalents of diethyl acetylenedi-
carboxylate gave the triester 131, the same compound that could be obtained through the ring
transformation of the furan tetraester 132 and 1,2-diaminoethane [124] (Scheme 36).
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3. Conclusions

The abundance of dihydropyrrolo[1,2-a]pyrazinones in natural products, as well
as molecules exhibiting biological activity, has instigated a decade-long exploration of
synthetic strategies towards these privileged structures. In this review, we classified these
strategies in four main categories: (1) the fusion of a pyrazinone to a pyrrole derivative, (2)
the fusion of a pyrrole to a pyrazinone, (3) multicomponent reactions and (4) miscellaneous
strategies. In the pyrrole-first technique, the pyrazinone core is most often formed via
intramolecular reaction, starting from either 2-monosubstituted, 1-monosubstituted or
1,2-disubstituted pyrroles. Due to the accessibility of these functionalized pyrroles and the
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often straightforward nature of the ring closing reactions, a wide array of functional groups
or substitution patterns can be easily introduced, explaining this being the predominant
strategy for the synthesis of pyrrolopyrazinones.

Compared to the pyrrole-first strategy, fusing a pyrazinone to a pyrrole is much
less studied, and only a few reports have been published. The two-step synthesis of
starting from 2-chloroacroleins presented in the review proves very effective compared
to the pyrrole-first strategy, which is often composed of a multistep procedure. This
strategy therefore has the potential of becoming the standard for the synthesis of 3,4-
dihydropyrrolopyrazinones with a pyrrole core substitution pattern that is unable or
difficult to attain with the pyrrole-first strategy.

The bisnucleophilic character of pyrazinone derivatives was also cleverly employed in
several multicomponent reactions starting from diaminoethane and either dialkyl acetylene
dicarboxylate or ethyl pyruvate. The pyrazinone-based intermediate formed in the reaction
is able to react with a range of biselectrophiles forming pyrrolopyrazinones with a range of
substitution patterns.

Miscellanious reactions including a cascade reaction, a pyrrolidine oxidation toward
the pyrrole and an unusual condensation reaction were also described.

The different strategies discussed in this review have already been applied in the
total synthesis of various naturally occurring and synthetically challenging products.
The biological activity of these core structures is certainly going to remain a motivation
for chemists in the analysis of these privileged structures. By designing new synthesis
pathways or improving upon the existing ones, the overall process will be made even more
efficient, and possible substitution patterns will be broadened, inevitably leading to novel
drug candidates.
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Abbreviations

Ac Acetyl
ACN Acetonitrile
AcOH Acetic acid
Ar Aryl
Bn Benzyl
Boc Tert-butoxycarbonyl
CCR Castagnoli–Cushman reaction
CSA Camphorsulfonic acid
CSI Chlorosulfonyl isocyanate
dba Dibenzylideneacetone
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DCE 1,2-dichloroethane
DCM Dichloromethane
DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DIBAH Diisopropylaluminium hydride
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DIPEA Diisopropylethylamine
D-M Dess–Martin
DMAD Dimethyl acetylenedicarboxylate
DMB 3,4-Dimethoxybenzyl
DMDO Dimethyldioxirane
DMF Dimethylformamide
DMSO Dimethylsulfoxide
Et Ethyl
Fmoc Fluorenylmethoxycarbonyl
hfacac Hexafluoroacetylacetone
IBX 2-iodobenzoic acid
LHDMS Lithium bis(trimethylsilyl)amide
Me Methyl
MeOH Methanol
NMM N-methylmorpholine
Ox Oxidation
PG Protecting group
Ph Phenyl
PIDA Diacetoxyiodobenzene
PMP 4-methoxyphenyl
PPA Polyphosphoric acid
RT Room Temperature
S-Phos 2-Dicyclohexylphosphino-2′,6′-dimethoxybiphenyl
TBS Tertbutyl silyl
tBu Tert butyl
TFA Trifluoroacetic acid
TFP Tetrafluoropropoxide
THF Tetrahydrofuran
Tr Trityl
Ts Tosyl
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